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Chapter 1   Introduction 
 
 
1.1 History of the eP32 
 
The eP32 microprocessor is a Minimal Instruction Set Computer (MISC), vis-à-vis 
Complicated Instruction Set Computer (CISC) and Reduced Instruction Set Computer 
(RISC).  MISC was originally developed by Mr. Chuck Moore, and implemented in 
his MuP21 chip.  It happened that Chuck also invented the FORTH programming 
language.  For many years, Chuck sought to put FORTH into silicon, because he 
thought FORTH was not only a programming language, but also an excellent 
computer architecture. 
 
In the early 1990s, a group of engineers from the MOSIS multiple design chip service 
program came to Silicon Valley and started Orbit Semiconductor Corp, offering 
foundry services to the general public.  Their service was based on a 1.2 micron 
CMOS processes on 5 inch wafer, with two metal layers.  The smallest design they 
accepted was on a 2.4mmx2.4mm silicon die.  Chuck figured that he could design a 
20 bit CPU in that small area.  It was named MuP21, because it was a multiprocessor 
chip, with a 20 bit CPU core, a DRAM memory coprocessor, and a video coprocessor, 
and all registers and stacks in the CPU core were 21 bits wide, with an extra bit to 
preserve the carry bit. 
 
Because of very limited silicon area, the MuP21 had a very small set of instructions, 
but they were sufficient to support a complete FORTH operating system and very 
demanding applications with real time NTSC video output.  The chip was produced 
and verified, but productions in plastic packages were not successful because of poor 
yield. 
 
When FPGA chips became available, I tried to implement FORTH chips based on 
MuP21 instruction set.  The first experiments were on an XS40 Kit from Xess Corp.  
It had a Xilinx VC4005XL FPGA on board with a 32 kB SRAM chip and an 8051 
microcontroller.  The purpose of this kit was to demonstrate how easy it was to use 
an FPGA to replace all glue logic between RAM and 8051, and to build a complete 
working microprocessor system.  I managed to squeeze a 16-bit microprocessor, P16, 
into the VC4000XL chip and eliminated the 8051. 
 
Over the years, Xilinx added more logic gates and RAM blocks to their FPGAs, and I 
was able to put a 32-bit microprocessor, P32, into a VCX1000E chip (which had 16 
kB of RAM) to host a FORTH system.  This design was also ported to FPGA chips 
from Altera and Actel.  P32 gradually evolved into eP32 with an eForth operating 
system.  eForth is a very simple FORTH operating system designed specifically for 
embedded systems.  However, FPGA chips were expensive, development boards 
were expensive, and development software tools were especially expensive.  I talked 
about eP32 implementations, but very few people in the audience had these 
development tools to explore FPGA designs. 
 
It was therefore very exciting to learn about the LatticeXP2 Brevia Development Kit, 
which was on sale for $49.  Development software was free to download.  The Kit 
has a LatticeXP2-5E-6TN144C FPGA chip, which has enough logic cells to 
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implement eP32, and enough RAM memory to host the eForth system.  Its RAM 
memory is mirrored in flash memory on chip, and you do not need external memory 
chips for programs and data.  It is truly a single chip solution for microprocessor 
system design. 
 
Now, everybody can do his own designs on FPGA chips.  It is time to update my 
documentation on eP32 and companion eForth to teach people the best way to design 
their own CPUs and to explore their applications. 
 
All FPGA manufacturers offer reference designs of microprocessors in their 
development software tools, to demonstrate that FPGAs can be used to do 
microprocessor system designs, or in a fancier term System-On-a-Chip, SOC.  
However, these microprocessors are complicated, and their performance is poor.  
A microprocessor does not work without software.  Software reference designs from 
these FPGA manufacturers are even poorer, as we see them struggle with assemblers, 
language compilers, and operating systems. 
 
FORTH offers the best solution for FPGA users.  The CPU is simple, the 
programming language is simple, the operating system is simple, and the application 
programming is simple.  It is possible for an average engineer or scientist to 
understand and to make use of this complete CPU-Language-Operating 
System-Application spectrum in a few weeks.  What's required is an open mind, and 
a willingness to explore different ways to do things.  The very high cost barrier to 
experiment with an FPGA is removed by the LatticeXP2 Brevia Kit.  The only 
barrier left is you yourself. 
 
This book contains two major sections, one on hardware design of the eP32 CPU core 
and a few peripheral devices to form a complete microprocessor, and one on the 
software design of eForth to run on the eP32.  Hardware design is centered on a set 
of VHDL files, describing modules in the eP32 microprocessor system.  Software 
design is centered on a set of FORTH files, which is a metacompiler constructing a 
memory image to initialize a RAM memory module in the eP32.  Generally, I will 
show source code on left hand pages, and commentary on the opposing right hand 
pages.  My perspective is that source code is supreme.  Nothing is more important 
than source code.  If you understand the complete source code, you understand 
everything. 
 
Combining the hardware design of the eP32 and software design of eForth, the result 
is a FORTH microprocessor running on a LatticeXP2 Brevia Development Kit.  You 
can run this FORTH microprocessor from a HyperTerminal console on your PC, and 
write application programs.  Mastering this book, you have an understanding of one 
microprocessor, in and out.  This understanding will allow you to develop your own 
microprocessor to solve your own application problems. 
 
The eP32 has a 32-bit CPU core with two stacks.  It was intended to execute FORTH 
instructions efficiently.  The processor design is simple to allow implementation on 
custom silicon chips as well as on FPGAs.  The eP32 employs only 27 instructions, 
and instruction can be encoded in 5 bit fields. This design is scalable in word sizes 
ranging from 16 bits up to 64 bits.  A program word can contain many instructions in 
5 bit fields.  With this scalable architecture, a CPU designer is freed from the heavy 
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yoke of program word size, which is a primary constraint on a CPU design. 
 
1.2 What is FORTH? 
 
FORTH was invented by Chuck Moore in the 1960s as a programming language.  
Chuck was not impressed by programming languages, operating systems, and 
microprocessor hardware of his time.  He sought the simplest and most efficient way 
to control his computers.  He used FORTH to program every computer in his sight.  
And then, he found that he could design better computers, because FORTH is much 
more than just a programming language; it is an excellent computer architecture. 
 
So what is FORTH? 
 
Many books and many papers had been written about FORTH.  However, FORTH is 
still elusive because it has many features and characteristics which are difficult to 
describe.  Now that it has erased the boundary between hardware and software, it is 
even more difficult to accurately put it into words. 
 
Let me try this way.  Here it goes. 
 
FORTH is a list processor. 
 
FORTH has a set of commands, and an interpreter to process lists of commands. 
 
FORTH commands are records stored in a memory area called a dictionary. 
 
A record of a FORTH command has three fields: a link field linking commands to 
form a dictionary, a name field containing the name of this command in an ASCII 
string, and a code field containing executable code and data to perform a specific 
function for this command.  It may have an optional parameter field, which contains 
data needed by this command.  The link field and name field allow the interpreter to 
look up a command in the dictionary, and the code field provides executable code to 
perform the function assigned to this command. 
 
A FORTH command has two representations: an external representation in the form of 
an ASCII name; and an internal representation in the form of a token, which invokes 
executable code stored in code field.  In many FORTH systems, the token is an 
address.  However, a token can take other forms depending on implementation.   
 
There are two types of FORTH commands: primitive FORTH commands having 
machine code in their code fields, and compound FORTH commands having token 
lists in their code fields. 
 
A FORTH interpreter processes two types of lists: text lists and token lists.  A text 
list contains a sequence of FORTH command names, separated by white spaces and 
terminated by a carriage return.  A token list contains a sequence of tokens, which 
are internal representations of FORTH commands. 
 
FORTH has two interpreters: a text interpreter (or outer interpreter) and a token 
interpreter (or inner interpreter). 
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The text interpreter processes lists of FORTH commands represented in text, which 
consists of names of FORTH commands separated by white spaces and terminated by 
a carriage return.  The number of commands in a text list is not limited.  A list may 
be in one line of text, or in a huge text file. 
 
The token interpreter processes lists of tokens contained in compound commands.   
It is also called the address interpreter, because in many FORTH systems, tokens are 
addresses pointing to code fields.  
 
The text interpreter operates in two modes: interpreting mode and compiling mode.  
In interpreting mode, a list of command names is interpreted; i.e., commands are 
parsed and executed.  In compiling mode, a list of command names is compiled; i.e., 
commands are parsed and corresponding tokens are compiled into a token list.  This 
token list can be given a name to form a new compound command, by creating a new 
command record in the dictionary. 
 
A FORTH compiler is a FORTH text interpreter operating in compiling mode.  It 
compiles new compound commands, converting a text list of FORTH commands into 
an equivalent token list.  It builds nested token lists one on top of the other, until a 
final solution is reached in the last token list. 
 
This is the most powerful feature of FORTH, in that you can compile new compound 
commands, which replace lists of existing commands, both primitive and compound.  
The syntax of a new compound command is: 
 :  <name>  <list of existing commands>  ; 
A FORTH compiler converts a text list of existing commands to a new token list.  
Nested token lists are added until the final compound command becomes the solution 
to your problem.  Lists are built and tested from the bottom up.  The solution space 
can be explored wider and farther, and an optimized solution can be found more 
quickly. 
 
Following are some minor deviations in the syntax of FORTH as a programming 
language. 
 
The text interpreter accepts numbers in lists.  Numbers are ASCII strings with valid 
numeric digits and an optional leading '-' sign.  The text interpreter pushes an integer 
number onto the data stack.  The FORTH compiler compiles an integer literal into 
the token list.  Later, when the token list is interpreted, the integer literal token 
pushes the integer onto the data stack. 
 
The text interpreter accepts strings in lists.  A string must follow a string command, 
which consumes the string.  A string is a sequence of ASCII characters terminated by 
a terminating character specified by the preceding string command.  A string 
command may compile a string literal into the token list.  In the token list, a string 
literal consists of a string token followed by the string in compiled form.  The string 
token uses the compiled string, and passes control to the next token after the compiled 
string. 
 
Lists are normally processed in consecutive sequence.  However, branches and loops 



 5 

are allowed, using control structure commands.  Control structure commands 
compile control structures into token lists.  Later, when a token list is interpreted, 
branching and looping occur within those control structures. 
 
String commands and control structure commands change sequential flow in lists.  
They are elements in the FORTH language that require additional grammatical rules 
in their usage.  Otherwise, all lists are simple, linear, sequential lists. 
 
The preceding exposition describes what FORTH is in terms of a programming 
language and operating system.  A complete specification of a FORTH system must 
include a document on all commands; i.e., names of commands, their effects on data 
and return stacks, and their functional descriptions. 
 
The fundamental reason that FORTH lists can be simple, linear sequences of 
commands is that FORTH uses two stacks: a return stack to stored nested return 
addresses, and a data stack to pass parameters among nested commands.  Parameters 
are passed implicitly on the data stack, and do not have to be explicitly invoked.  
Therefore, FORTH commands can be interpreted in a linear sequence, and tokens can 
be stored in simple, linear lists.  Language syntax is greatly simplified, internal 
representation of tokens is greatly simplified, and execution speed is greatly 
increased. 
 
A FORTH CPU thus needs two stacks, efficient means to traverse nested token lists, 
and an instruction set to support primitive commands.  This is what eP32 is designed 
to provide.  It has two stacks.  It has a small instruction set, which is sufficient to 
code all primitive commands in eForth.  It has very efficient single cycle subroutine 
call and return instructions.  When we use the Subroutine Threading Model (where a 
compound command consists of a list of subroutine call instructions) and represent 
tokens by subroutine call instructions, the eP32 CPU itself becomes the FORTH inner 
interpreter.  Nested token lists, as nested subroutine lists, are traversed naturally with 
very little overhead in execution speed.   
 
The eP32 is the best list processor. 
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Chapter 2. Design of the eP32 
 
 
2.1 Overview 
 
The eP32 is a 32-bit CPU.  Instructions are encoded in 6-bit fields, and up to 5 
instructions are packed into a single 32-bit program word.  27 instructions are 
defined to facilitate accessing words in memory, for multiplication and division of 
integers, for real time interrupts and to support various IO devices.  A return stack is 
included in the CPU for nested subroutine calls and returns.  A parameter stack is 
also included to pass parameters among nested subroutines.  The simple instruction 
set and dual stack design make it possible to execute all instructions in a single clock 
cycle from a single phase master clock. This design optimizes code density, 
processing speed, silicon area and power consumption, and is most suitable to serve 
as CPU cores in System-On-a-Chip integrated circuits.   
 
As this design was developed and tested on a large FPGA device, the LatticeXP2 
from Lattice Semiconductor Corp, a complete microprocessor system, including CPU, 
memory and a number of I/O devices, is built on a single FPGA chip.   
 
In this design, the CPU latches all data into appropriate registers and stacks on the 
rising edge of a single phase master clock.  Such a synchronous design ensures that 
all instructions are executed quickly and reliably in a single clock cycle.  When the 
master clock is held steady, the microprocessor retains all data in registers, stacks and 
memory, consuming very little power.  It is thus possible to further reduce its power 
consumption by reducing the clock rate, or stopping the clock completely. 
 
The eP32 has this set of registers: 
Name Register Function 
I Instruction latch Holding up to 5 instructions to be executed 
P Program counter Pointing to next program word in memory 
R Top of return stack Holding return address or loop counts 
S Second item of data 

stack 
Supplying optional second argument to ALU 

T Top of data stack Accumulator for ALU 
X Address register Supplying address for memory read and write 
 

The eP32 has two stacks to support fast subroutine calling and returning, and to 
optimize execution speed: 
Name Stack Function 
s_stack Data stack Passing arguments among nested subroutines 
r_stack Return stack Saving return addresses of nested subroutines 
 
The I and P registers are 32 bits wide to address 4G words of memory.  T, R, S, X 
and stacks are all 33 bits wide.  The most significant bit in T, T(32) is a carry 
produced by a 32-bit adder.  This carry bit is preserved when T is transferred to other 
registers and to stacks.  Preservation of carry bit greatly simplifies extended 
precision arithmetic operations in the ALU, and allows subroutines and interrupts to 
be serviced without having to save a carry bit and restore it on return. 
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Registers and stacks and their relationship are best shown in Figure 1: 
 
 

 
    

Figure 1.  eP32 Architecture 
    

The T register is the center of the eP32.  It supplies one argument to the ALU, which 
takes an optional second argument from the S register and routes results back to the T 
register.  Contents in T can be moved to the X register, pushed on data stack S, or 
pushed on return stack R. 
 
The T register connects data stack and return stack as a giant shift register.  Data can 
be shifted towards the return stack by a PUSH instruction, and shifted towards the 
data stack by a POP instruction. 
 
Register X holds a memory address, which is used to read data from memory into the 
T register, or write data from the T register to memory.  The address in X can be auto 
incremented, so that the eP32 can conveniently access data arrays in memory. 
 
P is a program counter and holds the address of the next program word to be fetched 
from memory.  After a program word is fetched, P is auto incremented and ready to 
read the next word.  When a CALL instruction is executed, the address in P is 
pushed onto the return stack.  When a RET return instruction is executed, the 
previously saved address on the return stack is popped back into P.  The execution 
sequence interrupted by CALL can then be resumed. 
 
The depth of both stacks is 32 levels, which allows very deep nesting of subroutine 
calls.  Stacks are implemented as circular buffers.  Overflow and underflow 
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overwrite data previously pushed onto the stack 32 levels before.  No effort is made 
in detecting and handling overflow and underflow conditions, because stack 
overflow/underflow is not really a very serious error condition, although it is dreaded 
by programmers using conventional languages.  Commands may consume stack 
items, and may push data onto a stack.  It is impossible for an operating system to 
determine whether the stack effects of a command are due to errors or due to the 
programmer’s intention.  Therefore, it is best left to the programmer to make sure 
that stacks behave correctly. 
 
The 6-bit code field supports up to 64 instructions.  Five 6-bit instructions are 
packed into one 32-bit word, and are executed consecutively after a program word is 
fetched from memory.  It can be viewed as a 5 instruction cache, which provides an 
optimal balance between a slow RAM memory and a fast CPU.  For example, if 
32-bit words can be fetched from RAM at a rate of 20 MHz, the 5 instructions can be 
executed at a rate of 100 MHz.   
 
The design and functions of the eP32 are best presented in functional blocks.  The 
eP32 can be divided into the following 4 functional blocks, in four quadrants of the 
above diagram: 
 Program Execution Unit in Quadrant 1 
 Memory Address Multiplexer in Quadrant 2 
 Return Address Processing Unit in Quadrant3 
 Data Processing Unit in Quadrant 4 
 
These blocks will be discussed in the following pages. 
 
2.2 Program Execution Unit 
 
A synchronous Program Execution Unit is a finite state machine, controlling 
execution of instructions in the eP32.  It has a COUNTER register driven by external 
“reset” and “clock” signals.  When “reset” is asserted, COUNTER is cleared to 0, 
which is output to “slot”.  When “reset” is released, external clock signal “clock” 
drives COUNTER, which is incremented on the rising edge of “clock”.  “slot” is 
incremented from 0 to 5, and back to 0.  When “slot”=0, eP32 reads the next 
program word from the Data Bus, and latches it into the I register on the rising edge 
of “clock”.   
 
As “slot” is incremented between 1 and 5, it selects from the I register one 6-bit 
instruction “code” through instruction multiplexer IMUX.  “code” drives 
DECODER, which produces all control signals to run the eP32.  These control 
signals select appropriate data through multiplexers, and present them to registers and 
stacks.  On the rising edge of “clock”, selected data are latched into appropriate 
registers and stacks, and thus starts another instruction cycle.   
 
When executing transfer instructions like CALL, BRA, BZ, BC, NEXT, RET and 
NOP, the “slot0” signal is set.  It clears COUNTER and forces next cycle back to 
slot0, fetching a new program word from the Data Bus. 
 
The rising edge of the “clock” signal thus paces the eP32 to execute instructions read 
from external memory through the Data Bus.  The eP32 is a synchronous CPU.  
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Registers and stacks are changed only on the rising edge of “clock”.  Otherwise, all 
registers and stacks are static, and hold their contents indefinitely. 
 

 
 
Figure 2. Program Execution Unit 
 
2.3 Memory Address Multiplexer 
 
The Memory Address Multiplexer supplies a 32-bit address on the Address Bus to 
external devices.  When executing the next program word, the AMUX multiplexer 
routes the address stored in the P register to the Address Bus.  When accessing data 
in memory, the XMUX multiplexer routes the address stored in the X register to the 
Address Bus.  This symmetrical arrangement of P and X registers and address 
multiplexers AMUX/XMUX allows all memory operations to be completed in a 
single machine cycle.  This is the simplest memory management system of a von 
Neumann machine.  It is entirely unnecessary to use very complicated memory 
modes to access memory, as in CISC computer designs. 
 
Depending on the current instruction being executed, PMUX selects one of 4 inputs to 
the P register: the next program address (P+1), a target address in the address field of 
the current program word in the I register, the return address in the R register, and an 
interrupt vector.  The selected new address is latched into the P register on the rising 
edge of master clock. 
 
Depending on the current instruction being executed, XMUX selects one of 5 inputs 
to the X register: the T register, the next data word address (X+1), the left-shifted 
(T+S):X register pair in a divide step instruction, the right-shifted T:X register pair in 
multiply step instruction, and the (T+S):S register pair in a multiply step instruction.  
Selected new data is latched into the X register on the rising edge of the master clock. 
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Figure 3.  Address Unit 
 
2.4 Data Processing Unit 
 
The Data Processing Unit contains a data stack and an ALU.  The top item of data 
stack is implemented as the T register, which is like an accumulator in conventional 
CPU designs.  The top element of data stack is designated as the S register.  The 
ALU takes T and S registers as its input and generates a set of logic and arithmetic 
signals.  TMUX selects one of these results and routes it to the T register.  A 
specific machine instruction will select the result it needs and latch it into the T 
register on the rising edge of the master clock.  This strategy—Compute Everything 
and Select the One You Need—allows all ALU operations to be complete in a single 
machine cycle. 
 
All ALU instructions select the results they want through TMUX.  You can 
recognize these instructions by the signals in front of TMUX. 
 
The PUSH instruction selects the S register to load the T register.  The POP 
instruction selects the R register to load T.  The XT instruction selects X to load T.  
Memory read instructions select the Data Bus to load T. 
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Figure 4.  Data Processing Unit 
 
2.5 Return Address Processing Unit 
 
The Return Address Processing Unit allows subroutine CALL and RET instructions to 
be executed in a single machine cycle.  It contains a return stack, whose top item is 
implemented as the R register.  A CALL instruction pushes the address of the next 
program word in the P register onto the return stack through RMUX.  A RET 
instruction pops the return stack and latches the return address in R back into the P 
register. 
 
Subroutine call and return instructions generally are the most complicated machine 
instructions in a CISC computer design.  They all take many clock cycles to 
complete, because many tasks are required in nesting and un-nesting a subroutine call.  
Here in the eP32, subroutine call and return are both reduced to a single clock cycle.  
As all compound programming languages rely heavily on subroutine calls and returns, 
reducing overhead in subroutine calls and returns will significantly improve 
performance of programs produced by these language compilers. 
 
The eP32 is also optimized to process loops.  During looping, the R register is used 
to hold a loop count.  The NEXT instruction looks at this count.  If R is not zero, 
NEXT decrements it and branches to the beginning of the loop.  If R is zero, NEXT 
terminates the loop.  To decrement R, R-1 is selected by RMUX to latch back into R 
on the rising edge of the master clock. 
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Figure 5.  Return Stack Unit 
 
2.6 Timing of Instruction Execution 
 
This simple yet efficient design of the eP32 allows all instructions to be executed in a 
single clock cycle.  Each machine clock cycle is called a “slot”.  However, program 
words must be read into the CPU before instructions in them can be executed.  In the 
current implementation, I allocate an extra cycle to read in a program word.  This 
extra cycle is called “slot0”.  After a program word is read in “slot0”, as many slots 
are used to execute as many machine instructions in the program word as necessary.  
For short instructions, 1 to 5 more slots are used to execute 1 to 5 instructions.  For 
long instructions, only “slot1” is used to execute a single long instruction in a 
program word. 
 
The following diagram shows timing in executing short instructions and long 
instructions. 
 

 
 
Figure 6.  Instruction Exection Timing 
 
NOP and RET instructions can be in any of the 5 slots in a program word.  When 
these two instructions are executed, “slot0” will be the next slot, and the next program 
word will be fetched from memory and then executed.  Extra NOP instructions filled 
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in a program word by a compiler do not waste extra clock cycles. 
 
Under most circumstances, fetching the next program word can be overlapped with 
other machine instructions, and “slot0” can be buried to save execution time.  
However, an explicit “slot0” to fetch the next program word allows servicing real 
time interrupts with very little extra hardware overhead.  In “slot0”, interrupt pins 
are examined.  If not all interrupt pins are 0 and interrupts are enabled, the non-zero 
5-bit pattern presented by the interrupt pins are taken as the address of a subroutine 
call, and execution is transferred to one of the locations between 1 and 31.  In 
memory, Location 0 contains the reset vector, and locations 1-31 contain 31 interrupt 
vectors. 
 
Interrupt is a big issue in microprocessor designs.  If you are familiar with early 
microprocessors, you might remember that the 8089 interrupt controller in the 8080 
microprocessor family was as complicated as the 8080 itself.  Here I provide a very 
simple solution.  It is not a “be all, do all” solution for interrupts, but it gives you 
something to start with. 
 



 14

Chapter 3 eP32 Instructions  
 
 
3.1 Instruction Classes 
 
The eP32 executes a small but comprehensive set of machine instructions.  There are 
two types of machine instructions.  A long instruction has the following format, with 
a 6-bit instruction field and a 24-bit address field: 
 

00 cccccc aaaaaa aaaaaa aaaaaa aaaaaa 
 
When executing a long instruction, the lower 24-bits in the P register are replaced by 
the contents of the address field so that the next program word will be fetched from a 
new address.  Long instructions have 24-bit address fields, which allow branching 
inside a 16M-word memory page.  If you have to jump to an address outside of the 
current memory page and in the full 32-bit addressing space of 4G words, you must 
first load a 32-bit address into the T register, push it on return stack, and then execute 
a RET instruction.  This method allows you to jump to any memory location. 
 
The short instructions are 6-bit in width, and 5 such instructions can be packed into 
one program word as shown in the following format: 
 

00 cccccc cccccc cccccc cccccc cccccc 
 
The top two bits in a 32-bit program word are not used.  Experienced CPU designers 
will find these bits useful in extending the instruction set of the eP32 CPU. 
 
As an instruction code of the eP32 has 6 bits, there can be 64 instructions.  We have 
defined only 27 instructions in the eP32, leaving plenty of room for sophisticated 
designers to add custom instructions for specific applications.   
 
The complete instruction set is shown in Appendix A for your reference. 
  
eP32 instructions can be divided into five classes: 
 
Instruction Class Instructions 
Transfer Instructions BC, BRA, BZ, CALL, NEXT, RET 
Memory Access Instructions LDI, LDX, LDXP, STX, STXP 
ALU Instructions ADD, AND, COM, DIV, MUL, RR8, SHL, SHR, 

XOR 
Register/Stack Instructions DROP, DUP, NOP, OVER, POP, PUSH, SWAP, TX, 

XT 
Miscellaneous Instructions EI 
 
Transfer instructions BC, BRA, BZ, CALL and NEXT are long instructions with a 
24-bit address field.  These instructions allow a program to branch to a new location 
inside the current page of memory.  A page is 16M words in size.  The current page 
is where the current program word resides. 
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Names, binary code and function of these instructions are listed below, sorted by 
instruction code. 
 
Instruction   Code   Function 

BRA   000000   Branch to address contained in address field.    

RET   000001   Return from a subroutine to calling program. Pop return 
address from return stack and deposit it in P.    

BZ   000010   If T=0, branch to address in address field; else continue.   

BC   000011   If Carry is 1, branch to address in address field; else 
continue.    

CALL   000100   Push address in P on R stack, and branch to address in 
address field.  

NEXT   000101   If R is not 0, branch to address in address field, and 
decrement R by 1; else pop R stack and continue. 

EI   000110   Enable interrupts.   

LDXP   001001   Push T on S stack; read data word pointed to by X into 
T. Increment X by 1.   

LDI   001010   Push T on S stack; read data word pointed to by P into T. 
Increment P by 1. 

LDX   001011   Push T on S stack; read data word pointed to by X into 
T.    

STXP   001101   Store T into word pointed to by X. Increment X by 1.  
Pop S stack to T.   

RR8   001110   Rotate T right by 8 bits.   

STX   001111   Store T into word pointed to by X. Pop S stack to T. 

COM   010000   Complement T (1’s complement ). 

SHL   010001   Shift T left by 1 bit. 

SHR   010010   Shift T right by 1 bit. 

MUL   010011   Multiplication step. If X(0)=1, add S to T.  Shift T:X 
pair right by 1 bit. 

XOR   010100   Pop S stack and XOR it to T. 

AND   010101   Pop S stack and AND it to T. 

DIV   010100   Division step. If T+S produces a carry, shift (T+S):X 
pair left by 1 bit and set X(0); else shift T:X left by 1 bit. 

ADD   010111   Pop S stack and add S to T. 

POP   011000   Push T onto S stack. Pop R stack to T. 

XT   011001   Push T onto S stack. Copy X to T. 

DUP   011010   Push T onto S stack. T remains unchanged. 

OVER   011011   Push T onto S stack. Copy original contents of S to T.  

PUSH   011100   Push T onto R stack. Pop S stack to T. 

TX   011101   Copy T to X. Pop S stack to T. 

NOP   011110   No operation. 

DROP   011111   Pop S stack to T. 
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All other instructions are short 6-bit instructions.  Up to 5 short instructions can be 
packed in to a single 32-bit program word.  However, when the RET instruction is 
executed, execution is transferred to the address saved on the return stack, and 
subsequent short instructions in the same program word are ignored.  NOP behaves 
similarly so that extra NOP instructions filled in by the compiler are ignored. 
 
In many instances, a program word cannot be filled with useful short instructions, 
because the next instruction is a long instruction, and the rest of the current program 
word must be filled with NOP instructions.  Instead of wasting time to execute these 
NOP instructions, the instruction sequencer in eP32 will abandon the current program 
word, immediately fetch the next program word and execute it when it encounters the 
first NOP instruction.  However, the user does not have to worry about this, because 
the compiler automatically packs as many short instructions into a program word as 
possible.  Only when the compiler must start a long transfer instruction does it fill 
the current program word with NOPs. 
 
3.2 Transfer Instructions 
 
Instruction   Code   Function 
BC   000011   If Carry is 1, branch to address in address field; else 

continue. 
BRA   000000   Branch to address in address field. 
BZ   000010   If T=0, branch to address in address field; else 

continue. 
CALL   000100   Push the address in P on R stack, and branch to address 

in address field; else continue. 
NEXT   000101   If R is not 0, branch to address in address field, and 

decrement R by 1; else pop R stack and continue. 
RET   000001   Return from a subroutine to calling program. Pop return 

address from return stack and deposit it in P. 
 
BRA is an unconditional branch instruction.  It branches to a location in the current 
memory page of 16M words.  BZ is the branch on zero instruction.  It branches to a 
new location when the lower 32 bits in T are all 0.  Otherwise it is a NOP.  It is used 
extensively in FORTH to construct IF-ELSE-THEN branch structures, and 
BEGIN-UNTIL and BEGIN-WHILE-REPEAT loop structures. 
 
BC is the branch on carry instruction.  It branches to a new location if the carry bit 
produced by adder in the ALU is set.  Otherwise it is a NOP.  This instruction is not 
used in compound commands, but is used to implement many primitive commands 
where extended precision integer arithmetic operations require a carry bit. 
 
CALL and RET are used to do subroutine nesting and unnesting.  The eForth 
software system uses a Subroutine Threading Model.  All compound commands are 
defined as subroutines.  
 
The NEXT instruction reduces a looping operation to a single cycle instruction.  In 
eForth, one enters a FOR-NEXT loop structure by pushing a loop count into the R 
register.  By adding auto-decrement and zero-detect functions to the R register, it is 
possible to implement NEXT in hardware as a single cycle machine instruction, and 
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thus optimize counted looping operations in eForth. 
 
3.3 Memory Access Instructions 
 
Instruction   Code   Function 
LDI   001010   Push T on S stack, read data word pointed by P into T. 

Increment P by 4.   
LDX   001011   Push T on S stack, read data word pointed by X into T.   
LDXP   001001   Push T on S stack, read data word pointed by X into T. 

Increment X by 1.   
STX   001111   Store T into memory pointed by X. Pop S stack to T. 
STXP   001101   Store T into memory pointed by X. Increment X by 1. 

Pop S stack to T.   
 
The P-series microprocessor addresses memory in words of whatever the width is of 
program and data words.  The eP32 instruction set assumes 32-bit addresses and 
32-bit program and data words.  It does not address bytes in memory.  
 
The LDI instruction reads the next word in program memory and pushes it on the data 
stack.  The word address is in the P register.  The P register is auto-incremented to 
skip the data word.  LDI allows literal integers to be stored in programs and read into 
the CPU at run time.  Literal integers are very important constituents of programs, 
and LDI instructions optimize their storage and usage. 
 
The LDX instruction loads a 32-bit word from memory to the T register.  STX stores 
the 32-bit word that is in the T register to a word location in memory.  The memory 
address is in the X register. 
 
LDXP and STXP are like LDX and STX, respectively, except that after memory 
access, the X register is auto-incremented.  Auto-incrementing the X register allows 
consecutive memory locations to be read or written with minimal overhead. 
 
3.4 ALU Instructions 
 
Instruction   Code   Function 
ADD   010111   Pop S stack and add it to T. 
AND   010101   Pop S stack and AND it to T. 
COM   010000   Complement T (1’s complement ). 
DIV   010100   Division step. If T+S produces a carry, shift the 

(T+S):X pair left by 1 bit and set X(0); else shift T:X 
left by 1 bit. 

MUL   010011   Multiplication step. If X(0)=1, add S to T. Shift the T:X 
pair right by 1 bit. 

RR8   001110   Rotate T right by 8 bits. 
SHL   010001   Shift T left by 1 bit. 
SHR   010010   Shift T right by 1 bit. 
XOR   010100   Pop S stack and XOR it to T. 
 
In the original MuP21 design, only COM, SHL, SHR, AND, XOR, and ADD 
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instructions were defined.  Other logic and arithmetic operations were implemented 
in terms of these basic instructions.  In the eP32, MUL, DIV and RR8 are added. 
 
COM, SHL, SHR, and RR8 are unary operations on the T register alone. 
 
COM does one’s complement on T register.  SHL shifts the T register 1 bit to the left.  
SHR shifts T register 1 bit to the right. 
 
RR8 rotates the contents of the T register to the right by 8 bits.  This instruction is 
very useful in a word-addressing CPU like the eP32.  It allows individual bytes in 
memory to be accessed with minimal effort.   
 
ADD, AND and XOR are binary operations on the T and S registers.  They pop the 
data stack and discard the data in the S register. 
 
ADD adds S to T.  AND ands S to T.  XOR exclusive ors S to T. 
 
OR is not implemented as a machine instruction.  It is implemented in software 
using De Morgan’s theorem.  In many cases, XOR can be used to perform OR 
functions. 
 
MUL and DIV are ternary operators, involving the T, S and X registers.  MUL is a 
muliply step instruction and DIV is a divide step instruction. 
 
Multiplication and division are important arithmetic operations frequently used in 
computation-intensive applications.  It is possible to implement a full 
multiplier-adder for DSP applications.  However, a fast multiplier-adder requires a 
large number of gates and significantly increases power consumption.  In the eP32, a 
multiplication step instruction, MUL, and a division step instruction, DIV, are 
implemented.  They make use of the 32-bit adder and shifter already existing in the 
ALU.  Very little hardware is added, and very little additional power is needed. 
 
In the MUL instruction, the T and X registers are considered a 65-bit right-shift 
register.  Initially, a partial sum is loaded in the T register, a multiplier in the X 
register, and a multiplicand in the S register.  If the least significant bit in X is 1, S is 
added to T, and the resulting T-X pair is shifted right by 1 bit.  If the least significant 
bit in X is 0, T is not changed, and the T-X pair is shifted right by 1 bit.  This MUL 
instruction is repeated 32 times, after which the T-X register pair will contain a 
double-word product of X*S +T.  The MUL instruction is shown in the following 
diagram: 
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Figure 7.  Mulitlication Step 
 
In the DIV instruction, the T and X registers are considered a 65-bit left-shift register.  
A double integer dividend is in the T-X register pair, and a negated divisor is in the S 
register.  In the ALU, the sum of S and T is always computed by an adder.  If the 
carry bit in the adder is 1, S is added to T, and the resulting T-X pair is shifted left by 
1 bit.  If the carry bit in the adder is 0, T is not changed, and the T-X register pair is 
shifted left by 1 bit.  In either case, the carry bit is shifted into the least significant bit 
in the X register.  After repeating the DIV instruction 32 times, the X register 
contains quotient, and the T register contains 2x of the remainder of the division.  
The  DIV instruction is shown in the following diagram: 
 

 
 
Figure 8.  Division Step 
 
3.5 Register/Stack Instructions 
 
Instruction   Code   Function 
DUP   011010   Push T on the S stack. T remains unchanged. 
DROP   011111   Pop S stack to T.   
NOP   011110   No operation.  
OVER   011011   Push T onto S stack. Copy original contents of S to T.  
POP   011000   Push T onto S stack. Pop R stack to T. 
PUSH   011100   Push T onto R stack. Pop S stack to T. 
TX   011101   Copy T to X. Pop S stack to T. 
XT   011001   Push T onto S stack. Copy X to T.  
 
DUP, DROP, SWAP and OVER are the 4 classic stack operations.   
 
DUP pushes the T register on the data stack.  DROP pops the data stack back into T.  
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SWAP exchanges T and S, the top two elements on the conceptual data stack.  
OVER duplicates S, and pushes it into T. 
 
Both SWAP and OVER copy the second item onto the stack to the top of the stack.  
The difference is that OVER preserves the second item in S while SWAP destroys it.  
We chose to implement OVER in hardware, and leave SWAP to software. 
 
POP pops the top item on the return stack and pushes it onto the data stack.  PUSH 
pops T from the data stack and pushes it onto the return stack.  These operations are 
best viewed by considering return stack/R/T/S/data stack as a giant shift register array, 
with the three-register R/T/S window at center, exposed to the ALU.  The POP 
instruction shifts this shift register array to the right, and the PUSH instruction shifts it 
to the left. 
 
The TX and XT instructions are used to manage the X register.  The X register is 
used to read data from memory and write data to memory.  It usually holds a 
memory address.  However, it can be used as a scratch pad register to save and 
restore the T register.  TX pops the data stack and copies T to X.  XT pushes T onto 
the data stack and copies the contents in X to T.  
 
3.6 Miscellaneous Instructions 
 
Instruction   Code   Function 
EI   111110   Enable interrupts.  
 
The eP32 provides the simplest mechanism to support real time interrupts.  Five 
input pins on the eP32 package are allocated for real time interrupts.  If interrupts are 
enabled, and at least one of 5 interrupt pins is not zero, a subroutine call to one of 31 
locations in memory address 1 to 31 is forced on the CPU in the slot0 clock cycle.  
The address is selected by reading the signals on the 5 interrupt pins, and 
zero-extending it to form an address pointing to a memory location between 1 and 31.  
By filling proper branch instructions in memory locations 1 to 31 as an interrupt 
vector table, this microprocessor system can respond to external interrupt requests in 
real time.   
 
This simple scheme allows 5 external devices to interrupt the CPU directly.  If 
additional decoding logic were added, it could service interrupts from 31 external 
devices.  With only 5 interrupt devices, the eP32 can respond to simultaneous 
interrupts from multiple devices, by constructing the interrupt vector table properly, 
and inserting the EI instruction properly in interrupt service routines.  It is assumed 
that after booting, the microprocessor system configures itself so that page 0 of 
memory is in RAM memory, and software can change the interrupt table dynamically. 
 
When servicing an interrupt, further interrupts are disabled and an interrupt 
acknowledge signal is asserted.  Interrupting devices should remove their interrupt 
requests when seeing interrupt acknowledge.  After interrupt service is completed, 
the interrupting service routine, or the main program must execute an EI instruction to 
enable future interrupts.  It is a trivial matter to add a complement instruction DI to 
disable interrupts, but it seems to be superfluous at the moment. 
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Chapter 4. Implementing eP32 on the Brevia Kit 
 
 
4.1 The Brevia2 Development Kit 
 
I had opportunities to use FPGAs from Xilinx, Altera and Actel before.  I 
implemented various versions of the eP32 on all of them.  I was not particularly 
impressed with these companies and their FPGA products.  FPGA chips were 
generally expensive, development boards were more expensive, and development 
software systems were even more expensive, bulky and usually slow.   
 
When Lattice Semiconductor Corp announced its Brevia Development Kit at $49, I 
got excited.  A friend Masa Kasahara loaned me his kit.  I bought 2 more when 
Lattice had a special sale for $29.  I downloaded its free development software 
ispLEVEL and started porting the eP32 to the LatticeXP2-5E-6TN144C FPGA chip.  
Working intensely for three weeks, I succeeded in getting the eP32 to work.  The 
XP2-5E has enough logic cells to implement the eP32 CPU core, a UART, and a 
general purpose I/O port.  It also has enough RAM memory to host the eForth 
operating system.  The nicest thing is that its RAM memory is mirrored in on-chip 
flash memory, and the entire eP32 system is contained in a single XP2-5E chip.  All 
other FPGAs required external components to host a complete microprocessor system.  
The XP2 is my dreamed SOC chip. 
 
My only complaint is that its software development system, ispLEVER, is too bulky.  
It required me to free up 5 GB of disk space to install it, with accompanying 
Synplicity synthesis tools and Aldec ActiveHDL simulation tools.  One other thing is 
that the Brevia Kit requires a COM port and a parallel printer port on my PC for 
communication and for a JTAG interface.  It is not a big deal for me, because I have 
this old desktop computer, which has these ports.   
 
Recently Lattice replaced the Brevia Kit with Brevia2 Kit, and upgraded ispLEVEL to 
Diamond IDE.  Two cables connecting to the COM and printer ports were replaced 
by a single USB cable..  The eP16r implementation is tested and verified on the 
Brevia2 Kit, with Diamond 1.4 IDE system.  I had trouble installing the USB drivers 
on on of my PC, but that's another story. 
 
Here is a laundry list of components included in the Brevia Kit: 
� LatticeXP2 FPGA: LFXP2-5E-6TN144C  
� 2 Mbit SPI Flash Memory  
� 1 Mbit SRAM  
� A single USB cable for programming and communication 
� 2x20 and 2x5 Expansion Headers  
� Push buttons for General Purpose I/O and Reset  
� 4-bit DIP Switch for user-defined inputs  
� 8 Status LEDs for user-defined outputs  
 
Since the XP2-5E has 166K bits of embedded block RAM, I do not need the external 
SPI flash memory and SRAM.  The USB interface actually implemented two 
devices: an UART port for communication, and a parallel port to program the FPGA.  
The LEDs, push buttons, and switches are very useful for demonstrations.  This kit 
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has everything I need to demonstrate my eP32 microprocessor design and the eForth 
operating system. 
 
Here I will show you steps to get the eP32 implemented on my Brevia2 Kit and to get 
the eForth system to run, talking to HyperTerminal on a PC.   
 
You have to download the Diamond IDE suite from www.latticsemi.com to 
implement the eP32.  You need the Diamond System for Windows, the Synplify 
Synthesis Module, and the Aldec Active-HDL Lattice Web Edition Module.  They 
take up a huge amount of disk space.  Then you have to apply for a license from 
Lattice.  Lattice also provides many examples for you to evaluate.  You may want 
to look at their Demo Application, which contains a LatticeMico8 Reference Design.  
LatticeMico8 is an 8-bit microprocessor.  Only after you studied LatticeMico8 will 
you appreciate that the eP32, a 32-bit microprocessor, can be simpler than an 8-bit 
microprocessor with conventional architecture. 
 
4.2 Synthesize the eP32 
 
You have to install Diamond first.  When Diamond is up and running, open a new 
project.  Name this project eP32, if you do not have a better name.  A New Project 
Wizard will help you set up this project.  You have to select LatticeXP2-5E as your 
target device and VHDL as your programming language.  Now, import the following 
files into the above project. 
 
File Module 
ep32_chip.vhd Top level microprocessor system 
ep32.vhd eP32 CPU module 
ram_memory.vhd RAM memory module 
uart.vhd Serial UART module 
gpio.vhd General purpose parallel IO module 
ep32q_tb.vhd Test bench for the eP32 system 
 
In the Diamond Project panel, select the File List tab.  You will see that all the above 
files are imported as shown in Figure 9. 
 
Click the Process tab in the Project panel, and you will see the modules arranged in a 
hierarchy as in Figure 10: 
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Figure 9.  Diamond IDE, File List 
 

 
 
Figure 10.  Diamond IDE, Process View 
 
As I ported the eP32 design from a project using an Altera FPGA, ep32.vhd, uart.vhd, 
and gpio.vhd all remain unchanged and Syplicity compiles them correctly.  
ram_memory.vhd was changed to use the RAM_DQ module provided in the Diamond 
system.  If you change the eForth system and get a new target image in mem.mif, 
you have to generate a new ram_memory.vhd file, so that the new eForth target image 
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can be included in ram_memory.vhd.   
 
To change ram_memory.vhd, click Tools>IPexpress to invoke IPexpress.  Select 
RAM_DQ module.  Fill in a file name of ram_memory and select VHDL as module 
output, and you get a screen like Figure 11.: 
 

 
 

Figure 11.  RAM_DQ in IExpress 
 
Click the Customize button, and you get a RAM_DQ configuration panel, like that 
shown in Figure 12.  Make the following selections: 
 

Memory depth: 4096 
Memory width: 32 bits 
No output latch 
Memory type: synchronous 
Optimization: time 
Initializing file: mem.mif 
File type: Hex-address 
 
Click the Generate button and a new mem_memory is produced.  There is a 
ram_memory_templ.vhd file containing the VHDL configuration code you can copy 
and paste into ep32_chip.vhd. 
 
In the Project panel, click Process tab and select all the process boxes, as shown in 
Figure 13.   
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Figure 12.  RAM_DQ Module Configuration 
 

 
 

Figure 13.  Select Synthesis Process 
 
Pull down the Process Menu and select the Rerun All button.  It invokes Synplicity 
Synthesis tools to analyze and to synthesize this design.  Synplicity will analyze all 
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VHDL files and synthesize this design accordingly.  After each process step, a green 
check mark is places after each selection box to indicate that this step is completed 
successfully. 
 
If you are to change this design, this is probably the place you will spend lots of time 
editing and adding to your VHDL files and then run Synplicity Synthesizer.  The 
synthesizer is very generous in sending you warning and error messages.  Look up 
each error message and try to fix the problem in your VHDL files. 
 
4.3 Simulate the eP32 
 
Lattice bundles Active-HDL simulation tools from Aldec in the Diamond system.  
Active-HDL itself is a very complicated system, and you need to spend considerable 
time learning it.   
 
In the older ispLEVEL IDE, you need a test bench VHDL file to simulate your design.  
It can generate a template of a test bench for any VHDL module in your design, to 
help you build the test bench.  In Diamond, you can specify simulation functions to 
input signals directly, and a test bench file is not needed.  
 
Pull down the Tools Menu and select the Simulation Wizard button.  The 
Active-HDL simulator starts and shows you a series of windows.  One window asks 
you for a project name.  Another asks you to confirm your RTL simulation level.  
Just click the Next> button until the simulator is actually loaded.  Then you get a 
screen like Figure 14. 
 

 
 
Figure 14.  HDL Simulator 
 
On the Design Browser panel to the left, click the Structure tab at the bottom, then 
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select the eP32_chip(Behavioral) model button, and you get a list of signals as shown 
in Figure 15. 
 

    
    

Figure 15.  Select cp32 chip module 
 

  
 
Figure 16.  Select Simulation Signals. 
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Now, pull down the Simulation Menu and select the Initialize Simulation button.  It 
will change the values of all the signals in the eP32_chip design from “Unavailable” 
to “U” and “X”.  Select the signals you like to simulate.  I reccomand that you 
select the following signals: 
 
Aclk 
Arst 
Uart_o 
Memory_data_o 
Memory_data_i 
Memory_addr 
System_addr 
System_data_o 
 
Right chick on the selected signals and select “Add to Waveform” option and you will 
see the screen as shown in Figure 16. 
 
Before running the simulation, you have to specify two input signals aclk and arst. 
Right click the aclk under “Signal Name” and select the “Simulators…” option in the 
pop-up menu.  The Simulators window pops up.  Select “Clock” in the “Type” 
panel, and you get the screen shown in Figure 17.   
 

 
 
Figure 17. Simulate Master Clock 
 
Click the Apply button and then the Close button to confirm that you apply a 10 MHz 
clock signal to aclk input. 
 
Right click the arst signal under “Signal Name” and select the “Simulators…” option 
in the pop-up menu.  The Simulators window pops up.  Select “Formula” in the 
“Type” panel, and specify that the reset signal starts at “0” level for 1000 ns and then 
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changes to “1”.  Now you get the the screen shown in Figure 18.   
 
Click the Apply button and then the Close button to confirm that you apply the proper 
reset signal to arst input. 
 

 
 
Figure 18.  Simulate Master Reset 
 
Now, pull down the Simulation Menu and select the Run Until button.  Enter “1 ms” 
in the data box to let the simulator run for 1 ms: 
 

 
 
Figure 19.  Select Simulation Time 
 
Click the OK button and the simulator produces the waveforms as shown in Figure 
20. 
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Figure 20.  Simulation Waveforms 
 
Look at the signal uart_o.  It is showing that Ep32 sends out a Carriage Return 
(ASCII 0xD) and a Line Feed (ASCII 0xA) character.  You are now assured that the 
eP32 is coded correctly. 
 
Click the Zoom In button (A magnifier glass with a + sign) 12 times, and drag the 
waveforms to the beginning to the left, you will see this screen in Figure 21. 
 

 
 
Figure 21.  Expanded View of the Waveforms 
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The signals memory_addr and system_addr make the following sequence of changes: 
 000->001->68D->68E->640->641 
which show that eP32 starts at address 0 on reset, jumps to COLD, which calls 
DIAGNOSE.  These are the correct sequence of instructions after eP32 starts.  You 
are now completely assured that the eP32 is running correctly. 
 
4.4 Layout the eP32  
 
After logic design of the eP32 is verified by synthesis and simulation, you have to 
assign input and output signals to proper pins on the XP2-5E-5TN144C chip 
according to the board layout of the Brevia Kit, so that you can actually run the eP32 
on the Brevia2 Kit. 
 
Pull down Tools Menu, and select Package View.  In Package View, you see a 
Package panel on the right in Figure 22.   
 

 
 
Figure 22.  Package View of XP2 Chip 
 
Pull down the View Menu and select Preference Preview, you get to see the contents 
of the preference file eP32.pdf.  It looks like that in Figure 23. 
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Figure 23.  Pin Assignments of eP32 
 
Signals on the eP32 chip and their corresponding pins on the XP2-5E-5TN144C chip 
package are listed in the following table: 
 
Signal Pin Number 
aclk 21 
arst 19 
interrupt_i[0] 58 
interrupt_i[1] 57 
interrupt_i[2] 56 
interrupt_i[3] 55 
interrupt_i[4] 54 
ioport[7] 37 
ioport[8] 53 
ioport[9] 52 
ioport[0] 46 
ioport[1] 45 
ioport[2] 44 
ioport[3] 43 
ioport[4] 40 
ioport[5] 39 
ioport[6] 38 
ioport[10] 50 
ioport[11] 1 
ioport[12] 2 
ioport[13] 5 
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ioport[14] 6 
ioport[15] 7 
uart_i 110 
uart_o 109 
 

You have to get the signals assigned to correct pins; otherwise, the eP32 will not work 
on the Brevia2 Kit.  Other minor things like clock frequency and signal delays do not 
affect the implementation, except that you will get lots of warning messages 
complaining that physical layout does not meet timing and delay requirements. 
 
4.5 Programming eP32 
 
The Brevia2 Kit includes a USB cable to connect to a PC.  Connect Brevia2 Kit to 
your PC.  If you have done the systhesis and simulation of eP32 correctly, you can 
now program eP32 to Brevia2 and test eP32. 
 
Bring up Diamond, and open the eP32 project.  Pull down Tools Menu and select 
Programmer.  A Programmer window opens up like that shown in Figure24.  
 

 
 
Figure 24. Diamond Programmer 
 
From the File Name section, click the Browse button.  The File Name window 
appears.  Browse to the eP16 project folder, select the ep32_xp2.jed file, and click 
the Open button.  From the Operation list, choose Flash Erase, Program, Verify, and 
click the OK button.   
 
The last button to the right on the top of the Programmer Panel is the Program button.  
Click it and Diamond reprograms the XP2 chip on the Brevia2 Kit. 
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If the UART cable is connected to a COM port on the PC, and HyperTerminal is 
already opened and configured to 115,200 baud, 1 start bit, 8 data bits, 1 stop bit, no 
parity, and no flow control, you should see that the eP32 boots up and displays a 
sign-on message, “eP32q v2.05”, as shown in Figure 25: 
 

 
 
Figure 25.  eP32 Sign-on Message 
 
You can now type in FORTH commands and interact with the eForth system that runs 
on the eP32 microprocessor you just downloaded to the Brevia Board. 
 
Type these commands: 
: TEST1 CR ." HELLO, WORLD!" ; 
TEST1 
 
You will see that eForth produces the results as shown in Figure 26: 
 
To demonstrate that you have full control over the Brevia Board, let us do some 
exercises on the GPIO port.  First, here are the registers in the GPIO module, which 
we can access by reading and writing to memory locations 0xE0000000-0xE0000002: 
 
Address Register Function 
0xE0000000 gpio_out When written, send data to gpio port 
0xE0000001 gpio_dir_reg Select port pin direction: 0-input; 1-output 
0xE0000002 gpio_in Read gpio port 
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Figure 26.  The Universal Greeting 
 
Type the following commands to configure the lower 8 bits in the GPIO port as 
outputs and the next upper 8 bits as inputs: 
 
HEX 
FF E0000001 ! 
 
Now, you will see that all 8 LED's on the Brevia are turned on.  To turn them off, 
type: 
FF E0000000 ! 
 
To turn on only one LED, type: 
FE E000000 ! 
 
To read the push button switches on the Brevia Board, type: 
E0000002 ? 
 
FFFE is the result displayed.  The lower 8 bits (FE) show that only one LED was 
turned on.  The upper 8 bits (FF) show that all push button switches are off.  Push 
down switch SW5 and type: 
E0000002 ? 
 
The returned results change to FDFE, as closing SW5 pulls down bit 9 of the GPIO 
port. 
 
The above exercises leave this display on HyperTerminal, as shown in Figure 27: 
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Figure 27.  IO Exercises on Brevia2 Kit 
 

These exercises should be very convincing that you have a nice interactive operating 
system hosted on the top of a very versatile and powerful 32-bit microprocessor.  All 
these things on a $49 FPGA development kit! 
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Chapter 5. The eP32 Design in VHDL 
 
 
Here I will describe a complete 32-bit microprocessor designed in VHDL.  It 
includes a CPU core, a RAM memory module, a UART, and a general purpose GPIO 
port.  Together with the eForth operating system produced by a metacompiler, I build 
a complete running Forth system, ready for application development.  It is a 
complete hardware and software development system to explore SOC applications.  
The FPGA chip LatticeXP2-5E can host this complete microprocessor system, and it 
is implemented on the LatticeXP2-5E Brevia Development Kit, using the ispLEVER 
FPGA Development Software System.. 
 
In the following sections, I will present VHDL code in the following files 
implementing various modules of the eP21 microprocessor system: 
 
File Module 
ep32_chip.vhd Top level microprocessor system 
ep32.vhd eP32 CPU module 
ram_memory.vhd RAM memory module 
uart.vhd Serial UART module 
gpio.vhd General purpose parallel IO module 
 
Following is a block diagram of the eP32 chip, showing modules in it and signals and 
busses connecting these modules: 
 

 
 
 
Figure 28.  Components in eP32 Chip 
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5.1 Top Level eP32 Chip 
 
VHDL code in ep32_chip.vhd instantiates all modules in the eP32 system. 
 
Here are port signals defined for the top level eP32 chip.  Since RAM is 
implemented as an internal module, it is not necessary to bring out address and data 
signals from the CPU core to the chip package.  Therefore, only aclk, arst, 
interrupt_i, acknowledge_o, uart_i, uart_o and useful GPIO pins are necessary to 
implement a chip that runs the eForth system for program development.  This eP32 
system can be hosted in a very small package with 8-14 pins. 
 
I/O pins of this eP32 chip and their functions are as follows: 
 
Port Signal Function 
aclk External clock input 
arst External reset input 
interrupt_i External interrupt input 
acknowledge_o Interrupt acknowledge 
uart_i UART receiver input 
uart_o UART transmitter output 
ioport General purpose I/O port 
 
In component declarations, the following modules are declared: 
 
Component Module Function 
ep32 eP32 CPU core module 
ram_memory RAM memory module 
uart Serial UART module 
gpio General purpose parallel I/O module 
 
These modules are later instantiated and all their ports are connected to signals 
defined in the top level system module. 
 
eP32 Module 
 
The eP32 module is a complete CPU core.  Its input/output signals are as follows: 
 
clk Input master clock 
clr Input master reset  
interrupt Input external interrupt  
data_i Input data bus 
intack Output interrupt acknowledge 
read Output memory/io read enable 
write Output memory/io write enable 
addr Output address bus 
data_o Output data bus 
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-- 
*************************************************** ************* 
-- *         (C) Copyright 2002, eForth Technology Inc.           * 
-- *                     ALL RIGHTS RESERVED                      * 
-- 
*================================================== ============* 
-- * Project:             FG in PROASIC                           * 
-- * File:                ep32_chip.vhd                           * 
-- * Author:              Chien-Chia Wu                           * 
-- * Description:         Top level block                         * 
-- *                                                              * 
-- * Hierarchy:parent:                                            * 
-- *           child :                                            *  
-- *                                                              * 
-- * Revision History:                                            * 
-- * Date         By Who          Modification                    * 
-- * 09/19/02     Chien-Chia Wu   Branch from ep16a .              * 
-- * 01/02/03     Chien-Chia Wu   Add SDI.                        * 
-- * 01/29/03     Chien-Chia Wu   Add Boot.                       * 
-- * 02/24/03     Chien-Chia Wu   Modify the module  as 32-bits    *  
-- *                              version.                        *  
-- * 02/27/03     Chien-Chia Wu   Modify SDRAM as b yte-assecable. * 
-- * 03/02/03     Chien-Chia Wu   Add internal SRAM  module.       * 
-- * 06/29/06     Chen-Hanson Ting Add HMPP/Shifter /Controller.   * 
-- * 11/18/10     Chen-Hanson Ting Port to LatticeX P2 Brevia Kit  * 
-- 
*************************************************** ************* 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_misc.all; 
use ieee.std_logic_unsigned.all; 
 
entity ep32_chip is  
port( 
    -- input port 
    aclk:               in      std_logic;  
    arst:               in      std_logic; 
    interrupt_i:        in     std_logic_vector(4 d ownto 0); 
    -- input port 
    uart_i:           in      std_logic; 
    -- output port 
    uart_o:           out     std_logic; 
 -- GPIO Interface 
    ioport:           inout  std_logic_vector(15 do wnto 0) 
  ); 
end entity ep32_chip; 
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UART module  
 
The UART module conforms to standard RS232 UART specifications, although we 
only use two I/O pins, rxd_i and txd_o.  No handshake or flow control signals are 
used.  Input/output signals in the UART module are as follows: 
rst_i Input reset 
ce_i Input chip enable 
read_i Input read enable 
write_i Input write enable 
addr_i Input address bus 
data_i Input data bus 
data_o Output data bus 
rx_empty_o Output receiver empty flag 
rx_irq_o Output receiver interrupt request 
tx_irq_o Output transmitter interrupt request 
rxd_i Input receiver data 
txd_o Output transmitter data 
cts_i Input clear to send 
rts_o Output ready to send 
 
RAM Module 
 
The RAM_MEMORY module is configured to use the RAM_Q memory of embedded 
block memory EBR in the LatticeXP2-5E FPGA chip.  Input/output signals are as 
follows: 
Clock Input master clock 
ClockEn Input clock enable 
Reset Input master reset 
WE Input write enable 
Address Input address bus 
Data Input data bus 
Q Output data bus 
 
GPIO Module 
 
Input/output signals are as follows: 
clr Input master reset 
clk Input master clock 
write Input write enable 
read Input read enable 
ce Input chip enable 
addr Input address bus 
data_in Input data bus 
gpio_in Input GPIO data 
data_out Output data bus 
gpio_out Output GPIO data 
gpio_dir OutPut  GPIO direction 
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architecture behavioral of ep32_chip is 
  -- component declaration 
  component ep32 is  
    port( 
      -- input port 
      clk:        in      std_logic; 
      clr:        in      std_logic; 
      interrupt:  in      std_logic_vector(4 downto  0); 
      data_i:     in      std_logic_vector(31 downt o 0); 
      intack:     out     std_logic; 
      read:       out     std_logic; 
      write:      out     std_logic; 
      addr:       out     std_logic_vector(31 downt o 0); 
    data_o:     out     std_logic_vector(31 downto 0) 
    ); 
  end component; 
 
  component uart is 
    port( 
      -- input 
      clk_i:       in      std_logic; 
      rst_i:       in      std_logic; 
      ce_i:        in      std_logic; 
      read_i:      in      std_logic; 
      write_i:     in      std_logic; 
      addr_i:      in      std_logic_vector(1 downt o 0); 
      data_i:      in      std_logic_vector(31 down to 0); 
      -- output     
      data_o:      out     std_logic_vector(31 down to 0); 
      rx_empty_o:  out     std_logic; 
      rx_irq_o:    out     std_logic; 
      tx_irq_o:  out     std_logic; 
      -- external interface 
      rxd_i:       in      std_logic; 
      txd_o:       out     std_logic; 
      cts_i:       in      std_logic; 
      rts_o:       out     std_logic 
    ); 
  end component; 
 
 
component ram_memory 
    port (Clock: in  std_logic; ClockEn: in  std_lo gic;  
        Reset: in  std_logic; WE: in  std_logic;  
        Address: in  std_logic_vector(11 downto 0);   
        Data: in  std_logic_vector(31 downto 0);  
        Q: out  std_logic_vector(31 downto 0)); 
end component; 
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Top Level Global Signals 
 
Here are global signals defined in the top level eP32 chip.  Their principal purposes 
are connecting port signals of instantiated modules.  However, many signals are 
defined in terms of logical equations constructed from other signals.  These logical 
equations are then presented with relevant modules. 
 
The following are Global signals in the eP32 chip: 
 

Signal Function 
m_rst Inverted master reset  
m_clk Inverted master clock 
memory_data_o Memory data output bus 
memory_data_i Memory data input bus 
memory_addr Memory address bus 
system_addr System address bus 
system_data_o System data output bus 
system_read System read enable 
system_write System write enable 
system_ack system interrupt acknowledge 
cpu_data_i CPU data input bus 
cpu_addr_o CPU address bus 
cpu_data_o CPU data output but 
cpu_m_read CPU memory read enable 
cpu_m_write CPU memory write enable 
cpu_intack CPU interrupt acknowledge 
cpu_ready_i CPU ready input 
cpu_ack_o CPU interrupt acknowledge output 
uart_ce UART chip enable 
uart_addr UART address bus 
uart_data_i UART data input bus 
uart_data_o UART data output bus 
uart_rx_empty UART receiver empty flag 
uart_rx_irq UART receiver interrupt request flag 
uart_tx_irq UART transmitter interrupt reuqest flag 
uart_rxd UART receiver data 
uart_txd UART transmitter data 
uart_cts UART clear to send 
uart_rts UART ready to send 
gpio_ce GPIO chip enable 
gpio_addr GPIO address bus 
gpio_data_i GPIO data input bus 
gpio_in GPIO input pins 
gpio_data_o GPIO data output bus 
gpio_out GPIO output pins 
gpio_dir GPIO input/output direction 
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component gpio 
  port( 
    -- input port 
    clr: in      std_logic; 
    clk: in      std_logic; 
    write: in       std_logic; 
    read: in        std_logic; 
    ce: in              std_logic; 
    addr: in           std_logic_vector(1 downto 0) ; 
    data_in: in        std_logic_vector(31 downto 0 ); 
    gpio_in: in         std_logic_vector(15 downto 0);  
    -- output port 
    data_out: out      std_logic_vector(31 downto 0 ); 
    gpio_out: out       std_logic_vector(15 downto 0); 
    gpio_dir: out       std_logic_vector(15 downto 0) 
  ); 
end component; 
 
  -- interal globle signal 
  signal m_rst:                 std_logic; 
  signal m_clk:                 std_logic; 
  signal memory_data_o:         std_logic_vector(31  downto 0); 
  signal memory_data_i:         std_logic_vector(31  downto 0); 
  signal memory_addr:           std_logic_vector(11  downto 0); 
 
  -- internal signal for system bus 
  signal system_addr:           std_logic_vector(31  downto 0); 
  signal system_data_o:         std_logic_vector(31  downto 0); 
  signal system_read:           std_logic; 
  signal system_write:          std_logic; 
  signal system_ack:            std_logic;   
   
  -- internal signal for cpu 
  signal cpu_data_i:            std_logic_vector(31  downto 0); 
  signal cpu_addr_o:            std_logic_vector(31  downto 0); 
  signal cpu_data_o:            std_logic_vector(31  downto 0); 
  signal cpu_m_read:            std_logic; 
  signal cpu_m_write:           std_logic; 
  signal cpu_intack:            std_logic; 
  signal cpu_ready_i:           std_logic; 
  signal cpu_ack_o:             std_logic; 
  
  -- internal signal for uart 
  signal uart_ce:               std_logic;  
  signal uart_addr:             std_logic_vector(1 downto 0); 
  signal uart_data_i:           std_logic_vector(31  downto 0); 
  signal uart_data_o:           std_logic_vector(31  downto 0); 
  signal uart_rx_empty:         std_logic; 
  signal uart_rx_irq:           std_logic; 
  signal uart_tx_irq:           std_logic; 
  signal uart_rxd:              std_logic; 
  signal uart_txd:              std_logic; 
  signal uart_cts:              std_logic; 
  signal uart_rts:              std_logic; 
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CPU Component Binding 
 
cpu1 is the eP32 CPU module instantiated in the eP32 chip.  Its port map specifies 
how internal signals in cpu1 are connected to global signals in the chip system. 
 
m_rst is inverted from the external master reset, arst.  The external master reset, arst, 
is connected to a RESET pushbutton on the Brevia Board, and is normally pulled up 
to VCC.  When RESET is pressed down, arst is pulled down to ground.  Internal 
reset signals sent to the eP32 CPU and other memory and I/O devices use positive 
logic; therefore, arst must be inverted to m_rst, which is used to reset internal 
modules. 
 
Here are local signals defined in the top level eP32 system.  They are used to 
connect the eP32 CPU to other modules. 
 
Local Signal Function 
m_rst Master reset, inverted from external reset. 
m_clk Master clock, inverted from external clock to accommodate memory 

timing constraints. 
system_addr System address from CPU to all other modules. 
system_read Read enable from CPU to all other modules. 
system_write Write enable from CPU to all other modules. 
system_ack Acknowledge from CPU. 
cpu_ready_i CPU ready. 
ready System ready. 
cpu_data_i Data from another module to CPU. Individual byte is selected if the 

byte_word signal is set. 
system_data_o System data bus connected to memory and I/O modules.  Memory 

and I/O devices are enabled by Bits 31-28 of system address. 
 

UART Component Binding 
 
The UART used in the eP32 is initialized to 115,200 baud, 1 start bit, 8 data bits, 2 
stop bits, no parity, and no flow control.  CTS and RTS, though defined in the UART 
module, are not used and not brought out to the eP32 package.  Only RXD and TXD 
are brought out. 
 
Local Signal Function 
uart_ce UART enable 
uart_addr UART register address 
uart_data_i Data from CPU 
uart_rxd Receiver input 
uart_txd Transmitter output 
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  -- internal signal for gpio 
  signal gpio_ce:               std_logic; 
  signal gpio_addr:             std_logic_vector(1 downto 0); 
  signal gpio_data_i:           std_logic_vector(31  downto 0); 
  signal gpio_in:               std_logic_vector(15  downto 0);  
  signal gpio_data_o:           std_logic_vector(31  downto 0); 
  signal gpio_out:              std_logic_vector(15  downto 0); 
  signal gpio_dir:              std_logic_vector(15  downto 0); 
  
begin 
  -- 
*************************************************** **************
*******    
  --            Component Binding 
  -- 
*************************************************** **************
*******    
  -- ========================= CPU Block ========== =================      
  cpu1: ep32  
    port map ( 
      -- input port 
      clk => aclk, 
      clr => m_rst, 
      interrupt => interrupt_i, 
      data_i => cpu_data_i, 
      intack => cpu_intack, 
      read => cpu_m_read, 
      write => cpu_m_write, 
      addr => cpu_addr_o, 
      data_o => cpu_data_o 
    ); 
 
  -- 
*************************************************** **************
*******    
  --            Internal Globle Signal Circuit 
  -- 
*************************************************** **************
*******    
 
  m_rst <= not arst; 
  m_clk <= not aclk; 
  system_addr <= cpu_addr_o; 
  system_read <= cpu_m_read; 
  system_write <= cpu_m_write; 
  system_ack <= cpu_ack_o; 
  cpu_ready_i <= '1'; 
 
  cpu_data_i <= system_data_o; 
 
  system_data_o <=  cpu_data_o when (system_write=' 1') else  
   memory_data_o when (system_addr(31 downto 28)="0 000") 
else 
   uart_data_o when (system_addr(31 downto 28)="100 0") else 
   gpio_data_o when (system_addr(31 downto 28)="111 0") else 
   (others => 'Z'); 
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RAM Component Binding 
 
The RAM module handles only 32-bit words.  Memory_addr, sent from CPU to 
memory modules, is at bits 11-0 to address 4k words of 32-bit word memory. 
 
All other modules in the eP32 chip are clocked by the external master clock, aclk, 
except the RAM memory module, which is clocked by an inverted clock, m_clk.  
The reason is that the RAM_Q library module from Lattice IPexpress is a 
synchronous RAM memory, in which the rising edge of the clock latches the input 
address bus and input data bus.  The eP32 expects asynchronous RAM/ROM 
memory modules, which must supply memory data to output to the data bus when the 
address bus is valid.  All registers and stacks in the eP32 behave this way.  Latching 
the address bus would waste one clock cycle for every memory access, making it 
impossible to execute all eP32 machine instructions in a single cycle. 
 
A compromise between design specification and the available RAM_Q memory 
module is to clock RAM_Q modules with inverted clock m_clk, which forces latching 
the memory address bus a half-cycle earlier, on the rising edge of m_clk, which 
occurs on the falling edge of aclk.  A disadvantage in clocking the memory address 
bus earlier is that the memory access speed must be twice the CPU speed.  This is 
not a problem with FPGAs running at 50 MHz.  Embedded RAM memory in FPGAs 
are generally much faster than 50 MHz.  However, one should be careful in pushing 
CPU speed higher.  You have to avoid contentions in accessing the memory bus. 
 
Local Signal Function 
system_write Write enable. 
memory_addr Word address sent to memory module. 
memory_data_i Data sent by CPU to memory module.  
memory_data_o Data output from memory module.   
 

GPIO Component Binding 
 
The GPIO module is defined as a 16-bit bidirectional I/O port.  The gpio_idr signal 
can be used to change the I/O direction dynamically.  However, in actual 
implementation, I/O devices used are switches, LED display, and LCD display.  
They do not require dynamic I/O redirection.  In the eP32 system, gpio_in and 
gpio_out are merged into one ioport and brought to the eP32 package pins.  io_port 
pins are defined as inout pins. 
 
 
Local Signal Function 
gpio_ce GPIO chip enable 
gpio_addr GPIO register address 
gpio_data_i Data send from CPU to GPIO module 
gpio_in Data received from GPIO input pins 
ioport 16 bit bidirectional GPIO port 
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  -- ========================= UART Block 
===========================      
  uart1 : uart 
    port map ( 
      -- input 
      clk_i => aclk, 
      rst_i => m_rst, 
      ce_i => uart_ce, 
      read_i => system_read, 
      write_i => system_write, 
      addr_i => uart_addr, 
      data_i => uart_data_i, 
      -- output 
      data_o => uart_data_o, 
      rx_empty_o => uart_rx_empty, 
      rx_irq_o => uart_rx_irq, 
      tx_irq_o => uart_tx_irq, 
      -- external interface 
      rxd_i => uart_rxd, 
      txd_o => uart_txd, 
      cts_i => uart_cts, 
      rts_o => uart_rts 
    ); 
  uart_ce <= '1' when (system_addr(31 downto 28)="1 000") else '0'; 
  uart_addr <= system_addr(1 downto 0); 
  uart_data_i <= system_data_o; 
  uart_rxd <= uart_i; 
  uart_o <= uart_txd; 
  
  -- ========================= RAM Block ========== =================      
ram_memory_0 : ram_memory PORT MAP ( 
  Address  => memory_addr, 
  Clock  => m_clk, 
  ClockEn  => '1', 
  Reset  => '0', 
  Data  => memory_data_i, 
  WE  => system_write, 
  Q      => memory_data_o 
 ); 
 
  memory_addr <= cpu_addr_o(11 downto 0); 
  memory_data_i <= cpu_data_o ; 
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  -- ========================= GPIO Block 
===========================      
  gpio1 : gpio 
   port map ( 
      -- input port 
      clr => m_rst, 
      clk => aclk, 
      write => system_write, 
      read => system_read, 
      ce => gpio_ce, 
      addr => gpio_addr, 
      data_in => gpio_data_i, 
      gpio_in => gpio_in,  
      -- output port 
      data_out => gpio_data_o, 
      gpio_out => gpio_out, 
      gpio_dir => gpio_dir 
    ); 
  gpio_ce <= '1' when (system_addr(31 downto 28)="1 110") else 
             '0'; 
  gpio_addr <= system_addr(1 downto 0); 
  gpio_data_i <= system_data_o; 
  gpio_in <= ioport; 
  ioport(0)  <= gpio_out(0)  when gpio_dir(0)='1' e lse 'Z'; 
  ioport(1)  <= gpio_out(1)  when gpio_dir(1)='1' e lse 'Z'; 
  ioport(2)  <= gpio_out(2)  when gpio_dir(2)='1' e lse 'Z'; 
  ioport(3)  <= gpio_out(3)  when gpio_dir(3)='1' e lse 'Z'; 
  ioport(4)  <= gpio_out(4)  when gpio_dir(4)='1' e lse 'Z'; 
  ioport(5)  <= gpio_out(5)  when gpio_dir(5)='1' e lse 'Z'; 
  ioport(6)  <= gpio_out(6)  when gpio_dir(6)='1' e lse 'Z'; 
  ioport(7)  <= gpio_out(7)  when gpio_dir(7)='1' e lse 'Z'; 
  ioport(8)  <= gpio_out(8)  when gpio_dir(8)='1' e lse 'Z'; 
  ioport(9)  <= gpio_out(9)  when gpio_dir(9)='1' e lse 'Z'; 
  ioport(10) <= gpio_out(10) when gpio_dir(10)='1' else 'Z'; 
  ioport(11) <= gpio_out(11) when gpio_dir(11)='1' else 'Z'; 
  ioport(12) <= gpio_out(12) when gpio_dir(12)='1' else 'Z'; 
  ioport(13) <= gpio_out(13) when gpio_dir(13)='1' else 'Z'; 
  ioport(14) <= gpio_out(14) when gpio_dir(14)='1' else 'Z'; 
  ioport(15) <= gpio_out(15) when gpio_dir(15)='1' else 'Z'; 
 
  end behavioral; 
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5.2 The eP32 CPU Module 
 
VHDL code of the eP32 CPU module is in the ep32.vhd file. 
 
When I first learnt VHDL, the text books told me to build things in modules, to 
collect modules into libraries, and then call these modules out in the main design.  
So I did that in the original design of the P16.  After a while, I found that the CPU 
was not that complicated, and all modules I needed could be combined together.  The 
end result was that I had only one module and it is my entire CPU. 
 
When RESET is set high, all registers and both stacks are cleared to 0.  When 
RESET is cleared to 0, the CLOCK input drives the eP32.  On the rising edge of 
CLOCK, the program word in memory address 0 is read into the I register.  The first 
instruction in I is decoded; i.e., a set of control signals are sent to all components in 
the eP32.  On the rising edge of the next CLOCK, new data are latched into 
appropriate registers and stacks depending on the instruction.  The next instruction is 
decoded and thus executed, and so forth. 
 
A memory interface is provided to connect to memory devices through a 32-bit 
address bus and a 32-bit data bus, with read enable and write enable control signals. 
 
When reading a program word, the P register drives the external address bus and a 
program word is read into the I register.  When reading or writing data words, the X 
register drives the external address bus, and data are read into the T register, or written 
from the T register, to the external data bus. 
 
Two stacks are used in the eP32: a return stack to store return addresses from nested 
subroutine call instructions, and a data stack to store parameters passed among nested 
subroutines.  The top two elements on the data stack are usually implemented as 
registers.  They are the T register for “top”, and the S register for “second”.  The 
top of the return stack is also implemented as the R register. 
 
The T and S registers provide two inputs to the ALU, which carries out arithmetic and 
logic operations on data from T and S, and returns results to the T register. 
 
The return stack, R, T, and S registers, and data stack can be viewed as a giant shift 
register array.  Data can be shifted right or left in this giant array.  The R, T and S 
registers are windows in this giant array visible to programmers in programming. 
 
The eP32.vhd file contains the complete specification of this CPU in VHDL.  You 
will be amazed at how simple a 32-bit CPU can be.  I hope it will stimulate your 
mind, and encourage you to design you own dream microprocessor. 
 



 50

 
-- 
*************************************************** ************* 
-- *               150nm Extreme Temperarture Radia tion           * 
-- *                    Hardened SOC ASIC Project                 * 
-- 
*================================================== ============* 
-- * FPGA Project:        32-Bit CPU in Altera SOPC  Builder       * 
-- * File:                ep32.vhd                                * 
-- * Author:              C.H.Ting                                * 
-- * Description:         ep32 CPU Block                          * 
-- *                                                              * 
-- * Revision History:                                            * 
-- * Date         By Who        Modification                      * 
-- * 06/06/05     C.H. Ting     Convert EP24 to 32- bits.          * 
-- * 06/10/05     Robyn King    Made compatible wit h Altera SOPC  * 
-- *                            Builder.                          * 
-- * 06/27/05     C.H. Ting     Removed Line Drawin g Engine.      * 
-- * 07/27/05     Robyn King    Cleaned up code.                  * 
-- * 08/07/10     C. H. Ting    Return to eP32p                   * 
-- * 11/18/10     Chen-Hanson Ting Port to LatticeX P2 Brevia Kit  * 
-- 
*************************************************** ************* 
  
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_misc.all; 
use ieee.std_logic_unsigned.all; 
 
 
entity ep32 is  
 generic(width: integer := 32); 
  port( 
    -- input port 
    clk:            in      std_logic; 
    clr:            in      std_logic; 
    interrupt:      in      std_logic_vector(4 down to 0); 
    data_i:         in      std_logic_vector(31 dow nto 0); 
    intack:         out     std_logic; 
    read:           out     std_logic; 
    write:          out     std_logic; 
    addr:           out     std_logic_vector(31 dow nto 0); 
    data_o:     out     std_logic_vector(31 downto 0) 
  ); 
end entity ep32; 
 



 51

I/O Signals of the eP32 CPU 
 
In VHDL terminology, the entity section specifies the interface signals from circuit 
component to the external world.  The eP32, as a microprocessor chip, shows the 
pin-out of the chip in its entity section:  master clock, control signals, data bus, 
address bus, and I/O ports.  Here are detailed specifications of these busses and 
signals: 
 
Signal Function 
clk Master clock 
clr Master reset 
interrupt 5-bit interrupt ports 
data_i 32 bit data input bus 
intack Interrupt acknowledge 
read Memory read enable 
write Memory write enable 
addr 32 bit address bus 
data_o 32 bit data output bus 
 
The eP32 CPU Module 
 
An architecture section in VHDL is the body of the design, in which all internal 
signals and logic are contained.  In an architecture section, signals and registers are 
defined first.  Then there is a subsection where you can define concurrent logic, a 
subsection where you can define sequential logic, and a subsection defining the finite 
state machine that runs the show.  For the purpose of documentation and clear 
referencing to signals, one can define constants to replace literal references. 
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architecture behavioral of ep32 is 
 
 type stack is array(31 downto 0) of std_logic_vect or(width downto 
0); 
 signal s_stack,r_stack: stack; 
 signal slot: integer range 0 to 5; 
 signal sp,sp1,rp,rp1: std_logic_vector(7 downto 0) ;  
 signal t,s,sum: std_logic_vector(width downto 0); 
 signal a,r: std_logic_vector(width downto 0); 
 signal t_in,r_in,a_in: std_logic_vector(width down to 0); 
 signal code: std_logic_vector(5 downto 0); 
 signal t_sel: std_logic_vector(3 downto 0); 
 signal p_sel: std_logic_vector(1 downto 0);  
 signal a_sel: std_logic_vector(2 downto 0); 
 signal r_sel: std_logic_vector(1 downto 0); 
 signal addr_sel: std_logic; 
 signal spush,spopp,rpush,rpopp,inten,intload,intse t, 
  tload,rload,aload,pload,iload,reset,z: std_logic;  
 signal r_z,int_z: std_logic; 
 signal i,p,p_in: std_logic_vector(width-1 downto 0 ); 
   
  -- machine instructions selected by code 
 
 constant bra : std_logic_vector(5 downto 0) :="000 000"; 
 constant ret : std_logic_vector(5 downto 0) :="000 001"; 
 constant bz  : std_logic_vector(5 downto 0) :="000 010"; 
 constant bc  : std_logic_vector(5 downto 0) :="000 011"; 
 
 constant call: std_logic_vector(5 downto 0) :="000 100"; 
 constant nxt : std_logic_vector(5 downto 0) :="000 101"; 
 constant ei  : std_logic_vector(5 downto 0) :="000 110"; 
 
 constant ldp : std_logic_vector(5 downto 0) :="001 001"; 
 constant ldi : std_logic_vector(5 downto 0) :="001 010"; 
 constant ld  : std_logic_vector(5 downto 0) :="001 011"; 
 
 constant stp : std_logic_vector(5 downto 0) :="001 101"; 
 constant rr8 : std_logic_vector(5 downto 0) :="001 110"; 
 constant st  : std_logic_vector(5 downto 0) :="001 111"; 
 
 constant com : std_logic_vector(5 downto 0) :="010 000"; 
 constant shl : std_logic_vector(5 downto 0) :="010 001"; 
 constant shr : std_logic_vector(5 downto 0) :="010 010"; 
 constant mul : std_logic_vector(5 downto 0) :="010 011"; 
 
 constant xorr: std_logic_vector(5 downto 0) :="010 100"; 
 constant andd: std_logic_vector(5 downto 0) :="010 101"; 
 constant div : std_logic_vector(5 downto 0) :="010 110"; 
 constant addd: std_logic_vector(5 downto 0) :="010 111"; 
 
 constant popr: std_logic_vector(5 downto 0) :="011 000"; 
 constant lda : std_logic_vector(5 downto 0) :="011 001"; 
 constant dup : std_logic_vector(5 downto 0) :="011 010"; 
 constant over: std_logic_vector(5 downto 0) :="011 011"; 
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Registers, Busses and Signals 
 
Here are the registers, busses, and the internal control signals contained in the eP32 
CPU.  They are all defined as signals in VHDL.  How they are actually 
implemented depends on how they are used in concurrent statements and in sequential 
statements. 
 
Signal Function 
s_stack Data stack. 
r_stack Return stack. 
slot Output of slot counter in finite state machine. 
sp Data stack pointer. 
sp1 Alternate data stack pointer. It always has the value of sp+1. 
rp Return stack pointer. 
rp1 Alternate return stack pointer. It always hads the value of rp+1. 
t Accumulator or T register, top of data stack. 
s Top element of data stack. S is a pseudo register. 
r Top element of return stack.  R is a real register. 
a Address register, X. 
i Instruction register, I. 
p Program counter, P. 
sum Output from an adder T+S. 
t_in Input to T register. 
r_in  Input to R register. 
a_in  Input to X register. 
p_in: Input to P register. 
code 6-bit opcode decoded from I register. 
spush  Control signals to push data stack. 
spopp Control signals to pop data stack. 
rpush  Control signals to push return stack. 
rpopp Control signals to pop return stack. 
tload  Enable signals to load T register. 
aload  Enable signals to load X register. 
pload  Enable signals to load P register. 
iload Enable signals to load I register. 
z One-bit signal, true if T=0, otherwise false. 
r_z One-bit signal, true if R=0, otherwise false. 
int_z One-bit signal, true if interrupt inputs are all 0, otherwise false. 
inten Enable interrupts. 
intset Set if interrupt is enabled 
intload Latch interrupt vector into P register. 
a_sel Select alternate argument to X register. 
p_sel Select alternate argument to P register. 
r_sel Select alternate argument to R register. 
t_sel Select alternate argument to T register. 
addr_sel Select alternate argument to address bus. 
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 constant pushr: std_logic_vector(5 downto 0) :="01 1100"; 
 constant sta : std_logic_vector(5 downto 0) :="011 101"; 
 constant nop : std_logic_vector(5 downto 0) :="011 110"; 
 constant drop: std_logic_vector(5 downto 0) :="011 111"; 
 
-- mux to t register, selected by t_sel 
 constant not_t: std_logic_vector :="0000"; 
 constant s_xor_t: std_logic_vector :="0001"; 
 constant s_and_t: std_logic_vector :="0010"; 
 constant s_or_t: std_logic_vector :="0011"; 
 constant sum_t: std_logic_vector :="0100"; 
 constant shr_sum: std_logic_vector :="0101"; 
 constant shr_t: std_logic_vector :="0110"; 
 constant shr_t_t: std_logic_vector :="0111"; 
 constant shl_sum_a_t: std_logic_vector :="1000"; 
 constant shl_t_a_t: std_logic_vector :="1001"; 
 constant shl_t: std_logic_vector :="1010"; 
 constant s_t: std_logic_vector :="1011"; 
 constant a_t: std_logic_vector :="1100"; 
 constant r_t: std_logic_vector :="1101"; 
 constant data_t: std_logic_vector :="1110"; 
 constant rr8_t: std_logic_vector :="1111"; 
 
-- mux to a register, selected by a_sel 
 constant t_a: std_logic_vector :="001"; 
 constant a1_a: std_logic_vector :="010"; 
 constant shr_sum_a: std_logic_vector :="011"; 
 constant shr_t_a: std_logic_vector :="100"; 
 constant shl_sum_a: std_logic_vector :="101"; 
 
-- mux to r register, selected by r_sel 
 constant rout_r: std_logic_vector :="00"; 
 constant t_r: std_logic_vector :="01"; 
 constant r1_r: std_logic_vector :="10"; 
 constant p_r: std_logic_vector :="11"; 
 
-- mux to p register, selected by p_sel 
 constant pi_p: std_logic_vector :="00"; 
 constant p1_p: std_logic_vector :="01"; 
 constant r_p: std_logic_vector :="10"; 
 constant int_p: std_logic_vector :="11"; 
 
-- mux to memory bus, selected by addr_sel 
 constant p_addr: std_logic :='0'; 
 constant a_addr: std_logic :='1'; 
 
begin 
 
 data_o<= t(width-1 downto 0); 
 intack <= inten;    
 s <= s_stack(conv_integer(sp)); 
  
 sum <= (('0'&t(width-1 downto 0)) + ('0'&s(width-1  downto 0))); 
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Opcodes 
 
Machine instructions, opcodes and their functions are as follows: 
 
Instruction   Code   Function 
bra   000000   Jump to address contained in current instruction.    
ret   000001   Return from a subroutine to main program. Pop return 

address from return stack and store it in P.    
bz   000010   If T=0, jump to address contained in current 

instruction; else continue.    
bc   000011   If Carry is set, jump to address contained in current 

instruction; else continue.    
call   000100   Push address in P on R stack, and jump to address 

contained in current instruction; else continue.  
nxt   000101   If R is not 0, jump to address contained in current 

instruction, and decrement R by 1; else pop R stack and 
continue. 

ei   000110   Enable interrupts.  
ldp   001001   Push T on S stack, read memory word pointed to by X 

into T. Increment X by 1. 
ldi   001010   Push T on S stack, read memory word pointed to by P 

into T. Increment P by 1.   
ld   001011   Push T on S stack, read memory word pointed to by X 

into T.    
stp   001101   Store T into memory pointed to by X. Increment X by 

1. Pop S stack to T.   
rr8   001110   Rotate T right by 8 bits.   
st   001111   Store T into memory pointed to by X. Pop S stack to T. 
com   010000   Complement T (1’s complement ).   
shl   010001   Shift T left by 1 bit. 
shr   010010   Shift T right by 1 bit. 
mul   010011   Multiplication step. If X(0)=1, add S to T, otherwise T 

is not changed. Shift T:X pair right by 1 bit.  
xorr   010100   Pop S stack and XOR it to T. 
andd   010101   Pop S stack and AND it to T. 
div   010100   Division step. If T+S produces a carry, add S to T, 

otherwise T is not changed. Shift T:X pair left by 1 bit.  
Shift carry into X(0). 

addd   010111   Pop S stack and add it to T. 
popr   011000   Push T onto S stack. Pop R stack to T. 
lda   011001   Push T onto S stack. Copy X to T.  
dup   011010   Push T onto S stack.   
over   011011   Push T onto S stack. Copy original contents of S to T.  
pushr   011100   Push T onto R stack. Pop S stack to T. 
sta   011101   Copy T to X. Pop S stack to T. 
nop   011110   No operation.  
drop 011111   Pop S stack to T.   
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 with t_sel select 
 t_in <= (not t) when not_t, 
  (t xor s) when s_xor_t, 
  (t and s) when s_and_t, 
  sum when sum_t, 
  (t(width-1 downto 0) & '0') when shl_t, 
  (t(width-1 downto 0) & a(width-1)) when shl_t_a_t , 
  (sum(width-1 downto 0) & a(width-1)) when shl_sum _a_t, 
  ('0'&sum(width downto 1)) when shr_sum, 
  ('0'&t(width-1)&t(width-1 downto 1)) when shr_t, 
  ("00"&t(width-1 downto 1)) when shr_t_t, 
  s when s_t, 
  a when a_t, 
  r when r_t, 
  t(width)&t(7 downto 0)&t(width-1 downto 8) when r r8_t,  
  '0'&data_i(width-1 downto 0) when others; 
 
 with slot select 
 code <= i(29 downto 24) when 1, 
  i(23 downto 18) when 2, 
  i(17 downto 12) when 3, 
  i(11 downto 6) when 4, 
  i(5 downto 0) when 5, 
  nop when others; 
-- icode <= code; 
  
 with a_sel select 
 a_in <= a+1 when a1_a , 
  ('0'&t(0)&a(width-1 downto 1)) when shr_t_a , 
  ('0'&sum(0)&a(width-1 downto 1)) when shr_sum_a ,  
  ('0'&a(width-2 downto 0)&sum(width)) when shl_sum _a , 
  t when others; 
 
 with r_sel select 
 r_in <= r-1 when r1_r , 
  '0'&p when p_r , 
  r_stack(conv_integer(rp)) when rout_r , 
  t when others; 
 
 with p_sel select 
 p_in <= (p(width-1 downto width-8) & i(width-9 dow nto 0)) when 
pi_p , 
  r(width-1 downto 0) when r_p , 
  ("000000000000000000000000000"&interrupt(4 downto  0)) when 
int_p , 
  p+1 when others; 
 
 with addr_sel select 
 addr <= a(width-1 downto 0) when a_addr , 
  p(width-1 downto 0) when others; 
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Concurrent Assignments 
 
Most of the concurrent assignments (using “<=”) simply route signals from one place 
to another.  A few concurrent assignments actually do some useful things, like 
 
Signal Source 
sum Get sum of T+S. 
z z=1 if T=0; z=0 if T is not 0. 
r_z r_z=1 if R=0; r_z=0 if R is not 0. 
 
The most interesting concurrent assignments are those of the multiplexers.  Here are 
a few multiplexers explicitly defined, and their select signals: 
 
Multiplexer Select Signal 
TMUX  t_sel 
RMUX  r_sel 
XMUX  a_sel 
PMUX  p_sel 
Address Bus addr_sel 
code slot 
 
The VHDL code on the left page shows constant values used to set selection signals to 
the various multiplexers. 
 
Many other more complicated multiplexers are not defined explicitly, but are 
implicitly defined in case statements of individual machine instructions.  Please 
examine these statements to see how particular signals are selected and routed. 
 

data_o, which is the output data bus in the eP32 core, always sends out data in the T 
register.  When we write data to memory and to peripheral devices, the address is 
provided in the X register, and data are provided in the T register.   
 
“intack” is the interrupt acknowledge signal. 
 
The S register is a pseudo-register.  It is not defined as a register, but as the top of the 
data stack, s_stack, pointed to by the data stack pointer, sp.  It is always used as the 
second argument, next to the T register, for arithmetic and logic machine instructions 
that expect two arguments. 
 
“sum” is the adder in the eP32.  It is shared by machine instructions ADD, MUL and 
DIV.  It adds data from the T register and S register on the top of the data stack. 
 
“t_in” is the output bus of a giant multiplexer, which provides input data to the T 
register.  Machine instructions changing the T register must provide the proper select 
signal, t_sel, to this multiplexer to get the desired data routed to t_in.  Then, on the 
rising edge of the next clock, data presented on t_in are latched into the T register. 
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 z <= not(t(width-1) or t(30) or t(29) or t(28) 
  or t(27) or t(26) or t(25) or t(24) 
  or t(23) or t(22) or t(21) or t(20)   
  or t(19) or t(18) or t(17) or t(16) 
  or t(15) or t(14) or t(13) or t(12) 
  or t(11) or t(10) or t(9) or t(8) 
  or t(7) or t(6) or t(5) or t(4) 
  or t(3) or t(2) or t(1) or t(0)); 
 
 r_z <= not(r(width-1) or r(30) or r(29) or r(28) 
  or r(27) or r(26) or r(25) or r(24) 
  or r(23) or r(22) or r(21) or r(20) 
  or r(19) or r(18) or r(17) or r(16) 
  or r(15) or r(14) or r(13) or r(12) 
  or r(11) or r(10) or r(9) or r(8) 
  or r(7) or r(6) or r(5) or r(4) 
  or r(3) or r(2) or r(1) or r(0)); 
 
 int_z <= interrupt(0) or interrupt(1) or interrupt (2) 
         or interrupt(3) or interrupt(4) ; 
 
  -- sequential assignments, with slot and code 
 decode: process(code,a,z,r_z,int_z,t,slot,sum,inte n) begin 
  t_sel<="0000";  
  a_sel<="000"; 
  p_sel<="00"; 
  r_sel<="00"; 
  addr_sel<='0';  
  spush<='0';  
  spopp<='0'; 
  rpush<='0';  
  rpopp<='0';  
  tload<='0';  
  aload<='0'; 
  pload<='0';  
  rload<='0';  
  write<='0';  
  read<='0';  
  iload<='0'; 
  reset<='0'; 
  intload<='0'; 
  intset<='0'; 
 
 if slot=0 then 
  if (int_z='1' and inten='1') then 
   pload<='1'; 
   p_sel<=int_p;--process interrupts 
   rpush<='1';  
   r_sel<=p_r; 
   rload<='1'; 
   reset<='1';   
  else iload<='1'; 
   p_sel<=p1_p;--fetch next word 
   pload<='1'; 
      read<='1';  
  end if; 
 else 
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“code” is the output bus of the instruction multiplexer, which selects one of 5 machine 
instructions stored in the I register.  “slot” selects the machine instruction to be 
executed in the current clock cycle.  “code” will be used in the instruction decoder’s 
decode process, to produce relevant control signals to execute the selected machine 
instruction. 
 
“a_in” is the input bus of the XMUX multiplexer, which normally gets data from the 
T register.  However, when executing memory read/write instructions, it can 
optionally increment by selecting data from the X register through an increment 
circuit.  Used in MUL and DIV instructions, it takes data from the X register shifted 
to the right or left, respectively.  Shifting operations are coordinated with the T 
register so that the T:X register pair acts like a 65-bit shift register. 
 
“r_in” is the input bus of the R register, which selects data from the P register for the 
CALL instruction, the T register for the PUSHR instruction, the top of the return stack 
r_stack for the POPR instruction, and from R-1 for the NEXT instruction.  It 
manages the return stack in the eP32. 
 
“p_in” is the input bus of the P register, which selects data from P+1 in slot0 to fetch 
the next program word, the R register for the RET instruction.  In slot0, if interrupt 
pins are not all zero and when interrupts are enabled, p_in selects 5 bits from the 
interrupt input pins, zero extended to 32 bits, to jump to an interrupt service routine. 
 
“addr” is the output bus of the address multiplexer, which provides addresses to 
output bus addr_o of the eP32 module.  It outputs address in the P register when 
reading program words, or addresses in the X register when reading and writing data 
to/from memory or peripheral devices. 
 
“z” returns a 1 if bits T(0) to T(31) are all zero.  If any of these bits is not a zero, z 
returns a zero.  It is used by the BZ instruction to branch to a new program location 
when T is zero. 
 
“r_z” returns a 1 if bits R(0) to R(31) are all zero.  If any of these bits are not a zero, 
r_z returns a zero.  It is used by the NEXT instruction to loop to a new program 
location when R is zero.  It allows looping in a single clock cycle. 
 
“int_z” returns a 1 if bits interrupt(0) to interrupt(4) are all zero.  If any of these bits 
are not a zero and interrupts are enabled, a jump is made to an interrupt service 
routine. 
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 case code is 
  when bra => 
   pload<='1'; 
   p_sel<=pi_p; 
   reset<='1'; 
  when ret => pload<='1';  
   p_sel<=r_p; 
   rpopp<='1'; 
   r_sel<=rout_r; 
   rload<='1'; 
   reset<='1'; 
   intset<='0'; 
   intload<='1'; 
  when bz =>  
   if z='1' then 
    pload<='1'; 
    p_sel<=pi_p; 
   end if; 
   tload<='1'; 
   t_sel<=s_t;  
   spopp<='1';  
   reset<='1'; 
  when bc =>  
   if t(width)='1' then 
    pload<='1'; 
    p_sel<=pi_p; 
   end if; 
   tload<='1'; 
   t_sel<=s_t;  
   spopp<='1';  
   reset<='1'; 
  when call => 
   pload<='1'; 
   p_sel<=pi_p;--process call 
   rpush<='1';  
   r_sel<=p_r; 
   rload<='1'; 
   reset<='1';    
  when nxt =>  
   if r_z='0' then 
    p_sel<=pi_p; 
    pload<='1'; 
    r_sel<=r1_r; 
   else   
    r_sel<=rout_r; 
    rpopp<='1'; 
   end if; 
   rload<='1'; 
   reset<='1'; 
  when ei => 
   intset<='1'; 
   intload<='1'; 
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Sequential Assignments 
 
This big sequential assignment is the instruction decoder of the eP32 CPU.  In the 
“decode” process, control signals are initialized and then set according to the needs of 
each different machine instruction.  These control signals flow out to concurrent 
assignments to select proper signals to be latched into registers and stacks, on the 
rising edge of the next clock pulse. 
 
When slot=0, that is, the slot machine is executing a slot0 function, the external 5 bit 
interrupt signals are examined.  If all interrupt signals are low, the address of the 
next program word in the P register is sent out to the address bus.  “iload” is set so 
that a program word from the external data bus will be latched into the I register.  
“pload” is also set so that the P register will be incremented. 
 
If any bit of the interrupt signals is high, then a subroutine call is forced to an address 
from location 1 to 31, as specified by the 5-bit interrupt input signals. 
 
If “slot” is not zero, then a machine code in slot1 to slot5 of the I register is selected 
and executed.  Executing a machine instruction is simply setting some control 
signals to route proper data through concurrent logic and connecting multiplexers to 
targeted registers and stacks.  On the rising edge of the next master clock, all data are 
latched and then the next machine instruction is decoded and executed. 
 
First, default values of signals are assigned.  In all instructions, only a few of these 
signals are changed to achieve specific functions, and we only have to specify those 
changed signals for those instructions. 
 
Here are the signals changed when the instruction sequencer is in Slot0.  This 
includes external interrupt pins.  If one or more interrupts are set, the CPU calls an 
interrupt service routine from memory location 1 to 31.  If no interrupt is set, this 
causes the program word pointed to by the P register to be fetched, and the instruction 
sequencer is incremented to Slot1, in preparation to execute the first instruction in the 
program word. 
 

If there is an interrupt request, call an interrupt vector. 
Signal Function 
pload<='1' Load P register 
p_sel<=int_p Select interrupt vector for P register 
rpush<='1' Push P to R and return stack 
r_sel<=p_r Select P for RMUX 
rload<='1' Load R register 
reset<='1' Force next cycle to slot0 
If there is no interrupt request, fetch and execute the next program word. 
Signal Function 
iload<='1' Load I register 
p_sel<=p1_p Select P+1 to P register 
pload<='1' Load P register 
read<='1' Read program memory to P register 
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  when ldp => addr_sel<=a_addr;  
   a_sel<=a1_a; 
   aload<='1';  
   tload<='1'; 
   t_sel<=data_t;  
   spush<='1';  
      read<='1';  
  when ldi => pload<='1';  
   p_sel<=p1_p; 
   tload<='1'; 
   t_sel<=data_t;  
   spush<='1';  
      read<='1';  
  when ld => addr_sel<=a_addr;  
   tload<='1'; 
   t_sel<=data_t;  
   spush<='1';  
      read<='1';  
  when stp => addr_sel<=a_addr;  
   aload<='1';  
   a_sel<=a1_a; 
   tload<='1'; 
   t_sel<=s_t;  
   spopp<='1';  
   write<='1';  
  when st => addr_sel<=a_addr;  
   tload<='1'; 
   t_sel<=s_t;  
   spopp<='1';  
   write<='1';  
  when rr8 =>  
   tload<='1'; 
   t_sel<=rr8_t;  
  when com =>  
   tload<='1'; 
   t_sel<=not_t;  
  when shl =>  
   tload<='1'; 
   t_sel<=shl_t;  
  when shr =>  
   tload<='1'; 
   t_sel<=shr_t;  
  when mul =>  
   aload<='1'; 
   tload<='1'; 
   if a(0)='1' then 
    t_sel<=shr_sum; 
    a_sel<=shr_sum_a; 
   else t_sel<=shr_t_t; 
    a_sel<=shr_t_a; 
   end if; 
  when xorr =>  
   tload<='1'; 
   t_sel<=s_xor_t;  
   spopp<='1'; 
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Decoder 
 
The big case statement using “code” as selector determines which machine instruction 
to execute, which control signals are set or cleared, which signals must go through 
their respective multiplexers, and which signals are to be latched into registers and 
stacks. 
 
If the instruction sequencer is not in Slot0, it executes instruction “code” selected 
from one of 5 slots in the I register.  This is a giant case statement listing all changed 
signals associated with each and every instruction.  These instructions change 
appropriate signals to route proper signals through busses and multiplexers, to be 
latched into stacks and registers on the rising edge of the next clock. 
 

Transfer Instructions 
 

Following are transfer instructions, which load a target program address into the P 
register, and thus jump to different memory locations.  The target address is formed 
by appending the contents of the address field of the long instruction to the 8-bit page 
address in the P register.  Therefore transfer instructions can branch to any location 
within the current 16M word page.  Only the RET instruction can branch to the 
entire 32-bit memory space, because it obtains its target address from the R register. 
 

To execute the BRA instruction, set the following signals: 
pload<='1' Load P register 
p_sel<=pi_p Select address field for P register 
reset<='1' Force next cycle to slot0 
 
To execute the RET instruction, set the following signals: 
pload<='1' Load P register 
p_sel<=r_p Select R register to load P register 
rpopp<='1' Pop return stack 
r_sel<=rout_r Select r_stack to load R register 
rload<='1' Load R register 
reset<='1' Force next cycle to slot0 
intset<='0' Clear interrupt enable flag 
intload<='1' Load inten register 
 
To execute the BZ instruction, set the following signals if T=0: 
pload<='1' Load P register 
p_sel<=pi_p Select address field for P register 
Always set the following signals: 
tload<='1' Load T register 
t_sel<=s_t Select top of s_stack to load T register 
spopp<='1' Pop s_stack 
reset<='1' Force next cycle to slot0 
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  when andd =>  
   tload<='1'; 
   t_sel<=s_and_t;  
   spopp<='1'; 
  when div =>  
   aload<='1'; 
   tload<='1'; 
   a_sel<=shl_sum_a; 
   if sum(width)='1' then 
    t_sel<=shl_sum_a_t; 
   else t_sel<=shl_t_a_t; 
   end if; 
  when addd =>  
   tload<='1'; 
   t_sel<=sum_t;  
   spopp<='1'; 
  when popr =>  
   tload<='1'; 
   t_sel<=r_t;  
   spush<='1'; 
   r_sel<=rout_r; 
   rload<='1'; 
   rpopp<='1'; 
  when lda =>  
   tload<='1'; 
   t_sel<=a_t;  
   spush<='1'; 
  when dup =>  
   spush<='1'; 
  when over =>  
   spush<='1'; 
   tload<='1'; 
   t_sel<=s_t; 
  when pushr =>  
   tload<='1'; 
   t_sel<=s_t;  
   rpush<='1'; 
   r_sel<=t_r; 
   rload<='1'; 
   spopp<='1'; 
  when sta =>  
   tload<='1'; 
   t_sel<=s_t;  
   a_sel<=t_a; 
   aload<='1';  
   spopp<='1'; 
  when nop => reset<='1'; 
  when drop =>  
   tload<='1'; 
   t_sel<=s_t;  
   spopp<='1'; 
  when others => null; 
 end case; 
 end if; 
 end process decode; 
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To execute the BC instruction, set the following signals if carry T(32)=1: 
pload<='1' Load P register 
p_sel<=pi_p Select address field for P register 
Always set the following signals: 
tload<='1' Load T register 
t_sel<=s_t Select top of s_stack to load T register 
spopp<='1' Pop s_stack 
reset<='1' Force next cycle to slot0 
To execute the CALL instruction, set the following signals: 
pload<='1' Load P register 
p_sel<=pi_p Select address field for P register 
rpush<='1' Push R and r_stack 
r_sel<=p_r Select P to load R register 
rload<='1' Load R register 
reset<='1' Force next cycle to slot0 
 
The NXT instruction is probably the most complicated transfer instruction.  It is a 
single cycle loop instruction.  It uses the R register as a loop counter, counting down 
towards 0.  When R is not zero, it is decremented, and program register P is loaded 
with an address in the address field of this long transfer instruction.  The loop is then 
repeated.  When R is decremented to 0, the R register and r_stack are popped, and 
execution continues with the next program word.  The loop is thus terminated. 
 
To execute the NXT instruction, set the following signals if R is not 0: 
p_sel<=pi_p Select address field for P register 
pload<='1' Load P register 
r_sel<=r1_r Load R-1 into R register 
Set the following signals if R is 0: 
r_sel<=rout_r Select top of r_stack to load R register 
rpopp<='1' Pop r_stack 
Always set the following signals: 
rload<='1' Load R register 
reset<='1' Force next cycle to slot0 
 
Enable Interrupts 
 
To execute the EI instruction, set the following signals: 
intset<='1' Set interrupt acknowledge flag 
intload<='1' Load inten (interrupt enable) register 
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Memory Instructions 
 
Following are the memory instructions, which read data from memory to the T 
register or write data from the T register to memory.  The address of memory is 
always in the X register.  When reading, the T register is pushed onto the data stack.  
When writing, the data stack is popped to the T register. 
 
To execute the LDP instruction, set the following signals: 
addr_sel<=a_addr Select X to load memory address bus 
a_sel<=a1_a Increment X register 
aload<='1' Load X register 
tload<='1' Load T register 
t_sel<=data_t Select data bus to load T register 
spush<='1' Push s_stack 
read<='1' Enable memory read 
 
To execute the LDI instruction, set the following signals: 
pload<='1' Load P register 
p_sel<=p1_p Select P+1 to load P register 
tload<='1' Load T register 
t_sel<=data_t Select data bus to load T register 
spush<='1' Push s_stack 
read<='1' Enable memory read 
 
To execute the LD instruction, set the following signals: 
addr_sel<=a_addr Select X to load memory address bus 
tload<='1' Load T register 
t_sel<=data_t Select data bus to load T register 
spush<='1' Push s_stack 
read<='1' Enable memory read 
 
To execute the STP instruction, set the following signals: 
addr_sel<=a_addr Select X to load memory address bus 
aload<='1' Load X register 
a_sel<=a1_a Increment X register 
tload<='1' Load T register 
t_sel<=s_t Select R to load T register 
spopp<='1' Pop s_stack 
write<='1' Enable memory write 
 
To execute the ST instruction, set the following signals: 
addr_sel<=a_addr Select X to load memory address bus 
tload<='1' Load T register 
t_sel<=s_t Select R to load T register 
spopp<='1' Pop s_stack 
write<='1' Enable memory write 
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ALU Instructions 
 
To execute the RR8 instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=rr8_t Select T rotate right 8 bit to load T register 
 
To execute the ST instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=not_t Select not(T) to load T register 
 
To execute the SHL instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=shl_t Shift T left 1 bit 
 
To execute the SHR instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=shr_t Shift T right 1 bit 
 
To execute the XOR instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=s_xor_t Select (S xor T) to load T register 
spopp<='1' Pop s_stack 
 
To execute the AND instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=s_and_t Select (S and T) to load T register 
spopp<='1' Pop s_stack 
 
To execute the ADD instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=sum_t Select (S + T) to load T register 
spopp<='1' Pop s_stack 
 
MUL Step  
 
The MUL step and DIV step instructions are the most complicated instructions.  
They use T and X as a register pair.  The T-X register pair is shifted right or left, and 
the T register may either receive results from the adder or remain unchanged.  
Repeating these instructions is the simplest and the most efficient way to implement 
an unsigned multiplier and an unsigned divider. 
 

In the MUL instruction, the T and X registers are considered a 65-bit right-shift 
register.  Initially, a partial sum is loaded in the T register, a multiplier in the X 
register, and a multiplicand in the S register.  If the least significant bit in X is 1, S is 
added to T, and the resulting T-X pair is shifted right by 1 bit.  If the least significant 
bit in X is 0, T is not changed, and the T-X pair is shifted right by 1 bit.  After 
repeating the MUL instruction 32 times, the T-X register pair will contain a double 
product of X*S +T. 
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To execute the MUL instruction when X(0)=1 : 
aload<='1' Load X register 
tload<='1' Load T register 
t_sel<=shr_sum Select right shifted (S+T):X  
a_sel<=shr_sum_a Select right shifted (S+T):X  
To execute the MUL instruction when X(0)=0 : 
aload<='1' Load X register 
tload<='1' Load T register 
t_sel<=shr_t_t Select right shifted T:X 
a_sel<=shr_t_a Select right shifted T:X 
 
DIV Step  
 
In the DIV instruction, the T and X registers are again considered a 65-bit left-shift 
register.  A double integer dividend is contained in the T-X register pair, and a 
negated divisor is in the S register.  In the ALU, the sum of S and T is always 
computed by an adder.  If the carry bit in adder sum(32) is 1, S is added to T, and the 
resulting T-X pair is shifted left by 1 bit.  If the carry bit in adder is 0, T is not 
changed, and the T-X register pair is shifted left by 1 bit.  In either case, the carry bit 
is shifted into the least significant bit in the X register.  After repeating the DIV 
instruction 33 times, the X register contains the quotient, and the T register contains 
2x of the remainder of division.   
 

To execute the DIV instruction when the carry bit sum(32)=1 : 
aload<='1' Load X register 
tload<='1' Load T register 
a_sel<=shl_sum_a Select left shifted T:X 
t_sel<=shl_sum_a_t Select left shifted (S+T):X 
To execute the DIV instruction when the carry bit sum(32)=0 : 
aload<='1' Load X register 
tload<='1' Load T register 
a_sel<=shl_sum_a Select left shifted T:X 
t_sel<=shl_t_a_t Select left shifted T:X 
 
Register and Stack Instructions 
 
To execute the POPR instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=r_t Select R to load T register 
spush<='1' Push s_stack 
r_sel<=rout_r Select r_stack to load R register 
rload<='1' Load R register 
rpopp<='1' Pop r_stack 
 
To execute the XT instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=a_t Select X to load T register 
spush<='1' Push s_stack 
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To execute the DUP instruction, set the following signals: 
spush<='1' Push s_stack 
 
To execute the OVER instruction, set the following signals: 
spush<='1' Push s_stack 
tload<='1' Load T register 
t_sel<=s_t Select S to load T register 
 
To execute the PUSHR instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=s_t Select S to load T register 
rpush<='1' Push r_stack 
r_sel<=t_r Select T to load R register 
rload<='1' Load R register 
spopp<='1' Pop s_stack 
 
To execute the TX instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=s_t Select S to load T register 
a_sel<=t_a Select T to load X register 
aload<='1' Load X register 
spopp<='1' Pop s_stack 
 
To execute the NOP instruction, set the following signals: 
reset<='1' Force next cycle to slot0 
 
To execute the DROP instruction, set the following signals: 
tload<='1' Load T register 
t_sel<=s_t Select S to load T register 
spopp<='1' Pop s_stack 
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-- finite state machine, processor control unit  
 sync: process(clk,clr) begin 
  if clr='1' then -- master reset 
   inten <='0';  slot <= 0; 
   sp  <= "00000000"; sp1 <= "00000001"; 
   rp  <= "00000000"; rp1 <= "00000001"; 
   t <= (others => '0'); 
   r <= (others => '0');    
   a <= (others => '0'); 
   p <= (others => '0'); 
   i <= (others => '0'); 
   for ii in s_stack'range loop 
    s_stack(ii) <= (others => '0'); 
    r_stack(ii) <= (others => '0'); 
   end loop; 
  elsif (clk'event and clk='1') then 
   if reset='1' or slot=5 then 
    slot <= 0; 
   else slot <= slot+1; 
   end if; 
   if intload='1' then 
    inten <= intset; 
   end if; 
   if iload='1' then 
    i <= data_i(width-1 downto 0); 
   end if; 
   if pload='1' then 
    p <= p_in; 
   end if; 
   if tload='1' then 
    t <= t_in; 
   end if; 
   if rload='1' then 
    r <= r_in; 
   end if; 
   if aload='1' then 
    a <= a_in; 
   end if; 
   if spush='1' then 
    s_stack(conv_integer(sp1)) <= t; 
    sp <= sp+1; 
    sp1 <= sp1+1; 
   elsif spopp='1' then 
    sp <= sp-1; 
    sp1 <= sp1-1; 
   end if; 
   if rpush='1' then 
    r_stack(conv_integer(rp1)) <= r; 
    rp <= rp+1; 
    rp1 <= rp1+1; 
   elsif rpopp='1' then 
    rp <= rp-1; 
    rp1 <= rp1-1; 
   end if; 
  end if; 
 end process sync; 
end behavioral; 
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Finite State Machine 
 
Finite state machine “sync” is a process paced by master clock “clk”.  This is what I 
called a Slot Machine.  The master clock drives a 6-state counter, “slot”, and 
increments it from 0 to 5 and then repeats the sequence.  Each clock cycle can thus 
be named slot0 to slot5, according to the contents of “slot”. 
 
Machine instructions are decoded in the “decode” process, where control and select 
signals are set and data are routed through concurrent logic and multiplexers.  On the 
rising edge of master clock “clk”, selected registers and stacks latch outputs from 
respective multiplexers.  A machine instruction is thus executed.  The “slot” 
counter is incremented, and the next instruction from the next slot in the I register is 
decoded and executed. 
 
When “slot” is 5, or when a transfer instruction (CALL, RET, BRA, BZ, or BNC) is 
executed, the counter “slot” is cleared to 0.  In the next clock cycle, slot0, the eP32 
will process an interrupt if any interrupt is pending, or fetch the next program word 
from memory and start executing machine instructions contained in this program 
word. 
 
When “clr” is set, the eP32 is in a reset state.  In the reset state, all registers and both 
stacks are cleared to 0, except sp1 and rp1, which are initialized to 1.  When “clr” is 
cleared to 0, the eP32 starts running.  Since the P register is cleared to 0 on reset, and 
“slot” is 0, the program word in memory location 0 is fetched from memory on the 
rising edge of master clock “clk”.  On the rising edge of the next clock, the machine 
instruction in slot1 of this program word is decoded and executed.  What happens 
next depends on this instruction. 
 
All elements in s_stack and r_stack are cleared using a for-loop in the sync process. 
 
When “clr” is cleared to 0, the master clock starts driving the Slot Machine and starts 
the CPU running.  (clk'event and clk='1') specifies that all actions occur on the rising 
edge of master clock “clk”. 
 
On the rising edge of “clk”, the counter “slot” is incremented.  When “slot” is 
incremented to 5, or when reset=1, as a transfer instruction (CALL, RET, BRA, BZ, 
or BNC) is executed, “slot” is cleared to 0.  In the next clock cycle, slot0, the eP32 
will process an interrupt if any interrupt is pending, or fetch the next program word 
from memory and start executing machine instructions contained in this program 
word. 
 
If intload=1, the inten register is aligned to intset, which enables or disables 
interrupts.   
If iload=1, the next program word is latched into I register. 
If pload=1, the P register is loaded from PMUX.   
If tload=1, the T register is loaded from TMUX.   
If rload=1, the R register is loaded from RMUX.  
When aload=1, the X register is loaded from XMUX.   
 
The data stack and return stack are implemented as 32 33-bit register arrays.  Stacks 
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have to be pushed or popped in a single clock cycle, with all other actions in the CPU.  
When pushing, the stack pointer must be pre-incremented, and when popping, the 
stack pointer must be post-decremented.  In conventional designs, it would take 
another cycle to pre-increment a stack pointer.  To make sure that all stack actions 
are always accomplished in a single cycle, we add two auxiliary stack pointers, sp1 
and rp1, which are always one count above the principal stack pointers, sp and rp.  
When pushing, sp1 or rp1 is used to write a new stack element above the top of stack.  
When popping, sp or rp is used to read the top element on the stack.  Whenever sp or 
rp is changed, sp1 or rp1 are changed accordingly, too. 
 
When pushing the data stack, spush=1.  The T register is copied to the top of s_stack, 
pointed to by sp1.  This is what is called pre-incrementing, as sp1 is pointing to a 
location above the top of the data stack, pointed to by sp.  Then, both sp and sp1 are 
incremented, so that now sp is pointing to the new location on top of s_stack. 
 
When popping the data stack, spopp=1.  Nothing in particular needs to be done, as 
the top of s_stack pointed to by sp is read out.  On the rising edge of the next clock, 
both sp and sp1 are decremented.  This is post-decrementing. 
 
When pushing the return stack, rpush=1.  The R register is copied to the top of 
r_stack, pointed to by rp1.  rp1 is pointing to a location above the top of the return 
stack, pointed to by rp.  Then, both rp and rp1 are incremented, so that now rp is 
pointing to the new location on the top of r_stack. 
 
When popping the return stack, rpopp=1.  The top of the r_stack pointed to by rp is 
read out.  On the rising edge of the next clock, both rp and rp1 are decremented.   
 
5.3 RAM Memory Module 
 
The VHDL code of the RAM module is in the ram_memory.vhd file. 
 
The design of the memory module is different for FPGAs from different 
manufacturers.  It is the only module in the eP32 that cannot be ported across FPGA 
chips.  However, FPGA manufacturers generally supply memory blocks in VHDL 
and Verilog modules.  The user can pick the memory block from a library, and 
configure it to suit his design requirements.  Some FPGA systems allow the user to 
initialize a memory block so that the resulting microprocessor system can boot up 
immediately on power up. 
 
For the eP32 system, the memory block has to be configured as follows: 
Memory word width 32 bits 
Memory depth 4096 or more words 
Single phase clock 
No input latch 
No output latch 
 
Some FPGAs contain ROM and RAM memory blocks.  ROM memory must be 
initialized to contain program code.  The LatticeXP2 has only RAM memory blocks, 
but RAM memory is initialized from flash memory.  This configuration is very 
convenient for microprocessor designs, because the microprocessor can be initialized 
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immediately from flash memory on power up, and programs are executed in RAM.  
No extra ROM memory is necessary to store program code, and a single FPGA chip 
becomes a complete microprocessor system. 
 
The eForth system software to be executed on the eP32 chip must be compiled and 
copied into an mem.mif file.  mem.mif must be copied into the eP32 project folder 
so that the ispLEVER system can use it to initialize RAM memory.  When the eP32 
chip design is downloaded into a LatticeXP2 chip, eForth goes along. 
 
The eP32 uses memory of the simplest type, asynchronous RAM memory.  No clock 
signal is needed for reading.  When the address bus is stable, the addressed memory 
cell puts its contents on the output data bus.  When memory is in write mode, 
write-enable is pulled high.  Then when the write-clock pulse is high, input data on 
the data bus is written into the memory cell addressed by the address bus.  This is 
how most static RAM memory chips were designed and implemented.  Most FPGA 
manufacturers, however, choose to implement their RAM modules as synchronous 
RAM, which uses a clock pulse to first latch its address and data bus, and then put the 
addressed memory cell on the output data bus. 
 
One must be very careful in clocking memory blocks.  Synchronous memory is 
incompatible with the eP32 design, because the memory contents are not available 
before the rising clock edge, after the memory address is changed.  In the eP32, 
memory contents must be stable before the rising clock edge.  This clocking problem 
is solved by using synchronous memory blocks and clocking them with the trailing 
edge of the master clock.  A disadvantage is that the CPU can only run at 1/2 of 
maximum memory access speed.  It is not a problem with most FPGAs running at 50 
MHz.  It may become a problem when you have to push the speed higher. 
A few lines of data in mem.mif in Addressed-Hex format are as follows: 
#Format=AddrHex  
#Depth=4096  
#Width=32  
#AddrRadix=3  
#DataRadix=3  
#Data  
0:68D 
24:80 
25:A 
26:7C6 
27:7C8 
28:7C6 
29:4A0 
2A:4D2 
2D:7C6 
101:564F4405 
102:5241 
103:1805E79E 
104:101 
105:3C3002 
106:1179E79E 
107:3000109 
108:1A69405E 
109:A05E79E 
10A:FFFFFFFF 
10B:105 

10C:2B4D5503 
10D:1769E79E 
10E:3000110 
10F:1A69405E 
110:A05E79E 
111:1 
112:10C 
113:55443F04 
114:50 
115:1A79E79E 
116:2000118 
117:1A05E79E 
118:179E79E 
119:113 
11A:454E4407 
11B:45544147 
11C:10710297 
11D:1 
11E:1A79E79E 
11F:3000121 
120:1805E79E 
121:1829705E 
122:1 
123:11A 
124:53424103 
125:1A45E79E 

126:3000128 
127:179E79E 
128:1029705E 



Only the first page of ram_memory.vhd is shown on the left page.  It is generated 
automatically by the RAM_Q memory module in the IPexpress library of the 
ispLEVER system.  Terms used in this file are incomrehensible except to experts at 
Lattice, and I will not try to comment on it.  We just need to know its interface to the 
eP32, and leave the details to Lattice and the ispLEVER system. 
 
RAM memory is mapped in the the address space between 0 and 0xFFF. 
 
Port signals defined for the RAM memory module are: 
 
Port Signal Function 
address Address from CPU 
clock Memory clock, inverted from master clock 
clockEn Clock enable, always enabled 
data Data input from CPU 
reset Clear addfress and data registers, always disabled 
we Write enable from CPU 
q Data output to CPU 
 
VHDL code for this memory module is generated automatically by IPexpress in the 
ispLEVER system.  It is not printed here.   
 

RAM memory must be initialized properly with a program in it, so that when the eP32 
chip is synthesized and downloaded into the FPGA, the program starts executing after 
Reset is released and the clock is applied to the chip.  RAM memory is initialized 
with the contents of the mem.mif file.  This file is produced by the eForth 
metacompiler, which builds a memory image of the eForth system, and copies this 
image into the mem.mif file.  The mem.mif file must be copied into the folder where 
all other VHDL files reside.  When IPexpress in the ispLEVER System generates 
mem_memory.vhd, it reads mem.mif and includes code instantiating program words 
into the RAM module.  
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-- VHDL netlist generated by SCUBA ispLever_v81_SP1 _Build (36) 
-- Module  Version: 7.1 
--D:\ispTool\ispfpga\bin\nt\scuba.exe -w -lang vhdl  -synth synplify 
-bus_exp 7 -bb -arch mg5a00 -type bram -wp 10 -rp 1 000 -addr_width 
12 -data_width 32 -num_rows 4096 -writemode NORMAL -resetmode SYNC 
-memfile 
d:/isptool/demo_latticexp2_brevia_soc_vhdl/demo_lat ticexp2_brevia
_soc/project/ep32q_xp2_4/mem.mif -memformat orca -c ascade -1 -e  
 
-- Sat Dec 11 08:41:47 2010 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
-- synopsys translate_off 
library xp2; 
use xp2.components.all; 
-- synopsys translate_on 
 
entity ram_memory is 
    port ( 
        Clock: in  std_logic;  
        ClockEn: in  std_logic;  
        Reset: in  std_logic;  
        WE: in  std_logic;  
        Address: in  std_logic_vector(11 downto 0);   
        Data: in  std_logic_vector(31 downto 0);  
        Q: out  std_logic_vector(31 downto 0)); 
end ram_memory; 
 
architecture Structure of ram_memory is 
 
    -- internal signal declarations 
    signal scuba_vhi: std_logic; 
    signal scuba_vlo: std_logic; 
 
    -- local component declarations 
    component VHI 
        port (Z: out  std_logic); 
    end component; 
    component VLO 
        port (Z: out  std_logic); 
    end component; 
    component DP16KB 
    -- synopsys translate_off 
        generic (INITVAL_3F : in String; INITVAL_3E  : in String;  
                INITVAL_3D : in String; INITVAL_3C : in String;  
                INITVAL_3B : in String; INITVAL_3A : in String;  
                INITVAL_39 : in String; INITVAL_38 : in String;  
                INITVAL_37 : in String; INITVAL_36 : in String;  
                INITVAL_35 : in String; INITVAL_34 : in String;  
                INITVAL_33 : in String; INITVAL_32 : in String;  
                INITVAL_31 : in String; INITVAL_30 : in String;  
                INITVAL_2F : in String; INITVAL_2E : in String;  
                INITVAL_2D : in String; INITVAL_2C : in String;  
                INITVAL_2B : in String; INITVAL_2A : in String;  
                INITVAL_29 : in String; INITVAL_28 : in String;  
                INITVAL_27 : in String; INITVAL_26 : in String;  
                INITVAL_25 : in String; INITVAL_24 : in String;  
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5.4 UART Module 
 
The VHDL code of the UART module is in the uart.vhd file. 
 
A UART port is the simplest and the most efficient I/O device allowing a FORTH 
system to interact with users.  With a UART port, we can bring up an eP32 system 
on power-up and a user can immediately begin software development. 
 
This UART system is set to 115,200 baud, 1 start bit, 8 data bits, 1 stop bit, no parity, 
and no flow control.   
 
4 Registers are defined in the UART module, and their addresses and functions are as 
follows: 
 
Address Register Function 
Ox80000000 Baud Rate Register 32-bit baud rate counter 
Ox80000001 Transmit Register Bits7-0, transmit data;  

bit8, transmitter status 
Ox80000002 Receive Status Register Bit0, flow control,  

bit8 receiver status 
Ox80000003 Receive Buffer Register Bits7-0, Receive data 
 
Signals in UART modules are defined in an architecture as follows: 
 
Port Signal Function 
clk_i Master clock input 
rst_i Master reset input 
ce_i UART chip select input 
read_i Read enable input 
write_i Write enable input 
addr_i Register address input 
data_i Data input from CPU 
data_o Data output to CPU 
rx_empty_o Receiver buffer empty 
rx_irq_o Receiver interrupt request 
tx_irq_o Transmitter interrupt request 
rxd_i Receiver data input 
txd_o Transmitter data output 
cts_i Clear-to-Send input 
rts_o Ready-to-Send output 
 
The UART is initialized to run at 115,200 baud.  Using a 50 MHz crystal for the 
master clock, the baud rate register is set to 431.  When I switched to a 16 MHz 
clock, the board seemed to work fine at 38,400 baud.  UART devices are very 
forgiving in clock variations.  The baud rate register is a read-write register, and 
baud rate can be dynamically changed by writing a new baud rate count into the baud 
rate register. 
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*************************************************** ******* 
-- *   UART Serial Interface     .  * 
-- *=============================================== =========* 
-- * Project:   FG in PROASIC       * 
-- * File:    uart.vhd        * 
-- * Author:   Chien-Chia Wu       * 
-- * 02/13/03 Chien-Chia Wu   Reference uart statem ents t * 
-- * 02/14/03 Chien-Chia Wu   (1)Copy from bpchip,    * 
-- *       (2)Modify to 32-bits  .     *  
-- *       (3)Swap the cts and rts .   * 
-- ************************************************ *********** 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_misc.all; 
use ieee.std_logic_unsigned.all; 
entity uart is 
 port( 
  -- input 
  clk_i:  in  std_logic; 
  rst_i:  in  std_logic; 
  ce_i:  in  std_logic; 
  read_i:  in  std_logic; 
  write_i: in  std_logic; 
  addr_i:  in  std_logic_vector(1 downto 0); 
  data_i:  in  std_logic_vector(31 downto 0); 
  -- output 
  data_o:  out  std_logic_vector(31 downto 0); 
  rx_empty_o: out  std_logic; 
  rx_irq_o:   out  std_logic; 
  tx_irq_o:   out  std_logic; 
  -- external interface 
  rxd_i:  in  std_logic; 
  txd_o:  out  std_logic; 
  cts_i:  in  std_logic; 
  rts_o:  out  std_logic 
 ); 
end uart; 
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Internal Signals 
 
Following are the internal signals in the UART module: 
 

baudrate_reg Baudrate register 
hw_xonoff_ff Hardware xon/xoff flag 
tx_shift_reg Transmitter shift register 
tx_shift_en Transmitter shift enable 
tx_en Transmitter enable 
tx_rq Transmitter request 
tx_counter Transmitter clock counter 
tx_bitcnt Transmitter bit counter 
rx_shift_reg Receiver shift register 
rx_buffer_reg Receiver buffer register 
rxb_full Receiver buffer full flag 
rx_full Receiver full flag 
rx_en Receiver enable 
rx_counter Receiver clock counter 
rx_bitcnt Receiver bit counter 
rxd_ff Receiver data flag  
rts_o  Ready to send output flag 
rx_empty_o  Receiver empty output flag 
 
Read UART Registers 
 
uart_register_file_read is an asynchronous process, by which the eP32 CPU can read 
the UART register at any time.  When read_i=1 and ce_i=1, the register selected by 
addr_1 puts its contents on the data_o bus for the CPU to read. 
 
When addr_i =0, data_o returns the baud rate count in the baud rate register.  When 
the master clock rate is 50 MHz and the baud rate is 115,200 baud, the baud rate count 
is 431. 
 
When addr_i=1, data_o returns transmitter status, where bit 8 shows Transmitter 
Ready state. 
 
When addr_i=2, data_o returns receiver status, where bit 8 shows Receiver Ready, 
and bit 0 shows flow control state. 
 
When addr_i=3, data_o returns the contents of the receiver buffer, where bits 0-7 
show the last character just received.
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begin 
 
 rts_o <= hw_xonoff_ff and (not(rx_full)); 
 rx_empty_o <= rx_full nor rxb_full; 
 
-- ************************************************ ********    
--   Uart Register Circuit for Read 
-- ************************************************ ********    
  uart_register_file_read: 
  process(read_i, ce_i, addr_i, baudrate_reg, tx_en , cts_i,  
  hw_xonoff_ff, rxb_full, rx_buffer_reg) 
 begin  
 if (read_i='1' and ce_i='1') then  
  case addr_i is 
  when "00"   => data_o <= baudrate_reg; 
  when "01"   => data_o <= -- read TX ready flag   
    "00000000" & "00000000" & "0000000" & 
    ((not tx_en)and(cts_i or(not hw_xonoff_ff))) 
    & "00000000";  
  when "10"   => data_o <= --only cleared by rxb re ad 
    "00000000" & "00000000" & 
    "0000000" & rxb_full &  
    "0000000" & hw_xonoff_ff; 
  when others => data_o <= -- read&clear rxb_full f lag 
    "00000000" & "00000000" & "00000000" & 
    rx_buffer_reg; 
  end case;      
 else 
  data_o <= (others=>'1');   
 end if; 
 end process uart_register_file_read;   
   
 -- *********************************************** ***********    
--   Uart Register File Process for Write 
-- ************************************************ **********    
  uart_register_file_write : process (rst_i, clk_i)  
 begin 
 if ( rst_i='1' ) then 
  baudrate_reg<="00000000000000000000000110101111";  
   -- 50 MHz, 115.2Kbps  
  tx_shift_reg <= (others=>'0'); 
  tx_rq <= '0';  
  hw_xonoff_ff <= '0';   
 elsif (clk_i'event and clk_i='1') then 
  if (tx_en='0') then 
  if (write_i='1' and ce_i='1') then 
   case addr_i is  
   when "00"=>baudrate_reg<=data_i; 
   when "01"=> 
    tx_shift_reg<="11"&data_i(7 downto 0)&'0';  
    tx_rq<='1';  
   when "10"=>hw_xonoff_ff<=data_i(0);--flow Contro l 
   when others => null; 
   end case; 
  end if;  



 80

Write UART Registers 
 
uart_register_file write is a synchronous process, which writes new data into the 
UART registers. 
 
When the eP32 is in the reset state, rst_i=1 also causes the UART to be reset.  In the 
reset state, the UART initializes the baud rate register to 0x1AF (decimal 431), and 
sets the baud rate to 115,200 baud when the master clock is 50 MHz.  In the 
meantime, flags tx_shift_reg, tx_rq, and hw_xonoff_ff are all cleared to 0. 
 
Once the eP32 is in its running state, the UART responds to write commands from the 
CPU on the rising edge of clock clk_i when write_i=1 and ce_i=1. 
 
When tx_en=0, the UART is not actively transmitting a character.   
 
Writing with addr_i=0, new data is written into the baud rate register and the new 
baud rate will take effect immediately.  One should be careful in changing the baud 
rate, because the external device connecting to the UART port should be set up so it 
responds to the new baud rate correctly. 
 
Writing with addr_i=1, new data is written into the transmitter shift register, 
tx_shift_reg.  The lower 8 bits of data is a character to be transmitted.  Transmit 
request, tx_rq, is also set to start transmitting this character. 
 
Writing with addr_i=2, the flow control bit can be changed by bit 0 of the written 
data. 
 
When tx_en is not zero, the UART is transmitting a character.  
 
If tx_shift_en=1, the rising edge of clk_i causes the character in the transmitter shift 
register, tx_shift_reg, to be shifted right by 1 bit.  The lowest bit is shifted out to 
txd_o. 
 
Transmit Process 
 
The transmitter in the UART is running in a synchronous process, uart_tx_core.   
 
On booting up, rst_i is set, and all registers in the UART transmitter are cleared to 
zero.  Only txd_o is pulled up, raising the UART output line TX to high, which is the 
rest state of the UART output. 
 
When transmit request, tx_rq, is set, a character is in tx_shift_reg, ready to be 
transmitted.  tx_counter is initialized by copying the baud rate count from 
baudrate_reg, and the transmit bit counter, tx_bitcnt, is initialized to 11 for 1 start bit, 
8 data bits and 2 stop bits.  tx_en is now set to start the transmitting procedure. 
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  else 
   tx_rq <= '0'; 
   if (tx_shift_en='1') then 
    tx_shift_reg<='1'&tx_shift_reg(10 downto 1); 
   end if;   
  end if; 
 end if;  
 end process uart_register_file_write; 
 
-- ************************************************ **********    
--   Uart TX Core Process 
-- ************************************************ **********    
  uart_tx_core : process ( rst_i, clk_i)  
 begin 
 if (rst_i='1') then 
  tx_counter <= (others=>'0'); 
  tx_bitcnt <= (others=>'0'); 
  txd_o <= '1'; 
  tx_en <= '0'; 
  tx_shift_en <= '0'; 
  tx_irq_o <= '0'; 
 elsif ( clk_i'event and clk_i='1' ) then 
  tx_shift_en <='0'; 
  tx_irq_o <= '0'; 
  if (tx_en='0') and (tx_rq='1') and 
   (cts_i='1' or hw_xonoff_ff='0') then 
   tx_counter <= baudrate_reg; 
   tx_bitcnt <= "1011"; 
   tx_en <= '1'; 
  elsif (tx_en='1') then   
  if (tx_counter/="00000000000000000000000000000000 ") 
   then tx_counter <= tx_counter-1; 
  elsif (tx_bitcnt/="0000") then 
   tx_bitcnt <= tx_bitcnt-1; 
   txd_o <= tx_shift_reg(0); 
   tx_shift_en <= '1'; 
   tx_counter <= baudrate_reg; 
  else 
   txd_o <= '1';  -- mark-high=stop-bit 
   tx_irq_o  <= '1'; -- transmitter empty 
   tx_en<='0';  -- closed 
  end if;   
  end if; 
 end if;   
 end process uart_tx_core; 
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As tx_en is set, every rising edge causes tx_counter to be decremented.  When 
tx_counter is 0, one bit in tx_shift_reg is shifted out to txd_o, by setting tx_shift_en, 
which causes the uart_register_file_write process to do the shifting.  In the meantime, 
tx_bitcnt is decremented and tx_counter is re-initialized to baudrate_reg.  This 
sequence is repeated 11 times to shift out all data bits in tx_shift_reg. 
 
After all 11 bits in tx_shift_reg are shifted out, tx_en is cleared to stop the 
transmitting procedure.  An interrupt request is activated by setting tx_irq_o.  txd_o 
is again set to put the UART to its rest state. 
 
Receive Process 
 
The receiver in the UART is running in a synchronous process, uart_rx_core.   
 
On booting up, rst_i is set, and all registers in the UART receiver are cleared to zero.   
 
When the receiver receives a complete character, rx_full=1.  On the rising edge of 
the master clock, the character received in rx_shift_reg is copied to rx_buffer_register, 
which can be sent to the eP32 when eP32 reads rx_buffer_register at location 
0x80000003. 
 
rxb_full flag is set only when rx_shift_reg is copied into rx_buffer_reg.  It otherwise 
is always cleared to 0. 
 
On the rising edge of every clock, the receiver input line, rxd_i, is always sampled 
and its state is stored into rx_ff.  rxd_i is normally high when the UART is resting.  
When rxd_i is lowered to 0, rx_ff is cleared and it indicates that a start bit is detected 
and a character is coming.  Activities in the next page of VHDL code cause this 
character to be received. 
 
When the receiver is resting, rx_en=0.  When a start bit is detected and rx_ff is 
cleared, the receiver is initialized to prepare receiving a new character.  rx_counter is 
first initialized to half of the baud rate count in baudrate_reg, so that the receiver line, 
rxd_i, will be sampled in the middle of every bit received.  rx_en is set, and rx_bitcnt 
is initialized to 9, for 1 start bit and 8 data bits.   
 
When rx_en is set, every rising edge of the master clock decrements rx_counter until 
it is zero.   
 
When rx_counter=0, rxd_ff is shifted into rx_shift_reg, rx_bitcnt is decremented, and 
rx_counter is reinitialized to the baud rate count in baudrate_reg. 
 
When rx_bitcnt is decremented to zero, a complete character is received in 
rx_shift_reg.  rx_full is set so that the character in rx_shift_reg will be copied into 
rx_buffer_reg, and be made available to the eP32.  rx_irq_o is set to request an 
interrupt, and rx_en is cleared to receive the next character. 
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 -- *********************************************** ***********    
--   Uart RX Core Process 
-- ************************************************ **********    
  uart_rx_core : process ( rst_i, clk_i)  
 begin 
 if (rst_i='1') then 
  rx_full <= '0'; 
  rxb_full <= '0'; 
  rx_irq_o <= '0'; 
  rx_buffer_reg <= (others=>'0'); 
  rx_counter <= (others=>'0'); 
  rx_bitcnt <= (others=>'0'); 
  rx_en <= '0'; 
  rx_shift_reg <= (others=>'0'); 
  rxd_ff <= '0'; 
 elsif ( clk_i'event and clk_i='1' ) then 
  rx_irq_o <= '0';  
  rxd_ff <= rxd_i; 
  if (rx_full='1') then 
  if (rxb_full='0') or 
   (read_i='1' and ce_i='1' and addr_i="11") then 
   rx_buffer_reg <= rx_shift_reg; 
   rxb_full <= '1'; 
   rx_full <= '0'; 
  end if; 
  else 
  if (read_i='1' and ce_i='1' and addr_i="11") then  
   rxb_full <= '0'; 
  end if; 
  if (rx_en='0') and (rxd_ff='0') then 
   rx_counter <= '0' & baudrate_reg(31 downto 1); 
   rx_bitcnt <= "1001"; 
   rx_en <= '1'; 
  elsif (rx_en='1') then 
   if(rx_counter/="00000000000000000000000000000000 ") 
    then   -- bit-T-counting 
    rx_counter <= rx_counter-1; 
   elsif (rx_bitcnt/="0000") then 
    -- last bit has been received 
    rx_bitcnt <= rx_bitcnt-1; 
    rx_shift_reg<=rxd_ff&rx_shift_reg(7 downto 1); 
    rx_counter <= baudrate_reg; 
    else   
     rx_irq_o <= '1';--flag for generate pulse 
     rx_full <= '1'; 
     rx_en <= '0'; 
    end if;   
   end if; 
  end if;   
 end if;   
 end process uart_rx_core; 
end behavioral; 
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 5.5 GPIO Module 
 
The VHDL code of the GPIO module is in the gpio.vhd file. 
 
A general purpose parallel I/O port is most useful in real-time applications to interface 
to a wide range of external devices.  In the eP32 system, such a GPIO port is 
included.  It is designed as a 16-bit bidirectional parallel port, but the user can 
configure it to suit any purpose.  It is declared an entity in the gpio.vhd file. 
 
Port signals of the GPIO module are defined in the GPIO entity as follows: 
 
Port Signal Function 
clr Master reset 
clk Master clock 
write Write enable 
read Read enable 
ce GPIO chip select 
addr Register address 
data_in Data input from CPU 
gpio_in GPIO input  
mem_conf_o Bit0 memory select: 0-ROM; 1-RAM  

Bit1 CPU reset 
data_out Data output to CPU 
gpio_out Data output to GPIO output 
gpio_dir Direction select of GPIO  
 
Registers in the GPIO module, their address and functions are as follows: 
 
Address Register Function 
0xE0000000 gpio_out When written, send data to gpio port 
0xE0000001 gpio_dir_reg Select port pin direction: 0-input; 1-output 
0xE0000002 gpio_in Read gpio port 
 
As GPIO is a module in the eP32 system, it is not connected directly to I/O pins on 
the eP32 system package.  Therefore, gpio_in, gpio_out and gpio_dir signals are all 
brought out as ports in the GPIO module.  These signals are used in the ep32_chip 
top level module to drive I/O pins. 
 
In the eP32, a GPIO port is a 32-bit device.  However, we only brought out 16 lines 
to pins on the LatticeXP2-5E-TN144C chip to drive 8 LEDs and to monitor 8 
pushbutton switches. 
 
Reading GPIO registers is an asynchronous process as shown in the 
gpio_register_file_read process.  Bits in the gpio_dir register define pins as input or 
output.  A bit set in gpio_dir makes the corresponding pin an output pin.  A bit 
cleared in gpio_dir makes the corresponding pin an input pin.  Reading the gpio_in 
register obtains the status of the input pins.  Writing the gpio_out register sends data 
to the output pins. 
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- ************************************************* ********** 
-- *  General Purpose Input Output Module    * 
-- *=============================================== ==========* 
-- * Project:   FG in PROASIC       * 
-- * File:    gpio.vhd        * 
-- * Author:   Chien-Chia Wu       * 
-- * 03/02/03 Chien-Chia Wu   Created.      *  
-- ************************************************ *********** 
library ieee; 
use ieee.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_misc.all; 
use IEEE.std_logic_unsigned.all; 
 
entity gpio is 
  port( 
 -- input port 
 clr:   in  std_logic; 
 clk:   in  std_logic; 
 write:   in  std_logic; 
 read:   in  std_logic; 
 ce:   in  std_logic; 
 addr:   in  std_logic_vector(1 downto 0); 
 data_in:  in  std_logic_vector(31 downto 0); 
 gpio_in:  in  std_logic_vector(15 downto 0);  
 -- output port 
 data_out:  out  std_logic_vector(31 downto 0); 
 gpio_out:  out  std_logic_vector(15 downto 0); 
 gpio_dir:  out  std_logic_vector(15 downto 0) 
  ); 
end gpio; 
 

architecture behavioral of gpio is 
 signal gpio_reg: std_logic_vector(15 downto 0); 
 signal gpio_dir_reg:std_logic_vector(15 downto 0);  
begin 
 gpio_out <= gpio_reg; 
 gpio_dir <= gpio_dir_reg; 
  
-- ************************************************ **********  
--  GPIO Register Circuit for Read 
-- ************************************************ **********  
 gpio_register_file_read: 
 process(read, ce, addr, gpio_reg, gpio_dir_reg,gpi o_in)   
 begin 
  if (read='1' and ce='1') then  
  case addr is 
   when "00"  => 
    data_out<="00000000"&"00000000"& gpio_reg; 
   when "01" => 
    data_out<="00000000"&"00000000"& gpio_dir_reg; 
   when others => 
    data_out<="00000000"&"00000000"& gpio_in; 
  end case; 
  else 
   data_out <= (others=>'1');   
  end if; 
 end process gpio_register_file_read;   
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-- ************************************************ **********  
--  GPIO Register Circuit for Write  
-- ************************************************ **********  
 gpio_register_file_write: 
 process(clr, clk) 
 begin 
 if (clr='1') then 
  gpio_reg <= (others=>'0'); 
  gpio_dir_reg <= (others=>'0'); 
 elsif ( clk'event and clk='1') then 
  if (write='1' and ce='1') then  
   case addr is 
   when "01" => gpio_dir_reg <= data_in(15 downto 0 ); 
   when others => gpio_reg <= data_in(15 downto 0);  
   end case; 
  end if;   
 end if;   
 end process gpio_register_file_write; 
end behavioral;   
 
 

 
Writing the GPIO registers is done using a synchronous process, 
gpio_register_file_write. 
 
On reset, rst_i=1, and all GPIO registers are cleared to zero. 
 
When running, on the rising edge of clk_i, if ce_i= and write=1, data from the CPU 
on the data_i bus are written into the register selected by addr_i. Writing to the 
gpio_reg register send data to output pins.  Writing to the gpio_dir register defines 
the input and output pins. 
 
5.6  Remarks 
 
Here I had just shown you the design of a complete 32-bit microprocessor in VHDL.  
What I want to convey is the idea that CPU is not difficult.  It can be very simple.  
It was made very complicated because CPU designers did not fully understand the 
fundamental components necessary for a CPU to function, and thus made designs 
unnecessarily complicated. 
 
I cannot overemphasis the fact that the eP32 CPU executes all instructions in a single 
clock cycle.  All prior CPU designs required many clock cycles to execute an 
instruction.  Designers tried very hard to cover up this deficiency with pipelining and 
other techniques, and made the CPU even more complicated. 
 
This design of eP32 microprocessor is only a starting point for you to design and 
build your own microprocessor.  You should consider extending this design in the 
following directions: 
 
For immediate applications, you should consider adding new I/O modules to handle 
specific tasks in your applications.  I gave you a GPIO and a UART as examples.  
You can incorporate existing I/O modules into your design.  If you understand your 
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tasks, it is probably easier to design your own I/O modules than pulling ‘library 
modules’off the shelf. 
 
For long term development, you should consider adding new instructions to the CPU 
core.  I am sure you feel constrained by the very small instruction set I put into the 
eP32 CPU.  There are spaces for 37 more instructions in the current eP32 
architecture.  If you are ambitious, why not encode instructions in bytes?  Then, 
you can have 256 instructions.  Now, you are at a point to implement a Java Virtual 
Machine with byte codes. 
 
The possibility is only limited by your imagination. 
 
How about software?  If one changed hardware design, who's going to provide 
software to make use of improvments? 
 
As President Obama said: “Yes, we can!” 
 
Read the next chapter.
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Chapter 6. Metacompilation of the eP32 
 
 
In 1990, I hosted monthly meetings of the Forth Interest Group.  The morning 
sessions were generally for FORML, Forth Modification Laboratory, where we 
discussed how to enhance the FORTH of the time.  We were brain-storming what 
FORTH would be like in the next century.  Two different directions were debated.  
Tom Zimmer and Andrew McKewan wanted a FORTH for Windows, and developed 
Win32Forth to take advantage of the popular Windows platform.  It became a huge 
and complicated system.  Bill Muench and I wanted a simple FORTH portable to all 
new and exciting microprocessors coming in the future.  We developed eForth and it 
was implemented on 30 some different microprocessors and microcontrollers by 
many volunteers. 
 
In the meantime, I also worked with Chuck Moore on his next FORTH chip, the 
MuP21.  It was targeted to a 1.2 micron CMOS process available from Orbit 
Semiconductor on shared 5 inch wafers.  Dies were 2.4x2.4 mm, and it forced Chuck 
to strip bare his CPU.  He reduced instructions to 25, and fit a 20-bit microprocessor 
on this small die, with an NTSC video coprocessor and a DRAM memory coprocessor.  
It was a marvelous design, but we ran out of money before it was perfected. 
 
I compared the designs of eForth and the MuP21, and found great similarity, in spite 
of the completely different origins of these two designs.  eForth is a software design 
and the MuP21 is a hardware design.  However, they both were based on primitive 
instruction sets with about 30 instructions.  Many instructions were identical in these 
two instruction sets.  Those instructions which were different, were different because 
of hardware constraints.  I was able to implement eForth on the MuP21, and it was a 
very pleasant system, a real FORTH language on a real FORTH CPU. 
 
After the MuP21, Chuck and I went our separate ways.  He founded iTV and 
Intellesys, and built multiprocessor chips based on the MuP21 core design.  I 
discovered FPGAs, and developed scalable P-series microprocessors based on the 
same core, implementing 16-, 24- and 32-bit versions of the P-microprocessors. 
 
A young fellow in Taiwan, Mr. Cheah-shen Yap, ported eForth to Windows to become 
the weForth system.  He further enhanced it and released it as the F# system.  These 
are the simplest FORTH implementations for Windows, but they can call all Windows 
APIs to build applications running on a PC.  I used both to write metacompilers for 
embedded systems.  However, for the eP32, I preferred weForth, because it has a 
simpler user interface to load applications.  When weForth.exe is executed on 
Windows, it loads a start.f file, which loads in Windows utilities and application files.  
F# has a more sophisticated graphical user interface, and gives the user better ways to 
organize software projects.  For an eP32 metacompiler, however, weForth is more 
than enough, and it is easier to document and to explain. 
 
The complete command set of weForth is shown in Appendix B for your reference. 
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My goal is to build a FORTH microprocessor based on the eP32 CPU on an FPGA 
chip, the LatticeXP2-5E, hosted on a LatticeXP2 Brevia Development Kit.  FPGA 
synthesis and programming tools are provided in the ispLEVER Development system 
supplied by Lattice.  The FORTH system on the eP32 is an eForth system, and I 
build this eForth target system in weForth, an eForth system running on a Windows 
PC. 
 
In FORTH terminology, a metacompiler is a FORTH program which produces an 
image of program memory, which is copied into the memory of a target 
microprocessor.  When the target microprocessor powers up, a FORTH system is 
booted up to interact with its user. 
 
I believe the best way to explain this eForth system is through the source code of the 
eForth metacompiler in weForth that produces this system.  I like to take the same 
approach in presenting the eP32 hardware by commenting on its VHDL source files.  
I will put eForth source code on left pages, and commentary on opposing right pages.  
Going through source code almost line by line, I hope that I can make clear the 
process of producing a target system on the eP32, as well as make clear the code and 
other relevant information that go into program memory in the eP32.  
 
Before going through source code files in the eForth metacompiler, I will first show 
you the metacompiling process in weForth, and how an eP32 target image is 
generated.  In addition, I will show you a simulator in weForth, which simulates the 
eP32 eForth as an eP32 running on a Brevia Development Kit.  This way you can try 
running an interactive FORTH system on a simulated eP32 without the Brevia Kit.  
It is a good way to learn how FORTH works.  You have two FORTH systems to 
experiment with: weForth as a Windows application, and eP32 eForth as an embedded 
application on the Brevia Kit. 
 
6.1 Metacompiling the eP32 
 
All source code of the eP32 eForth system is contained in the ep321_xp2.zip file.  
weForth and its Windows utilities are also included here. 
 
Unzip file ep32q_xp2.zip and put all the files into a folder named “ep32q_xp2”.  
Start weForth by double clicking weforth2.exe in the ep32q_xp2 folder, as shown in 
Figure 29. 
 
weForth opens a console window, loads the eForth metacompiler and generates a new 
eP32 target system. 
 
A memory image of the eP32 eForth target system is stored in file mem.mif.  While 
building this system, weForth prints out large amount of messages on its console 
window.The console window at the end of the metacompilation process is shown in 
Figure 30.: 
 
Scroll the console window back to its beginning, and you can see that weForth loads 
several system files, win32.f, api.f, and ui.f, to bring in the necessary Windows APIs, 
as shown in Figure 31. 
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Figure 29.  ep32 Project Folder 
 

 
 

Figure 30.  Bootup ep32 Metacompiler 
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Figure 31.  Beginning of Metacompilation 
 
The next file loaded is meta32q.f, which is the eP32 metacompiler.  It first loads 
asm32q.f to bring in the eP32 assembler.  It prints out a list of command names 
followed by a “reDef” message.  These commands are defined in the eP32 assembler, 
preparing to assemble commands in the eP32 kernel. 
 
The next file loaded is kern32q.f, which first defines many macro commands.  Then 
it starts building the eP32 kernel at target memory location $100.  There you can see 
names of target commands followed by their code field addresses.  They form a 
symbol table, which you can use to look up names and addresses of target commands. 
 
After the kernel is built, the metacompiler loads in ef32q.f, which compiles the 
complete eForth target system, and writes its FORTH dictionary out into a file 
mem.mif.  This file is used to initialize the RAM_DQ memory array in the 
ram_memory.vhd file, and to synthesize the eP16 microcontroller in the FPGA chip 
on the Brevia2 Kit as mentioned in the last section. 
 
After the eP32 target system is built, the metacompiler loads sim32q.f, which is an 
eP32 simulator.  This simulator executes eP32 instructions compiled by the 
metacompiler, and can faithfully simulate the eP32, instruction by instruction. 
 
Simulating the eP32  
 
Once the sim32q.f simulator is loaded, type the command: 
 HELP 
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and a list of simulator commands appear, as shown in Figure 32. 
 

 
 
Figure 32.  HELP Directions of eP16 Simulator 
 
Type this command: 
 -1 G 
and the simulator boots up the eP32 eForth system and prints out its sign-on message: 
 eP32q v2.05 
 
This is what you see next in Figure 33. 
 
Now you can exercise eP32 eForth by typing in FORTH commands. 
The following screen shot shows results when you type command: 
 WORDS 
If you care to count them, there are 167 commands.  These commands are 
documented in Appendix B. 
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Figure 33.  eP16 in Simulation 
 

 
 
Figure 34.  WORDS in eP32 
 
Here are more eForth commands you can type into the weForth console to test the 
eForth system: 
 
HEX 0 80 DUMP 
SEE WORDS 



 94

HERE . 
1 2 + . 
: TEST1 1 2 3 4 5 ; 
TEST1 
.S 
: TEST2 10 FOR R@ . NEXT ; 
TEST2 
: TEST3 IF 1 ELSE 2 THEN . ; 
0 TEST3 
1 TEST3 
: TEST4 CR .” HELLO, WORLD!” ; 
TEST4 
 
After these tests, the weForth console looks as follows. 
 

 
 
Figure 35.  Tests of eP32 Simulator 
 
6.2 The eP32 Metacompiler 
 
The eP32 metacompiler is contained in file meta32q.f. 
 
“Metacompiler” is a term used by a FORTH programmer to describe the process of 
building a new FORTH system on an existing FORTH system.  The new FORTH 
system may run on the same platform as the old FORTH system.  It may be targeted 
to a new platform, or to a new CPU.  The new FORTH system may share a large 
portion of FORTH code with the old system, hence the term “metacompilation”.  In 
a sense, the metacompiler is very similar to a conventional cross assembler/compiler. 
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start.f is similar to a MAKE file in UNIX.  FORTH commands in this file are 
executed by the weForth system upon startup.  It loads in a metacompiler in 
meta32q.f, which compiles a target eForth system for the eP32.  It produces a 
memory image file, which will be used to initialize memory blocks by IPexpress in 
the Lattice ispLEVER system to program the LatticeXP2-5E FPGA chip.  meta32q.f 
contains the following commands to load source code from many other files: 
 
asm32q.F eP32 assembler 
kern32q.F Primitive commands in eP32 eForth 
ef32q.F Compound commands in eP32 eForth 
sim32q.F eP32 simulator 
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( meta32.f for weforth ) 
 
HEX 
VARIABLE debugging? 
 
: .head ( addr -- addr ) 
   >IN @ 20 WORD COUNT TYPE SPACE >IN ! 
   DUP . 
   ; 
: cr CR 
   debugging? @ 
   IF .S KEY 0D = ABORT" DONE" 
   THEN 
   ; 
 
: forth_' ' ; 
: forth_dup DUP ; 
: forth_drop DROP ; 
: forth_over OVER ; 
: forth_swap SWAP ; 
: forth_@ @ ; 
: forth_! ! ; 
: forth_and AND ; 
: forth_+ + ; 
: forth_- - ; 
: forth_word WORD ; 
: forth_words WORDS ; 
: forth_.s .S ; 
: CRR cr ; 
: forth_.( [COMPILE] .( ; 
: forth_count COUNT ; 
: forth_r> R> ; 
: -or   XOR ; 
: >body 5 + ; 
: forth_forget FORGET ; 
 
CREATE ram  8000 ALLOT 
: reset   ram 8000 0 FILL ;  
: ram@   4 * ram +  @ ; 
: ram!   4 * ram +  ! ; 
: binary 2 BASE ! ; 
: four   3 FOR DUP ram@ 9 U.R  1+ NEXT ; 
: show ( a)   0F FOR CR  DUP 9 .R SPACE 
      four 2 SPACES four NEXT ; 
: showram 0 0B FOR show NEXT DROP ; 
 
: dump-ram 
   BASE @ binary 0 
   1000 FOR AFT 
      CR DUP ram@ <# 1F FOR # NEXT #> TYPE 
      1+ 
   THEN NEXT 
   DROP BASE ! CR 
   ; 
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We start here to discuss metacompiler commands in the meta32q.f file.  All other 
files referred to in this file will be discussed in their separate sections. 
 
debugging? A variable containing a switch to turn break points on and off.  When 

debugging? is set to -1, compilation will stop and the data stack is 
dumped when a “cr” command is executed.  Sprinkling “cr” 
commands in the source code file allows you to watch the progress of 
metacompilation and even stops it when necessary. 

.head Display name of a command that is about to be compiled.  It is used 
to display a symbol table.  You can look up the code field address of 
any command in this table. 

cr Stop metacompilation if debugging? is -1, and dump data stack.  If 
you press control-A, metacompilation is aborted.  Otherwise, 
metacompilation continues.  It is a NOP if debugging? is 0. 

 
During metacompilation, FORTH commands will be redefined so that they compile 
subroutine call instructions or assemble other machine instructions into the target 
memory image.  There are numerous occasions where the original behavior of a 
FORTH command must be exercised.  To preserve the original behavior of a FORTH 
command, it is assigned a different name.  Thereby after a command is redefined, we 
can still exercise its original behavior by invoking the alternate name. 
 
For example, “+” is a FORTH command that adds the top two numbers on the data 
stack in the weForth system.  Then in the kern32q.f file, a new “+” command is 
defined to assemble an ADD instruction in the target eP32 system.  If you still need 
to add two numbers, you must use the alternate command “forth_+” as shown below. 
All the weForth commands you need to use later must be redefined as “forth_xxx” 
commands.  If you neglect to redefine them, you will find that the system behaves 
very strangely. 
 
The eP32 executes program words and accesses data in the memory range 0-1FFF.  
In weForth we allocate a 32k byte memory array, “ram”, to hold the eP32 target image.  
This array contains code and data to be copied into eP32 internal memory at 0, to be 
executed on the eP32 chip. 
 

ram Memory array in weForth for the eP32 target image. It has a logical 
base address of 0 for the eP32.  Code and data words in the target are 
stored in this array. 

ram@ Replace a logical address on stack with data stored in “ram” image 
array. 

ram! Store second integer on stack into logical address of “ram” image 
array. 

reset Clear “ram” image array, preparing it to receive code and data for the 
eP32. 

four Display four consecutive words in target. 
show Display 128 words in target from address “a”.  It also returns a+128 

to “show” the next block of 128 words. 
showram Display the entire eP32 image of 2k words. 
dump-ram Display 4k words of data in binary. 
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VARIABLE hFile 
CREATE CRLF-ARRAY 0D C, 0A C, 
 
: CRLF    
      hFile @  
      CRLF-ARRAY 2 
      PAD ( lpWrittenBytes ) 
      0 ( lpOverlapped ) 
      WriteFile 
      IF ELSE ." write error"  
      QUIT THEN 
   ; 
 
: open-mif-file 
   Z" mem.mif"  
   $40000000 ( GENERIC_WRITE ) 
   0 ( share mode ) 
   0 ( security attribute ) 
   2 ( CREATE_ALWAYS ) 
   $80 ( FILE_ATTRIBUTE_NORMAL ) 
   0 ( hTemplateFile ) 
   CreateFileA hFile ! 
   ; 
 
: write-mif-line 
      PAD ( lpWrittenBytes ) 
      0 ( lpOverlapped ) 
      WriteFile 
      IF ELSE ." write error" QUIT THEN 
   CRLF 
   ; 
 
: write-mif-header 
      hFile @  
      $" #Format=AddrHex "  
      write-mif-line 
      hFile @  
      $" #Depth=4096 "  
      write-mif-line 
      hFile @  
      $" #Width=32 "  
      write-mif-line 
      hFile @  
      $" #AddrRadix=3 "  
      write-mif-line 
      hFile @  
      $" #DataRadix=3 "  
      write-mif-line 
   ; 
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The eP32 metacompiler builds a target image for the eP32 chip in “ram”, a memory 
array in weForth.  This image eventually will be imported to the ispLEVER system 
so that this target image will be incorporated in the RAM_Q module, which will be 
synthesized with the eP32 core logic to be implemented in the LatticeXP2-5E FPGA 
chip.  IspLEVER requires that the target image be written in a file conforming to its 
Addressed-Hex format, which consists of a header with a few lines of system 
information in ASCII text, and then a body containing memory information in 
hexadecimal numbers.  The header and first few lines of the body are as follows: 
 
#Format=AddrHex  
#Depth=4096  
#Width=32  
#AddrRadix=3  
#DataRadix=3  
#Data  
0:68D 
24:80 
25:A 
26:7C6 
27:7C8 
28:7C6 
29:4A0 
2A:4D2 
2D:7C6 
101:564F4405 
102:5241 
103:1805E79E 
104:101 
105:3C3002 
106:1179E79E 
107:3000109 
108:1A69405E 
109:A05E79E 
 
In the body of mem.mif, each line of data consists of an address and its contents as 
hexadecimal numbers separated by a colon character. 
 
hFile A variable holding a file handle. 
CRLF Insert a carriage return and a line feed into the currently 

opened file. 
open-mif-file Open a file named mem.mif for writing. 
write-mif-line Write one line of text into current file. 
write-mif-header Write a header required by ispLEVER into current file. 
 
“mif” is a leftover term used when I was implementing the eP32 for the Xilinx FPGA, 
and its development system expected a memory file to be in its mif format.  Now, 
ispLEVER from Lattice wants a mem file.  So be it.  FPGA development systems 
from Actel and Altera also require different memory file formats.  It is easy to 
conform to their requirements by changing these xxx-mif-yyy commands here. 
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: write-mif-data 
   0 ( initial ram location ) 
   $1000 FOR AFT 
    DUP ram@ IF 
      hFile @  
      OVER 
      <# 3A HOLD #S #> 
      PAD ( lpWrittenBytes ) 
      0 ( lpOverlapped ) 
      WriteFile 
      IF ELSE ." write error" QUIT THEN 
      hFile @  
      OVER ram@  
      <# #S #> 
      PAD ( lpWrittenBytes ) 
      0 ( lpOverlapped ) 
      WriteFile 
      IF ELSE ." write error" QUIT THEN 
      CRLF 
    THEN 
      1+ 
   THEN NEXT 
   DROP ( discard ram location ) 
   ; 
 
: close-mif-file 
   hFile @ CloseHandle DROP 
   ; 
 
: write-mif-file 
   open-mif-file 
   write-mif-header 
   write-mif-data 
   close-mif-file 
   ; 
    
FLOAD asm32q.f 
FLOAD kern32q.f 
FLOAD ef32q.f 
write-mif-file 
FLOAD sim32q.f 
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write-mif-data Write a 4k word image of the eForth System from memory array 

“ram” to the mem.mif file.   
close-mif-file Close the mem.mif file. 
write-mif-file Write a file mem.mif containing 2k words of the eForth System 

according to the Address-Hex format required by IPexpress.   
 
IPexpress in the ispLEVER FPGA development system expects an eP32 target image 
in Hex-Address format.  A mem file has a header containing system information, and 
a body that contains memory data in hexadecimal ASCII characters.   
 
Write-mif-file opens an mem.mif file, writes a header, writes data, and then closes the 
file.  The mem.mif file must be copied into the eP32 project in the ispLEVER 
system to be synthesized with the eP32 VHDL files, in order to build the eP32 system 
for the LatticeXP2-5E FPGA chip. 
 
The eP32 metacompiler continues to load the eP32 assembler in asm32q.f, the eP32 
kernel in kern32q.f, and the eForth system in ef32q.f with the following commands: 
 FLOAD asm32q.f 
 FLOAD kern32q.f 
 FLOAD ef32q.f 
 
The target image is complete, and can be now written out into mem.mif by the 
write-mif-file command. 
 
The metacompiler now loads in the simulator in sim32q.f with: 
 FLOAD sim32q.f 
 
The eP32 eForth system can now be simulated in weForth.  It is most satisfying to 
see that the output of this simulator matches exactly what is produced by the eP32 
eForth system in the XP2 FPGA chip.  This simulator is a simulator, working at 
machine instruction level.  It is much more convenient to run than the Active-HDL 
simulator which works at clock cycle level.  Once a development cycle is closed in 
this fashion, we have very high confidence that any software change in source code of 
the eForth system will work in the FPGA, if it first passed this high-level simulator. 
 
6.3 The eP32 Optimizing Assembler 
 
The ASM32q.f file contains a structured, optimizing assembler for the eP32.  It 
packs up to 5 machine instructions into one 32-bit program word.  The strategy of 
this eP32 assembler is to clear a program location pointed to by a variable “hw”, 
preparing it to receive up to 5 machine instructions.  Assembly commands are 
executed to insert machine instructions into consecutive slots.  Assembly commands 
make necessary decisions as to whether to add more instructions to the current 
program word, or start a new program word. 
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The eP32 has two types of instructions, 32-bit long instructions and 6-bit short 
instructions.  The long instruction format is: 
 

31-30 29---24 23---18 17---12 11----6 5-----0 
00 cccccc aaaaaa aaaaaa aaaaaa aaaaaa 

 
and the short instruction format is: 
 

31-30 29---24 23---18 17---12 11----6 5-----0 
00 cccccc cccccc cccccc cccccc cccccc 

 
cccccc is a 6-bit machine instruction, and aaaaaa-aaaaaa-aaaaaa-aaaaaa is a 24-bit 
address.  Each 32-bit program word can contain a long instruction, or 5 short 
instructions.     
 
Assembly commands for long instructions are defined by the word JUMP, and 
assembly commands for short instructions are defined by the word INST.  Defining 
words in FORTH makes this optimizing assembler very simple and very efficient. 
 
However, this assembler does not use long instructions directly to redirect program 
flow.  Instead, it uses standard FORTH control structure commands to build control 
structures in assembly programs.  It thus avoids complications in labels and forward 
referencing.  It significantly simplifies this optimizing assembler. 
 
The eP32 eForth system is based on the Subroutine Threading Model, in which a 
compound command consists of a list of subroutine call instructions.  As call and 
return instructions execute in a single cycle, the eP32 is very efficient in executing 
FORTH compound commands as a list of subroutine call instructions.  Compound 
commands in the form of lists of subroutine call instructions can be freely intermixed 
with other machine instructions.  Thus this optimizing assembler becomes an 
optimizing compiler as well. 
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HEX 
 
VARIABLE h 
VARIABLE lasth 0 lasth !           \ init linkfield  address lfa 
 
: namer! ( d -- ) 
   h @ ram!                           \ store doubl e to code buffer 
   1 h +!                             \ bump nameh 
   ; 
 
: COMPILE-ONLY 40 lasth @ ram@ XOR lasth @ ram! ; 
: IMMEDIATE    80 lasth @ ram@ XOR lasth @ ram! ; 
 
VARIABLE hi    
VARIABLE hw  
VARIABLE bi ( for byte packing) 
: align   14 hi ! ; 
: org   DUP . CR h !  align ; 
: allot ( n -- ) h +! ; 
 
CREATE mask  3F000000 , FC0000 ,  3F000 ,  FC0 ,  3 F , 
: #,   ( d ) h @ ram!  1 h +! ; 
: ,w   ( d ) hw @ ram@  OR  hw @ ram! ; 
: ,i   ( d ) hi @ 14 =  IF  0 hi !  h @ hw !  0 #,  THEN 
             hi @ mask + @ AND  ,w  4 hi +! ; 
: spread ( n - d ) DUP 40 * DUP 40 * DUP 40 * DUP 4 0 * + + + + ; 
: ,l   ( n ) spread ,i ; 
: ,b   ( c ) bi @ 0 = IF 1 bi ! h @ hw ! 0 #, ,w EX IT THEN 
             bi @ 1 = IF 2 bi ! 100 * ,w EXIT THEN 
             bi @ 2 = IF 3 bi ! 10000 * ,w EXIT THE N 
             0 bi ! 1000000 * ,w ; 
 
: inst CONSTANT DOES> R> @ ,i ; 
1E spread inst nop 
 
: anew BEGIN hi @ 14 < WHILE nop REPEAT 0 bi ! ; 
: # ( d )  0A spread ,i  #, ; 
: ldi # ; 
: LIT ( d -- ) # ; 
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COMPILE-ONLY  Patch Bit 6 in first word of name field in current target 

command. Text interpreter checks it to avoid executing 
compiler commands. 

IMMEDIATE Patch Bit 7 in first word of name field in current target 
command. Compiler checks it to execute commands while 
compiling. 

 
h A variable pointing to the next free memory cell at the top of the target 

dictionary.   
lasth A variable pointing to the name field of the current target command under 

construction. 
namer! Compile a 32-bit value, “d”, to the top of the target dictionary.   
hw A variable pointing to a new program word being constructed. 
hi A variable pointing to a slot to pack the next machine instruction.   
bi A variable pointing to a byte to pack the next ASCII character.  
align Initialize pointer “hi” to start assembling a new program word.   
org Initialize pointer “h” to a new address to start assembling.   
allot Add a “n” to pointer “h”. It skips an area in target memory and starts 

assembling above this area. 
mask An array of 5 masks to isolate one 6-bit machine instruction from a 32-bit 

instruction pattern. A machine instruction can be assembled in one of 5 
instruction slots selected by “hi”. 

#, Compile “d” to top of target dictionary. It is the most primitive assembler 
and compiler. The eP32 assembler is an extension of this primitive 
assembly command. 

,w OR “d” to the program word pointed to by “hw”. It generally fills the 
address field in the current program word. 

spread Repeat 6-bit machine instruction “n” in all 5 slots to form a 32-bit 
instruction pattern. “mask” uses it to select a slot for assembling. 

,i Use “hi” to select one machine instruction in “d” and assemble it into the 
program word selected by “hw”.  

,l Spread a 6-bit machine instruction to a 32-bit pattern and assemble a 
machine instruction with “,i”. 

,b Pack byte “b” into current program word. Pointer “bi” determines which 
byte field to pack. “bi” is incremented to facilitate packing of next byte. 

inst Define short instruction assembly commands. It creates a short instruction 
assembly command like a constant. When a short instruction assembly 
command is later executed, this constant is retrieved as an instruction 
pattern and a short machine instruction is assembled into the current 
program word by command “,i”. 

nop First short instruction assembly command defined by “inst”. 
anew Fill current program word with NOPs and initialize hi and hw to assemble 

new machine instructions in the next program word. 
#  Assemble a load literal LDI instruction.  Its literal value is assembled in 

the next program word pointed to by "h". 
ldi Alias of “#”. 
LIT Alias of “#”.   
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: (makehead) 
   anew 
   20 WORD                             \ get name o f new definition 
   lasth @ namer!                    \ fill link fi eld of last word 
   h @ lasth !                        \ save nfa in  lasth 
   COUNT DUP ,b                       \ store count  
   1- FOR  
      COUNT ,b                         \ fill name field 
   NEXT 
   DROP anew 
   ; 
 
: makehead 
   >IN @ >R                            \ save inter preter pointer 
   (makehead) 
   R> >IN !                            \ restore wo rd pointer 
   ; 
 
: $LIT ( -- ) 
   anew 
   22 WORD 
   COUNT DUP ,b ( compile count ) 
   1- FOR  
      COUNT ,b ( compile characters ) 
   NEXT 
   DROP anew ; 
 
: jump CONSTANT DOES> anew R> FFFFFF AND @ OR #, ; 
      0 jump bra              0 jump jmp 
2000000 jump bz 
3000000 jump bc 
4000000 jump call 
5000000 jump next 
5000000 jump NEXT 
5000000 jump <NEXT> 
 
: return CONSTANT DOES> R> @ ,i anew ; 
 1 spread return ret 
 6 spread return times 
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In the eP32 eForth system, all target commands are compiled in a target dictionary, 
and linked as a list.  Each target command has a link field of one 32-bit word, a 
variable length name field in which the first byte contains a length followed by the 
ASCII code of the name string, null filled to a 32-bit word boundary, and a 
variable-length code field containing 32-bit program or data words.  Primitive target 
commands have machine instructions in their code fields.  Compound target 
commands generally have call instructions in their code fields.  As call instructions 
can intermix with other machine instructions, primitive words are indistinguishable 
from compound words. 
 
(makehead) Build a header for a new target command. The header includes a link 

field and a name field.  The address of the name field in the last 
target command is stored in “lasth”, and is compiled into the link 
field. “h” points to the name field of the new command, and is copied 
into “lasth”.  Now, the following string is packed into the name field, 
starting with its length byte, and null filled to the word boundary. 
Now, “h” points to the code field of this new target command. 

makehead Build a header with (makehead) and save the name string to define a 
compiler command in metacompiler. It displays the name and code 
field address. A string can be used repeatedly by saving and restoring 
its pointer in a “>IN” word. 

$LIT Compile a packed string for a string literal. It works similarly as 
(makehead). However, the name string is delimited by the space 
character (ASCII 0x20), while a string literal is delimited by the 
double-quote character (ASCII 0x22). 

jump A defining command that creates long instruction assembly 
commands.  It uses transfer instruction code like a constant.  When 
a long instruction assembly command is later executed, it retrieves 
this code, ORs it with a 24 bit address, and assembles a transfer 
instruction in the target dictionary.  

 
Following are the eP32 long instruction assembly commands defined by “jump”: 
 
bra Assemble a branch always instruction, BRA. 
bz Assemble a branch on zero instruction, BZ. 
bc Assemble a branch on carry instruction, BC. 
call Assemble a subroutine CALL instruction. 
next Assemble a loop NEXT instruction. 
 
return A defining command to create assembly commands that abandon 

remaining slots in the current program word, and start fetching the 
next program word. 

ret Assembly command to return from subroutine call. “ret” is similar to 
“nop”, in that all machine instructions following them in the same 
program word will be ignored. 

times Assembly command to terminate a micro loop. It is not implemented 
in eP32. 

 



 107 

: begin anew h @ ; 
: until bz ; 
: untilnc bc ; 
: jmp  bra ; 
 
: if      h @ 0 bz ;  ( 5F80000 ) 
: ifnc    h @ 0 bc ; ( 5F40000 ) 
: skip    h @ 0 bra ;        ( 5FC0000 ) 
: then    begin OVER ram@ OR SWAP ram! ; 
: else    skip  SWAP then ; 
: while   if SWAP ; 
: whilenc ifnc  SWAP ; 
: repeat  bra then ; 
: again   bra ; 
: aft ( a -- a' a" ) 
   DROP skip begin SWAP ; 
 
: BEGIN anew h @ ; 
: UNTIL bz ; 
: UNTILNC bc ; 
: JMP  bra ; 
 
: IF      h @ 0 bz ;  ( 5F80000 ) 
: IFNC    h @ 0 bc ; ( 5F40000 ) 
: SKIP    h @ 0 bra ;        ( 5FC0000 ) 
: THEN    begin OVER ram@ OR SWAP ram! ; 
: ELSE    skip  SWAP then ; 
: WHILE   if SWAP ; 
: WHILENC ifnc  SWAP ; 
: REPEAT  bra then ; 
: AGAIN   bra ; 
: AFT ( a -- a' a" ) 
   DROP skip begin SWAP ; 
 
: ':   begin  .head CONSTANT  DOES> R> @  call ; 
: CODE  makehead ': ;            \ for eforth kerne l words 
: code  makehead ': ;            \ for eforth kerne l words 
 
  08 spread inst ldrp  09 spread inst ldxp  
( 0A spread inst ldi) 0B spread inst ldx 
  0C spread inst strp  0D spread inst stxp   
  0E spread inst rr8   0F spread inst stx 
  10 spread inst com   11 spread inst shl    
  12 spread inst shr   13 spread inst mul 
  14 spread inst xor   15 spread inst and    
  16 spread inst div   17 spread inst add 
  18 spread inst popr  19 spread inst xt     
  1A spread inst pushs 1B spread inst over 
  1C spread inst pushr 1D spread inst tx   
( 1E spread inst nop ) 1F spread inst pops 
 
: for ( -- a ) 
   pushr begin ; 
: FOR ( -- a ) 
   pushr begin ; 
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The eP32 transfer instructions are not used directly.  They are used by control 
structure commands to construct control structures.  These commands are in lower 
case for the assembler and in upper case for the compiler: 
 
Command Function 
begin Mark current location in target for later address resolution. 
until Terminate a begin-until loop if zero-flag is cleared. 
untilz Terminate a begin-until loop if zero-flag is set. 
untilnc Terminate a begin-until loop if carry-flag is cleared. 
jmp Jump to the address on top of the data stack. 
if Start a conditional branch structure. Assemble a bz instruction. 
ifnc Start a conditional branch structure. Assemble a bc instruction. 
skip Start a branch structure. Assemble a bra instruction. 
then Terminate a conditional branch structure by resolving the branch 

instruction at “if” or “else”. 
else Resolve branch instruction at “if”, and start a branch structure.  

Assemble a bra instruction. 
while Start a conditional branch structure in a begin-while-repeat loop.  

Assemble a bz instruction. 
whilenc Start a conditional branch structure in a begin-while-repeat loop.  

Assemble a bc instruction. 
repeat Terminate a begin-while-repeat loop, and assemble a bra instruction to 

“begin”. 
again Terminate a begin-again loop, and assemble a bra instruction to “begin”. 
 
CODE defines new primitive commands in the eP32 target.  Primitive commands 
thus defined will assemble CALL instructions in code fields of compound commands 
in the eP32 target.  Using the Subroutine Threading Model, primitive commands are 
the same as compound commands. Their difference is only conceptual. 
 
 ‘: Define a nameless subroutine. “begin” points to the code field and is 

defined as a constant in the metacompiler.  The run time behavior of 
this constant is changed to execute commands after DOES>, which uses 
the saved code field address to assemble a CALL instruction. It also 
displays the name of the new command and its execution address on the 
terminal, with the .head command. 

CODE Define a new target command. It creates a new header in the target, and 
then uses ‘: to start a new subroutine.  It also creates an assembly 
command in the metacompiler. This assembly command assembles a 
subroutine call instruction.   

code Alias of CODE. 
for Assemble a “pushr” to start a FOR-NEXT loop. 
FOR Alias of FOR. 
 
All short eP32 instruction assemblers are defined by “inst”. Their names are the same 
as mnemonics of respective machine instructions. 
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6.46.46.46.4    The eP32 KernelThe eP32 KernelThe eP32 KernelThe eP32 Kernel 

 
In the original eForth Model, a small group of FORTH commands were identified as 
kernel commands, low level commands, or primitive commands.  These commands 
were coded in machine instructions of the host microprocessor.  All other commands 
were written as lists of commands, and are called high level commands or compound 
commands.  Compound commands are lists of primitive commands and other 
compound commands.  This division of commands was very useful in porting eForth 
to many different microprocessors, because only primitive commands needed to be 
rewritten when moving eForth to a new microprocessor. 
 
In eP32 eForth, we retained this division, and put primitive commands in the 
KERN32a.F file.  However, we optimized commands in the eP32 so that the system 
executes at the highest speed and occupies the least memory space.  All commands 
that can be are written in assembly. Much more optimization is achieved by a set of 
assembly macros, which assemble the most commonly used compound commands in 
machine instructions and pack these machine instructions as tightly as possible.  The 
end results are that code size is significantly reduced and execution speed greatly 
increased. 
 
Commands in this file also serve as programming examples for the optimal use of the 
eP32 CPU.  It is worth your time to study them carefully, and use them as templates 
when you want to convert compound commands into assembly. 
 
In the LatticeXP2-5E FPGA chip, there are 166K bits of Embedded Block Memory, 
EBM, and we use them to implement 4096 words of 32-bit RAM memory.  The 
nicest feature of EBM is that it can be initialized from on-chip flash memory.  In fact, 
this RAM memory can be used to host programs and data that otherwise would have 
to be implemented in ROM memory.  This feature makes it possible to implement a 
complete FORTH system on a single FPGA chip, which has never been possible in 
other brands of FPGA. 
 
Using EBM, the memory map of eP32 eForth is greatly simplified: 
 
Address Function 
0x0 Reset and interrupt vectors 
0x20 System variables 
0x30 Text buffer 
0x80 Terminal input buffer 
0x100 Start of eForth dictionary 
0x1FFF End of RAM memory 
0x80000000 Start of UART registers 
0xE0000000 Start of GPIO registers 
 
The data stack and return stack are in the eP32 core, and do not need RAM memory. 
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System variables are variables used by the eForth system to perform all its various 
functions.  They are defined as assembly macro commands, with LDI machine 
instructions pointing to their respective addresses in the system variable area, starting 
at location $20.  These assembly macro commands are tools used by the 
metacompiler to compile the optimized system variables referenced in the eP32 target 
system. 
 
Command Address Function 
HLD  20  Pointer to a buffer holding next digit for numeric 

conversion. 
SPAN  21  Number of characters received by EXPECT. 
>IN   22  Input buffer character pointer used by text interpreter. 
#TIB  23  Number of characters in input buffer. 
'TIB  24  Address of Terminal Input Buffer. 
BASE  25  Number base for numeric conversion. 
CONTEXT  26  Vocabulary array pointing to last name fields of 

vocabularies. 
CP  27  Pointer to top of dictionary, the first available memory 

location. 
LAST  28  Pointer to name field of last command in dictionary. 
'EVAL  29  Execution vector switching between $INTERPRET and 

$COMPILE. 
'ABORT  2A  Execution vector to handle error condition. 
TEXT  30  Buffer to unpack text strings. 
tmp  2B  Pointer to a scratch pad. 
cpi  2C  Pointer to slots in assembler. 
cpw  2D  Pointer to program word under construction. 
etxbuf 80000001  Transmit data register. 
etxbempty 80000001  Transmit status register. 
erxbfull 80000002  Receiver status register. 
erxbuf 80000003  Receiver data register. 
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HEX 
cr .( system variables )  
: HLD 20 ldi ;         \ scratch 
: SPAN 21 ldi ;        \ #chars input by expect 
: >IN  22 ldi ;        \ input buffer offset 
: #TIB 23 ldi ;        \ #chars in the input buffer  
: 'TIB 24 ldi ;        \ tib 
: BASE 25 ldi ;       \ number base 
 
cr 
: CONTEXT 26 ldi ;    \ first search vocabulary 
: CP 27 ldi ;         \ dictionary code pointer 
: LAST 28 ldi ;       \ ptr to last name compiled 
: 'EVAL 29 ldi ;       \ interpret/compile vector 
: 'ABORT 2A ldi ; 
: TEXT 30 ldi ;         \ unpack buffer 
: tmp 2B ldi ;        \ ptr to converted # string 
: cpi 2C ldi ;          \ assembler slot poiner 
: cpw 2D ldi ;         \ pointer to word under cons truction 
 
: etxbuf    80000001 ldi ;  
: etxbempty 80000001 ldi ; 
: erxbfull  80000002 ldi ; 
: erxbuf    80000003 ldi ; 
 
cr .( macro words ) cr 
: DOLIT # ; 
: EXIT ret ; 
: EXECUTE ( a ) pushr ret anew ; 
: ! ( n a -- ) tx stx ; 
: @ ( a - n ) tx ldx ; 
: R> ( - n ) popr ; 
: R@ ( - n ) popr pushs pushr ; 
: >R ( n ) pushr ; 
: DUP ( n - n n ) pushs ; 
: SWAP ( n1 n2 - n2 n1 ) 
   pushr tx popr xt ; 
: DROP ( w w  -- ) 
   pops ; 
: 2DROP ( w w  -- ) 
   pops pops ; 
: + ( w w -- w ) add ; 
: NOT ( w -- w ) com ; 
: AND and ; 
: XOR xor ; 
: OVER over ; 
: NEGATE ( n -- -n ) 
   com 1 ldi add ; 
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Assembly macro commands assemble one or more machine instructions into the 
target dictionary.  One 32-bit program word can hold up to 5 short machine 
instructions.  These assembly macro commands pack as many instructions in a 
program word as possible to make the most efficient use of memory and execution 
time.  They allow the metacompiler to produce optimized code for the target system. 
 
Macro Function 
DOLIT  Same as LIT. Assemble LDI; attach a value in next word. 
EXIT  Single machine instruction. 
EXECUTE Push address in T to R and use RET to execute it. 
!  Pop T to X and then store value in memory. 
@  Pop T to X and then read value from memory. 
R>  Single machine instruction. 
R@  Pop R to T, duplicate T, and push T to R. 
>R  Single machine instruction. 
DUP  Single machine instruction. 
SWAP Use R and X to swap T and S. 
DROP  Single machine instruction. 
2DROP  Pop T twice. 
+  Single machine instruction. 
NOT Single machine instruction. 
AND  Single machine instruction. 
XOR  Single machine instruction. 
OVER  Single machine instruction. 
NEGATE  Compliment T and add 1 to it. 
1-  Add -1 to T. 
1+  Add 1 to T. 
BL  Return $20, ASCII code for space. 
+!  Add n to contents of a. Pop a in T to X, fetch number, add n, and 

store back. 
-  Subtract w3=w1-w2. Complement w2, add 1, and add w1. 
OR w3=w1 or w2. Complement w2, push it to R, complement w1, 

pop /w2, AND /w1, and complement results. 
ROT  Rotate w1, w2, w3. Push w3, push w2, save w1 to X, pop w2, 

pop w3, and copy w1 back from X. 
2DUP Duplicate w1/w2 pair. Dup w2, push w2, push w2, dup w1, pop 

w1 to X, pop w2, push w1 from X, pop w2. 
2!  Store double integer d in a. Pop address a to X, push dh, store dl, 

pop dh, and store dh. 
2@  Fetch double integer from a. Pop address a to X, read dl, read dh. 
COUNT  Retrieve n from a, and increment a. Pop address a to X, read n, 

push n, restore a+1 from X, pop n back. 
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: 1- ( a -- a ) 
   -1 ldi add ; 
: 1+ ( a -- a ) 
   1 ldi add ; 
: BL ( -- 32 ) 
   20 ldi ; 
: +! ( n a -- ) 
   tx ldx add stx 
   ; 
: - ( w1 w2 -- w3 ) 
   com add 1 ldi add 
   ; 
: OR ( w1 w2 - w3 ) 
   com pushr com 
   popr and com ; 
: ROT ( w1 w2 w3 -- w2 w3 w1 ) 
   pushr pushr tx popr 
   popr xt ; 
: 2DUP ( w1 w2 -- w1 w2 w1 w2 ) 
   pushs pushr pushr 
   pushs tx popr xt popr 
   ; 
: 2! ( d a -- ) 
   tx pushr stxp 
   popr stx ; 
: 2@ ( a -- d ) 
   tx ldxp ldx ; 
: COUNT ( b -- b +n ) 
   tx ldxp pushr xt 
   popr ; 
cr .( kernel words ) cr 
$100 org 
 
code DOVAR popr ret  
code 0< ( n - f ) 
   shl ifnc pushs pushs xor ret 
   then 
   -1 ldi ret 
code UM+  ( n n - n carry ) 
   add pushs 
   ifnc pushs pushs xor ret 
   then 
   1 ldi ret 
code ?DUP ( w -- w w | 0 ) 
   pushs 
   if pushs ret then 
   ret 
 
 



 114 

We are now actually compiling new commands into the target dictionary.  First, 
assembly command ORG initializes the dictionary pointer, h, to memory location 
$100.  The memory area below $100 is reserved for reset and interrupt vectors, 
system variables, text buffer, and the terminal input buffer. 
 
The following are the first few code commands compiled into the eP32 target 
dictionary.  They are defined using the CODE command, and when they are 
referenced later in the EP32q.F file, each of them will compile a subroutine call 
instruction pointing to their code field.  The choice to define a CODE command as 
an assembly macro is rather arbitrary.  However, if a command requires a branch 
instruction, it has to be coded as a CODE command, because macro commands 
cannot handle branch instructions gracefully.  Assembly macro commands only do 
simple machine instruction placement. 
 
Many compound commands defined in the original eForth model are now coded in 
assembly and moved to this kernel.  We tried to do our best in giving you the 
smallest and fastest FORTH system.  All commands that can be optimized are so 
optimized. 
 
Command Function 
DOVAR Execution code for variables. Return address of following program 

word. DOVAR is always followed by its value in the next program 
word, whose address happens to be in the R register.  Pop return 
stack and this address is popped back onto the data stack.  

0<  If n<0, return true flag; otherwise, return false flag. Negative flag is in 
bit T(31). Shift T left sends this bit into carry bit T(32), which is 
tested for branching by ifnc. 

UM+ Add two integers on stack; return sum and carry. ADD adds two 
integers on data stack and carry bit is in T(32). “ifnc” tests this bit and 
pushs a 1 or 0 on stack accordingly. 

?DUP If w is not 0, duplicate it; otherwise, do nothing. w is duplicated and 
tested by “if”.   

DNEGATE Negate double integer d on stack. dh is first complemented and 
pushed onto the return stack.  dl is complemented and incremented.  
If carry is set, dh is retrieved and incremented; otherwise, dh is 
retrieved but not incremented 

ABS  Return absolute value of n. n is duplicated and tested for being 
negative by a left shift and “ifnc”.  If negative, negate it; otherwise, 
leave it alone. 

=  Return a true flag if the two numbers on data stack are equal; 
otherwise, return false flag. Use “xor” and “if” to test equality. 

B> Pack a byte at “b” into least significant 8 bits in “a”.  Return b+1 and 
“a” to pack next byte. 

>B Unpack 4 bytes from “a” to byte array at “b”. Return a+1 and b+4 to 
unpack next word. Least significant byte in “a” is also returned, as it 
may be the count of a packed string. 
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cr 
code DNEGATE ( d -- -d ) 
   com pushr com 1 ldi 
   add pushs 
   ifnc popr ret 
   then 
   popr 1 ldi add ret 
code ABS ( n -- +n ) 
   pushs shl 
   ifnc ret then 
   NEGATE ret 
 
cr 
code = ( w w -- t ) 
   xor 
   if pushs pushs xor ret then 
   -1 ldi ret 
 
cr ( pack b> and unpack >b strings ) 
code B> ( b a -- b+1 a ) 
   pushr tx ldxp pushr 
   xt popr popr tx 
   $FF ldi and 
   ldx $FFFFFF00 ldi and xor 
   rr8 stx xt ret 
code >B ( a b -- a+1 b+4 count ) 
   pushr tx ldxp pushr 
   xt popr popr ( a+1 n b ) tx  
   pushs $FF ldi and stxp rr8 
   pushs $FF ldi and stxp rr8 
   pushs $FF ldi and stxp rr8 
   pushs $FF ldi and stxp rr8 
   pushr xt popr $FF ldi and 
   ret 
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Figure 36.  The eForth Operating System



 117 

6.5 eP32 Compound Commands 
 
The EF32q.F. file contains compound commands to be compiled into the eP32 target 
image.  These commands are defined with the “::” command and terminated by “;;” 
command.  They are like the regular “:” and “;” commands in FORTH, but they 
compile new eP32 commands into the eP32 target image.   
 
The ultimate goal of these commands is to implement an interactive operating system, 
or a text interpreter, which accepts a line of FORTH commands from a terminal, 
executes these commands in sequence, and waits for another line of commands.  
This FORTH system is best represented in the flowchart shown on the left page, in 
which all FORTH commands are enclosed in rectangles.  As we go through source 
code in EP32q.F line by line, you will see how these commands are implemented, and 
will appreciate the overall design of this eP32 eForth system.  
 
The text interpreter is also called the outer interpreter in FORTH.  It is functionally 
equivalent to an operating system in a conventional microprocessor.  It accepts 
commands similar to English words entered by a user, and carries out tasks specified 
by the commands.  As an operating system, the text interpreter could be very 
complicated, because of all the things it has to do.  However, because FORTH 
employs very simple syntax rules, and has very simple internal structures, the FORTH 
text interpreter is much simpler than conventional operating systems.  It is simple 
enough that we can make a diagram of it as shown on the left page. 
 
Let us summarize what a text interpreter does: 
 
COLD Power up routine 
QUIT Text interpreter 
QUERY Accept text input from a terminal 
EVAL Evaluate or interpret a line of text 
PARSE Parse out a string from input text 
$INTERPRET Interpret a string 
$COMPILE Compile a string 
NAME$ Search dictionary for a commands 
NUMBER? Translate a text string into an integer 
EXECUTE Execute a commands 
IMMED? Is this command an immediate command? 
LITERAL Compile a integer literal 
COMPILE Compile a command token 
  
FORTH allows us to build and integrate these functions gradually in modules.  All 
modules finally fall into their places in the command QUIT, which is the text 
interpreter itself. 
 
You might want to look up the code of QUIT first and see how the modules fit 
together.  A good feeling for the big picture will help you in understanding lower 
modules.  Nevertheless, we will doggedly follow the loading order in the source 
code, and hope that you will not get lost in the process. 
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 : :: code ; 
: ;; ret ; 
 
CRR .( Chararter IO ) CRR 
:: ?KEY  erxbfull @ ;; 
:: KEY   begin erxbfull @ until erxbuf @ ;;       
:: EMIT  begin etxbempty  @ until etxbuf  ! ;; 
 
CRR .( Common functions ) CRR 
:: U< ( u u -- t ) 2DUP XOR 0< IF SWAP DROP 0< EXIT  THEN - 0< ;; 
::  < ( n n -- t ) 2DUP XOR 0< IF      DROP 0< EXIT  THEN - 0< ;; 
:: MAX ( n n -- n ) 2DUP      < IF SWAP THEN DROP ; ; 
:: MIN ( n n -- n ) 2DUP SWAP < IF SWAP THEN DROP ; ; 
:: WITHIN ( u ul uh -- t ) \ ul <= u < uh 
   OVER - >R - R> U< ;; 
 
CRR .( Divide ) CRR 
CODE UM/MOD ( ud u -- ur uq ) 
   com 1 ldi add tx 
   pushr xt pushr tx 
   popr popr 
   skip 
CODE /MOD ( n n -- r q ) 
   com 1 ldi add pushr 
   tx popr 0 ldi 
   then 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div 1 ldi xor shr 
   pushr pops popr xt 
   ret 
CODE MOD ( n n -- r ) 
   /MOD 
   pops ret 
CODE / ( n n -- q ) 
   /MOD 
   pushr pops popr ret 
:: M/MOD ( d n -- r q ) \ floored 
  DUP 0<  DUP >R 
  IF NEGATE >R DNEGATE R> 
  THEN >R DUP 0< IF R@ + THEN R> UM/MOD R> 
  IF SWAP NEGATE SWAP THEN ;; 
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Defining Compound Target Commands 
 
:: Create a new compound target command. Because eForth uses the 

Subroutine Threading Model, compound commands and low level 
primitive commands are the same. 

;; Terminate a compound command. Assemble a RET machine 
instruction. All commands are called as subroutines, and RET will 
unnest a subroutine call, as well as a list of subroutine calls. 

 
Character I/O 
 
?KEY Inspect register “erxbfull” and return a true flag if a character has 

been received. If no character was received, return a false flag.   
KEY Wait for a character, and return it after receiving it in “erxbuf”.   
EMIT Wait until transmit buffer is empty, by testing register “etxbempty”.  

Then send out a character to register “etxbuf”. 
 
Common Functions 
 
= Return true if two integers are equal. 
U< Compare two unsigned integers. Return true if second integer is less 

than top integer. It is used to compare addresses. 
< Compare two signed integers. Return true if second integer is less 

than top integer. 
MAX Retain the larger of top two signed integers on stack.   
MIN Retain the lesser of top two signed integers on stack. 
WITHIN Check whether the third signed integer on stack is within range 

specified by top two signed integers. The range is inclusive of the 
lower limit and exclusive of the upper limit. If the third item is within 
range, a true flag is returned.   

 
Divide 
 
UM/MOD Divide an unsigned double integer by an unsigned single integer. 

Return unsigned remainder and unsigned quotient. Unsigned double 
integer dividend is in the T:X register pair, and a negated 32-bit 
divisor is in the S register. Repeat “div” step 33 times. Remainder in 
the T register is shifted once too many, and it has to be shifted back 
one bit to the right. 

/MOD Divide a signed single integer by a signed integer. Return signed 
remainder and quotient. 

MOD  Divide a signed single integer by a signed integer. Return signed 
remainder. 

/ Divide a signed single integer by a signed integer. Return signed 
quotient. 

M/MOD Divide a signed double integer by a signed single integer. Return 
signed remainder and signed quotient.  

M/ Divide a signed double integer by a signed single integer. Return 
signed quotient.  
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CRR .( Multiply ) CRR 
CODE UM* ( u u -- ud ) 
   tx 0 ldi 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   pushr pops xt popr 
   ret 
:: * ( n n -- n ) UM* DROP ;; 
:: M* ( n n -- d ) 
  2DUP XOR 0< >R  ABS SWAP ABS UM*  R> IF DNEGATE T HEN ;; 
:: */MOD ( n n n -- r q ) >R M* R> M/MOD ;; 
:: */ ( n n n -- q ) */MOD SWAP DROP ;; 
 
CRR .( Bits & Bytes ) CRR 
:: >CHAR ( c -- c ) 
  $7F LIT AND DUP $7F LIT BL WITHIN 
  IF DROP ( CHAR _ ) $5F LIT THEN ;; 
 
CRR .( Memory access ) CRR 
:: HERE ( -- a ) CP @ ;; 
:: PAD ( -- a ) CP @ 50 LIT + ;; 
:: TIB ( -- a ) 'TIB @ ;; 
CRR 
:: @EXECUTE ( a -- ) @ ?DUP IF EXECUTE THEN ;; 
:: CMOVE ( b b u -- ) 
  FOR AFT >R DUP @ R@ ! 1+ R> 1+ THEN NEXT 2DROP ;;  
:: FILL ( b u c -- ) 
  SWAP FOR SWAP AFT 2DUP ! 1+ THEN NEXT 2DROP ;; 
 
:: PACK$ ( b u a -- a ) \ null fill 
  pushs pushr 
  2 ldi tmp tx stx 
  tx pushs pushr rr8 stx 
  xt popr 
  FOR AFT ( b a ) 
    B> 
    tmp tx ldx 
    IF   ldx -1 ldi add stx 
    ELSE 3 ldi stx 
         1 ldi add 
    THEN 
  THEN NEXT 
  BEGIN 
     tx ldx $FFFFFF00 ldi and 
     rr8 stx xt 
     tmp tx ldx 
  WHILE 
     ldx -1 ldi add stx 
  REPEAT 
  pops pops popr 
  ;; 
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Multiply 
 
UM* Multiply two unsigned integers and produce an unsigned double 

integer product. “mul” conditionally adds the integer in S to T if bit 
X(0) is set, and the T:X register pair is shift right by 1 bit. Two 
multiplicands are placed in the S and X registers.  Repeat “mul” 32 
times and a 64-bit product is produced in the T:X register pair. 

*  Multiply two signed integers to produce a signed single integer 
product. 

M* Multiply two signed integers to produce a signed double integer 
product. 

*/MOD Multiply signed integers n1 and n2, and then divide the double 
integer product by n3. Scale n1 by n2/n3. Returns both remainder 
and quotient.   

*/  Similar to */MOD except that it only returns quotient. 
 
Bits and Bytes 
 
>CHAR Filter non-printable character to a harmless ‘underscore’ character, 

ASCII 95. 
 
Memory Access 
 
HERE Returns address of WORD buffer 1 cell above command dictionary.  

Text interpreter parses out a string from Terminal Input Buffer and 
packs it here. In case this string is the name of a new command, it is 
already in the name field. 

PAD Returns address of a buffer pad 80 cells above command dictionary.  
It is a scratch pad area to store temporary text and data. It floats on top 
of the dictionary as new commands are added to the dictionary.  The 
memory area below PAD is used for numeric conversion to build a 
number string backwards as least significant digits are extracted from 
an integer. 

TIB  Return address of Terminal Input Buffer. 
@EXECUTE Jump to execution address stored in a memory location “a”. 
CMOVE Copy “u” cells of memory from array “b1” to array “b2”. 
FILL  Fill “u” cells of memory array “b” with the same data, “c”. 
PACK$ Copy “u” bytes in a byte array at “b” and pack them into a cell array 

at “a”. A packed string starts with a length byte in the lowest 8 bits of 
the first cell. PACK$ is designed to pack bytes into cells in a 
cell-addressable machine.  The packed string is null-filled to a word 
boundary. Target address “a” is returned. 
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:: 4/ 
  shr shr ret 
:: UNPACK$ ( a b -- b ) 
  DUP >R ( save b ) 
  >B $1F LIT AND 4/ 
  FOR AFT 
    >B DROP 
  THEN NEXT 
  2DROP R> 
  ;; 
:: UNPACK ( a b -- b ) 
  DUP >R ( save b ) 
  >B $FF LIT AND 4/ 
  FOR AFT 
    >B DROP 
  THEN NEXT 
  2DROP R> 
  ;; 
 
CRR .( Numeric Output ) CRR \ single precision 
:: DIGIT ( u -- c ) 
  9 LIT OVER < 7 LIT AND + 
  ( CHAR 0 ) 30 LIT + ;; 
:: EXTRACT ( n base -- n c ) 
  0 LIT SWAP UM/MOD SWAP DIGIT ;; 
:: <# ( -- ) PAD HLD ! ;; 
:: HOLD ( c -- ) HLD @ 1- DUP HLD ! ! ;; 
:: # ( u -- u ) BASE @ EXTRACT HOLD ;; 
:: #S ( u -- 0 ) BEGIN # DUP WHILE REPEAT ;; 
CRR 
:: SIGN ( n -- ) 0< IF ( CHAR - ) 2D LIT HOLD THEN ;; 
:: #> ( w -- b u ) DROP HLD @ PAD OVER - ;; 
:: str ( n -- b u ) DUP >R ABS <# #S R> SIGN #> ;; 
:: HEX ( -- ) 10 LIT BASE ! ;; 
:: DECIMAL ( -- ) 0A LIT BASE ! ;; 
 
CRR .( Numeric Input ) CRR \ single precision 
:: DIGIT? ( c base -- u t ) 
  >R ( CHAR 0 ) 30 LIT - 9 LIT OVER < 
  IF 7 LIT - DUP 0A LIT  < OR THEN DUP R> U< ;; 
:: NUMBER? ( a -- n T | a F ) 
  BASE @ >R  0 LIT OVER COUNT ( a 0 b n) 
  OVER @ ( CHAR $ ) 24 LIT = 
  IF HEX SWAP 1+ SWAP 1- THEN ( a 0 b' n') 
  OVER @ ( CHAR - ) 2D LIT = >R ( a 0 b n) 
  SWAP R@ - SWAP R@ + ( a 0 b" n") ?DUP 
  IF 1- ( a 0 b n) 
    FOR DUP >R @ BASE @ DIGIT? 
      WHILE SWAP BASE @ * +  R> 1+ 
    NEXT DROP R@ ( b ?sign) IF NEGATE THEN SWAP 
      ELSE R> R> ( b index) 2DROP ( digit number) 2 DROP 0 LIT 
      THEN DUP 
  THEN R> ( n ?sign) 2DROP R> BASE ! ;; 
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4/ Divide top of stack by 4.   
UNPACK$ Unpacks a packed string at “a” to a byte array at “b”. The first byte 

in the packed string is a length byte. Unpack only up to 31 bytes. 
Use >B to do unpacking. 

UNPACK Identical to UNPACK$, except it unpacks strings up to 255 bytes. 
 
Numeric Output 
 
FORTH is interesting in its special capabilities in handling numbers across a 
man-machine interface.  It recognizes that machines and humans prefer very 
different representations of numbers.  Machines prefer binary representation, but 
humans prefer decimal Arabic representation.  However, depending on 
circumstances, a human may want numbers to be represented in other radices, like 
hexadecimal, octal, and sometimes binary. 
 
FORTH solves this problem of internal (machine) versus external (human) number 
representations by insisting that all numbers are represented in binary form in CPU 
and memory.  Only when numbers are imported or exported for human consumption 
are they converted to external ASCII representation.  The radix of the external 
representation is stored in system variable BASE.  The user can select any 
reasonable radix in BASE, up to 72, limited by available printable characters in the 
ASCII character set. 
 
DIGIT Convert integer “u” to a digit “c”.   
EXTRACT Extract least significant digit “c” from a number “n”. “n” is divided by 

radix “base”. 
HOLD Insert an ASCII character “c” in numeric output string. 
"#" Extract one digit from integer “u”, according to radix in BASE, and 

add it to output string. 
"#S" Extract all digits to output string until “u” is 0. 
SIGN Insert a “-” sign in numeric output string if “n” is negative. 
#> Terminate numeric conversion and return address and length of output 

string. 
str Convert signed integer “n” to a numeric output string. 
HEX Set numeric conversion radix to 16 for hexadecimal conversions. 
DECIMAL Set numeric conversion radix to 10 for decimal conversions. 
 
Numeric Output 
 
DIGIT? Convert a digit “c” to its numeric value “u” according to current radix 

“b”. If conversion is successful, push a true flag above “u”. If not 
successful, return “c” and a false flag. 

NUMBER? Convert a count string of digits at location “a” to an integer. If first 
character is a $, convert in hexadecimal; otherwise, convert using 
radix in BASE. If first character is a “-”, negate integer. If an illegal 
character is encountered, address of string and a false flag are 
returned. Successful conversion returns integer value and a true flag.   
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CRR .( Basic I/O ) CRR 
:: SPACE ( -- ) BL EMIT ;; 
:: CHARS ( +n c -- ) 
  SWAP 0 LIT MAX 
  FOR AFT DUP EMIT THEN NEXT DROP ;; 
:: SPACES ( +n -- ) BL CHARS ;; 
:: TYPE ( b u -- ) 
  FOR AFT DUP @ >CHAR EMIT 1+ 
  THEN NEXT DROP ;; 
:: CR ( -- ) ( =Cr ) 
  0A LIT 0D LIT EMIT EMIT ;; 
:: do$ ( -- a ) 
  R> R@ TEXT UNPACK 
  R@ R> @ $FF LIT AND 4/ 1+ + 
  >R SWAP >R ;; 
 
CRR 
:: $"| ( -- a ) do$ ;;  
:: ."| ( -- ) do$ COUNT TYPE ;; 
::  .R ( n +n -- ) 
  >R str      R> OVER - SPACES TYPE ;; 
:: U.R ( u +n -- ) 
  >R <# #S #> R> OVER - SPACES TYPE ;; 
:: U. ( u -- ) <# #S #> SPACE TYPE ;; 
::  . ( n -- ) 
  BASE @ 0A LIT  XOR 
  IF U. EXIT THEN str SPACE TYPE ;; 
:: ? ( a -- ) @ . ;; 
 
CRR .( Parsing ) CRR 
:: (parse) ( b u c -- b u delta ; <string> ) 
  tmp ! OVER >R DUP \ b u u 
  IF 1- tmp @ BL = 
    IF              \ b u' \ 'skip' 
      FOR BL OVER @ - 0< NOT 
        WHILE 1+ 
      NEXT ( b) R> DROP 0 LIT DUP EXIT \ all delim 
        THEN  R> 
    THEN OVER SWAP  \ b' b' u' \ 'scan' 
    FOR tmp @ OVER @ -  tmp @ BL = 
      IF 0< THEN WHILE 1+ 
    NEXT DUP >R 
      ELSE R> DROP DUP 1+ >R 
      THEN OVER -  R>  R> - EXIT 
  THEN ( b u) OVER R> - ;; 
:: PARSE ( c -- b u ; <string> ) 
  >R  TIB >IN @ + 
  #TIB @ >IN @ - 
  R> (parse) >IN +! ;; 
:: TOKEN ( -- a ;; <string> ) 
  BL PARSE 1F LIT MIN 2DUP 
  DUP TEXT ! TEXT 1+ SWAP CMOVE 
  HERE 1+ PACK$ ;; 
:: WORD ( c -- a ; <string> ) 
  PARSE HERE 1+ PACK$ ;; 
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Basic I/O 
 
SPACE Output a blank space character.   
SPACES Output “n” blank space characters.   
CHARS Output a string of “n” characters “c”. 
CR Output a carriage-return and a line-feed.   
TYPE Output “n” characters from a string in memory “b”. 
do$ Unpack a packed string literal, pointed to by address on return stack. 

The string is unpacked to TEXT buffer “a”. The return address on return 
stack is incremented to skip over the string literal. 

 
String literals are data structures compiled in compound commands, in-line with other 
commands.  A string literal must start with a string command, which knows how to 
handle the following packed string at run time. 
 
$"| Alias of "do$. Unpack following packed string in this string literal and 

return address of unpacked string. 
."|  Unpack following packed string in this string literal and output string 

characters. 
.R Output a signed integer “n” right-justified in a field of “+n” characters. 
U.R Output an unsigned integer “n” right-justified in a field of “+n” 

characters. 
U. Output an unsigned integer “u” in free format, followed by a space. 
. Output a signed integer “n” in free format, followed by a space. 
? Output a signed integer stored in memory “a”, in free format followed 

by a space. 
 
Parsing 
 
FORTH source code consists of commands, which are ASCII strings separated by 
spaces and other white space characters like tabs, carriage returns, and line feeds.  
The text interpreter scans text in the Terminal Input Buffer, TIB, isolates strings and 
interprets them in sequence.  After a string is parsed out of the input stream, the text 
interpreter “interprets” it—executes it if it is a command, compiles it if the text 
interpreter is in compiling mode—and converts it to a number if the string is not a 
valid command. 
 
(parse) Parse out the first string delimited by character “c” from input buffer at 

b1, length u1. Return address b2 and length u2 of the string just parsed 
out, and the difference “n” between b1 and b2. 

PARSE Parse a string delimited by character “c” in TIB, from character pointed 
to by >IN. It returns address “b” and the length of parsed string “u”.   

TOKEN Parse out next text string delimited by a space character in TIB. The text 
string is assumed to be the name of a command, and its length is limited 
to 31 characters. This string is packed into the WORD buffer one cell 
above the dictionary; i.e., HERE+1. 

WORD Parse out next text string delimited by character “c” in TIB. This string 
is packed into the WORD buffer one word above the command 
dictionary; i.e., HERE+1. Length of string is limited to 255 characters. 
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CRR .( Dictionary Search ) CRR 
:: NAME> ( a -- xt ) 
  DUP @ $1F LIT AND 
  4/ + 1+ ;; 
:: SAME? ( a1 a2 u -- a1 a2 f \ -0+ ) 
  $1F LIT AND 4/ 
  FOR AFT OVER R@ + @ 
    OVER R@ + @ - ?DUP 
    IF R> DROP EXIT THEN 
  THEN NEXT 
  0 LIT ;; 
:: find ( a va -- xt na | a F ) 
  SWAP         \ va a 
  DUP @ tmp !  \ va a  \ get cell count 
  DUP @ >R     \ va a  \ count 
  1+ SWAP      \ a' va 
  BEGIN @ DUP  \ a' na na 
    IF DUP @ $FFFFFF3F LIT AND 
      R@ XOR \ ignore lexicon bits 
      IF 1+ -1 LIT 
      ELSE 1+ tmp @ SAME? 
      THEN 
    ELSE R> DROP SWAP 1- SWAP EXIT \ a F 
    THEN 
  WHILE 1- 1-  \ a' la 
  REPEAT R> DROP SWAP DROP 
  1- DUP NAME> SWAP ;; 
:: NAME? ( a -- xt na | a F ) 
  CONTEXT find ;; 
 
CRR .( Terminal ) CRR 
:: ^H ( bot eot cur -- bot eot cur ) \ backspace 
  >R OVER R> SWAP OVER XOR 
  IF ( =BkSp ) 8 LIT EMIT 
     1-         BL EMIT \ distructive 
     ( =BkSp ) 8 LIT EMIT \ backspace 
  THEN ;; 
:: TAP ( bot eot cur c -- bot eot cur ) 
  DUP EMIT OVER ! 1+ ;; 
:: kTAP ( bot eot cur c -- bot eot cur ) 
  DUP ( =Cr ) 0D LIT XOR 
  IF ( =BkSp ) 8 LIT XOR 
    IF BL TAP ELSE ^H THEN 
    EXIT 
  THEN DROP SWAP DROP DUP ;; 
 
CRR 
:: accept ( b u -- b u ) 
  OVER + OVER 
  BEGIN 2DUP XOR 
  WHILE  KEY  DUP BL -  5F LIT U< 
    IF TAP ELSE kTAP THEN 
  REPEAT DROP  OVER - ;; 
:: EXPECT ( b u -- ) accept SPAN ! DROP ;; 
:: QUERY ( -- ) 
  TIB 50 LIT accept #TIB ! 
  DROP 0 LIT >IN ! ;; 
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Dictionary Search 
 
In this FORTH system, records of commands are linked into a command dictionary.  
A record contains three fields: a link field holding the name field address of the 
previous record, a name field holding the name of this command as a packed string, 
and a code field holding the executable code of this command.  The command 
dictionary is a linear list linked through link fields and the name fields of all records.  
 
NAME> Return code field address “xt” from name field address “a” of a 

command.  
SAME? Compare two packed strings at “a1” and “a2” for “u” cells. If 

string1>string2, returns a positive integer. If string1<string2, return a 
negative integer. If strings are identical, return a 0. 

find Look up a packed string at “a” in command dictionary. Search starts at 
“va”. If a command is found, return code field address “xt” and name 
field address “na”. If the string is not found, return address “a” and a 
false flag. 

NAME? Search dictionary from CONTEXT for a name at “a”. Return code field 
address and name field address if a command is found. Otherwise, 
return address “a” and a false flag.   

 
Terminal 
 
The text interpreter interprets source text received from an input device and stored in 
the Terminal Input Buffer.  To process characters in the Terminal Input Buffer, we 
need special commands to deal with the special conditions of backspace character and 
carriage return: 
 
^H Process back-space. Erase last character and decrement “cur”.  If 

“cur”=”bot”, do nothing because you cannot backup beyond beginning 
of input buffer. 

TAP Output character “c” to terminal, store “c” in “cur”, and increment 
“cur”, which points to the current character. “bot” and “eot” are the 
beginning and end of the input buffer. 

kTAP Processes character “c”. “bot” is the beginning of the input buffer, and 
“eot” is the end. “cur” points to the current character in the input buffer. 
“c” is normally stored at “cur”, which is incremented by 1. If “c” is a 
carriage-return, echo a space and make “eot”=”cur”.  If “c” is a 
back-space, erase the last character and decrement “cur”. 

accept Accept “u” characters into buffer at “b”, or until a carriage return.  The 
value of “u” returned is the actual count of characters received. 

EXPECT Accept “u” characters into buffer at “b”, or until a carriage return.  The 
count of characters received is in SPAN. 

QUERY Accept up to 80 characters from the input device to the Terminal Input 
Buffer. This also prepares the Terminal Input Buffer for parsing by 
setting #TIB to characters received and clearing >IN, pointing to the 
beginning of the Terminal Input Buffer.  
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CRR .( Error handling ) CRR 
:: ABORT ( -- ) 'ABORT @EXECUTE ;; 
:: abort" ( f -- ) 
  IF do$ COUNT TYPE ABORT THEN do$ DROP ;; 
 
CRR .( Interpret ) CRR 
:: ERROR ( a -- ) 
  DROP SPACE TEXT COUNT TYPE 
  $3F LIT EMIT CR ABORT 
:: $INTERPRET ( a -- ) 
  NAME?  ?DUP 
  IF @ $40 LIT AND 
    abort" $LIT compile only" EXECUTE EXIT 
  THEN DROP TEXT NUMBER? 
  IF EXIT THEN ERROR 
:: [ ( -- ) 
  forth_' $INTERPRET  >body forth_@ LIT 'EVAL ! 
  ;; IMMEDIATE 
:: .OK ( -- ) 
  forth_' $INTERPRET >body forth_@ LIT 'EVAL @ = 
  IF ."| $LIT  OK" CR 
  THEN ;; 
:: EVAL ( -- ) 
  BEGIN TOKEN DUP @ 
  WHILE 'EVAL @EXECUTE \ ?STACK 
  REPEAT DROP .OK ;; 
 
CRR .( Shell ) CRR 
:: QUIT ( -- ) 
  ( =TIB) $80 LIT 'TIB ! 
   [ BEGIN QUERY EVAL AGAIN 
 
CRR .( Compiler Primitives ) CRR 
:: ' ( -- xt ) 
  TOKEN NAME? IF EXIT THEN 
  ERROR 
:: ALLOT ( n -- ) CP +! ;; 
:: , ( w -- ) HERE DUP 1+ CP ! ! ;; 
:: [COMPILE] ( -- ; <string> ) 
  '  4000000 LIT + , ;; IMMEDIATE 
 
CRR 
:: COMPILE ( -- ) R> DUP @ , 1+ >R ;; 
:: LITERAL $A79E79E LIT , , 
  ;; IMMEDIATE 
:: $," ( -- ) ( CHAR " ) 
  22 LIT WORD 
  DUP @ $FF LIT AND 
  4/ + 1+ CP ! anew ;; 
:: (CALL) ( a -- call ) FFFFFF LIT AND 4000000 LIT OR ;; 
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Interpreter 
 
ABORT Execute the command whose address is in the system variable 

'ABORT. This address normally points to QUIT. 
abort" When the top item on stack is non-zero, output the following 

packed string and execute ABORT; otherwise, skip over error 
message. It is compiled before a packed error message. 

ERROR Display error message in TEXT buffer and execute ABORT. 
 [ Activate interpreting mode by storing $INTERPRET into variable 

'EVAL, which is executed in EVAL. 
.OK Prints the OK prompt. OK is printed only when the text interpreter 

is in interpreting mode. While compiling, the OK prompt is 
suppressed. 

EVAL Interpreter loop, which parses strings from the Terminal Input 
Buffer, and the command in 'EVAL to process a string, either 
executing it with $INTERPRET or compiling it with $COMPILE. 

$INTERPRET Processes a string at “a”. If it is a valid command, execute it; 
otherwise, convert it to a number. Failing that, execute ERROR and 
return to QUIT.  

 
Compiler Primitives 
 
‘ Search dictionary for following name, and return its code field 

address if a command is found; otherwise, print a warning message 
with “?”. 

ALLOT Allocate “n” cells of memory on top of dictionary. 
, Compile an integer “w” to dictionary, and add the new item to the 

growing command list of the current command under construction.  
This is the primitive compiler. 

[COMPILE]  Compile the code field address of the next command. It compiles an 
immediate command, even if it would otherwise be executed. 

COMPILE  Compile the code field address of the next command. It forces 
compilation of a command at run time. 

LITERAL Compile an integer literal. It first compiles doLIT, followed by an 
integer vale from the stack. When doLIT is executed, it extracts the 
integer in the next program word and pushes it on the stack. 

$, Compile a packed string. String text is taken from the input stream 
and terminated by a double quote. A token (such as . "| or $"|) must 
be compiled before the string to form a sting literal. 

(CALL) Compile or assemble a subroutine CALL instruction with the code 
field address on the stack. Compound commands are compiled as 
lists of subroutine calls. 
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CRR .( Name Compiler ) CRR 
:: ?UNIQUE ( a -- a ) 
  DUP NAME? 
  IF TEXT COUNT TYPE ."| $LIT reDef " 
  THEN DROP ;; 
:: $,n ( a -- ) 
  DUP @ 
  IF ?UNIQUE 
    ( na) DUP NAME> CP ! 
    ( na) DUP LAST ! \ for OVERT 
    ( na) 1- 
    ( la) CONTEXT @ SWAP ! EXIT 
  THEN ERROR 
 
CRR .( FORTH Compiler ) CRR 
 
:: $COMPILE ( a -- ) 
  NAME? ?DUP 
  IF @ $80 LIT AND 
    IF EXECUTE 
    ELSE (CALL) , anew 
    THEN EXIT 
  THEN DROP TEXT NUMBER? 
  IF LITERAL anew EXIT 
  THEN ERROR 
:: OVERT ( -- ) LAST @ CONTEXT ! ;; 
:: ; ( -- ) 
  $179E79E LIT , [ OVERT ;; IMMEDIATE 
:: ] ( -- ) 
  forth_' $COMPILE >body forth_@ LIT 'EVAL ! ;; 
:: : ( -- ; <string> ) 
  TOKEN $,n ] ;; 
 
CRR .( Tools ) CRR 
:: dm+ ( b u -- b ) 
  OVER 6 LIT U.R SPACE 
  FOR AFT DUP @ 9 LIT U.R 1+ 
  THEN NEXT ;; 
:: DUMP ( b u -- ) 
  BASE @ >R HEX  8 LIT / 
  FOR AFT CR 8 LIT dm+ 
  THEN NEXT DROP R> BASE ! ;; 
 
CRR 
:: >NAME ( xt -- na | F ) 
  CONTEXT 
  BEGIN @ DUP 
  WHILE 2DUP NAME> XOR 
    IF 1- 
    ELSE SWAP DROP EXIT 
    THEN 
  REPEAT SWAP DROP ;;  
:: .ID ( a -- ) 
  TEXT UNPACK$ 
  COUNT $01F LIT AND TYPE SPACE ;; 
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Name Compiler 
 
?UNIQUE Display a warning message to show that the name of a new command 

is the same as a command already in the dictionary. 
$,n Build a new header in the dictionary using the name string already 

packed in the WORD buffer. Fill in the link field with the address in 
LAST. The top of the dictionary is now the code field of a new 
command, ready to accept commands and tokens. 

$COMPILE Process a string at “a”, and compile a new token, a call instruction, in 
the dictionary. This dictionary pointer in CP is incremented, and is 
ready to compile the next token. 

OVERT Link a new command to the dictionary and make it available for a 
dictionary search. OVERT changes CONTEXT to point to the name 
field of this new command, and extends the dictionary chain to 
include a new command. 

; Terminate a compound command. Compile a RET instruction to 
terminate a token list. Link this command to the dictionary, and 
change the text interpreter to interpreting mode. 

] Activate compiling mode by writing the address of $COMPILE into 
system variable 'EVAL. 

: Create a new compound command. Take the next input string to build 
a new header. Now, its code field is on top of the command 
dictionary, and is ready to accept new tokens. 

 
Tools 
 
dm+ Display 8 words from address “b”. Return new address b+8 for the 

next dm+. 
DUMP Display “u” words from address “b”, with 8 words on a line. A line 

begins with an address, followed by 8 words in hex. 
 
Decompiler Tools 
 
Since name fields are linked into a list in the command dictionary, it is fairly easy to 
locate a command by searching its name in the command dictionary.  However, 
finding the name of a command from its code field address is more difficult, because 
the name field has variable length, and we cannot scan the name field backwards very 
easily. 
 
>NAME Return a code field address, “xt”, of a command from its name field 

address, “na”. If “xt” is not a valid code field address, return 0.  It 
follows the linked list of the command dictionary, and from every 
name field address we can get a corresponding code field address. If 
this address is not the same as “xt”, we go to the name field of the 
next command. If “xt” is a valid code field address, we surely will 
find it. If the entire dictionary is searched and “xt” is not found, it is 
not a valid code field address. 

.ID Display the name of a command, given its name field address “a”.  It 
replaces non-printable characters in a name by underscores. 
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CRR 
:: SEE ( -- ; <string> ) 
  ' CR 
  BEGIN 
    20 LIT FOR 
      DUP @ DUP 3F000000 LIT AND 
      4000000 LIT XOR 
      IF U. SPACE 
      ELSE FFFFFF LIT AND >NAME 
        ?DUP IF .ID THEN 
      THEN 1+ 
    NEXT KEY 0D LIT =  \ can't use ESC on terminal 
  UNTIL DROP ;; 
:: WORDS ( -- ) 
  CR CONTEXT 
  BEGIN @ ?DUP 
  WHILE DUP SPACE .ID 1- 
  REPEAT ;; 
CODE .S ( dump all 33 stack items ) 
  PAD tx stxp 
  stxp stxp stxp stxp 
  stxp stxp stxp stxp 
  stxp stxp stxp stxp 
  stxp stxp stxp stxp 
  stxp stxp stxp stxp 
  stxp stxp stxp stxp 
  stxp stxp stxp stxp 
  stxp stxp stxp stxp 
  PAD $21 LIT 
  FOR DUP ? 1+ NEXT 
  DROP PAD @ CR ;; 
 
CRR .( file download and upload ) CRR 
:: READ PAD 
  BEGIN KEY DUP 1A LIT XOR 
  WHILE OVER ! 1+ 
  REPEAT DROP 
  PAD - SPAN ! ;; 
:: OK 'TIB @ >R #TIB @ >R >IN @ >R 
  PAD 'TIB ! SPAN @ #TIB ! 0 LIT >IN ! 
  EVAL R> >IN ! R> #TIB ! R> 'TIB ! ;; 
:: SEND ( b u -- ) 
  CR 
  FOR AFT DUP @ <# # # # # # # # # #> TYPE 1+ 
    DUP 7 LIT AND IF SPACE ELSE CR THEN 
  THEN NEXT 
  DROP ;; 
:: FORGET ( -- ) 
  TOKEN NAME? ?DUP 
  IF 1- DUP CP ! 
     @ DUP CONTEXT ! LAST ! 
     DROP EXIT 
  THEN ERROR 
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SEE Search the next word in the input stream for a command, and decompile 

the first 32 program words in its code field. Display an error message if 
the next word is not a valid command. It scans the code field and looks 
for CALL instructions. If it finds a CALL instruction, use the address in 
the address field to find this command in the command dictionary, and 
display its name. If a word in the code field is not a CALL instruction, 
just display its value. 

WORDS Display all names in the command dictionary. The display order of 
commands is reversed from compiling order. The last defined command 
is displayed first. 

.S Display the contents of the data stack on screen in free format. The 
bottom of the stack is shown on the right. The topitem is shown on the 
left. The eP32 has a 33-level hardware data stack in the CPU, and it 
wraps around like a circular buffer. .S displays all 32 stack levels and 
the T register. 

 
File Download and Upload 
 
If the eForth system is connected to the serial port of a computer, the computer can 
emulate a terminal to communicate with eForth.  Most terminal emulation programs 
can send large text files to the serial port.  The user can now compose and edit large 
applications as text files on the computer.  The text file can then be downloaded to 
eForth for interpreting or compiling. 
 
PAD is a free memory area 80 words above the top of the command dictionary.  It 
can be used to store temporary data, and is an ideal place to download a text file. 
 
READ Accept characters from terminal and store them in PAD buffer. A Ctrl-Z 

character terminates the READ command. After a file is downloaded, 
the length of the file is stored in variable SPAN. 

OK Interpret text downloaded in PAD buffer. In QUIT, EVAL interprets text 
in the Terminal Input Buffer. EVAL uses three system variables to 
manage the Terminal Input Buffer: 'TIB points to the beginning of the 
text buffer, #TIB contains the length of the text, and >IN points to a 
character in the text buffer currently being interpreted. OK saves these 
three variables, replaces them by PAD, SPAN, and a 0, and then calls 
EVAL to interpret the text in the PAD buffer. After the text is interpreted 
successfully, 'TIB, #TIB and >IN are restored and the text interpreter is 
restored to its normal state. 

SEND Upload contents of a memory area, “n” words starting at address “b”, to 
the terminal. Each word is sent as 8 hex digits, followed by a space. A 
carriage return-linefeed pair is sent every 8 words. 

FORGET Search the next word in the input stream for a command. If it is a valid 
command, delete it and all subsequent command records from the 
dictionary. 
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CRR .( Hardware reset ) CRR 
::   DIAGNOSE     ( - ) 
     $65 LIT 
\ 'F'  prove UM+ 0<         \ carry, TRUE, FALSE 
     0 LIT 0< -2 LIT 0<     \ 0 FFFF 
     UM+ DROP               \ FFFF ( -1) 
     3 LIT UM+ UM+ DROP     \ 3 
     $43 LIT UM+ DROP       \ 'F' 
\ 'o' logic: XOR AND OR 
     $4F LIT $6F LIT XOR    \ 20h 
     $F0 LIT AND 
     $4F LIT OR 
\ 'r' stack: DUP OVER SWAP DROP 
      8 LIT 6 LIT SWAP 
      OVER XOR 3 LIT AND AND 
      $70 LIT UM+ DROP       \ 'r' 
\ 't'-- prove BRANCH ?BRANCH 
      0 LIT IF $3F LIT THEN 
      -1 LIT IF $74 LIT ELSE $21 LIT THEN 
\ 'h' -- @ ! test memeory address 
      $68 LIT $40 LIT ! 
      $40 LIT @ 
\ 'M' -- prove >R R> R@ 
      $4D LIT >R R@ R> AND 
\ 'l'  -- prove 'next' can run 
      61 LIT $A LIT FOR 1 LIT UM+ DROP NEXT 
\ 'S' -- prove ldp, stp 
      $50 LIT $3 LIT 
      $30 LIT tx stxp stxp 
      $30 LIT tx ldxp ldxp 
      xor 
\ 'emi' -- prove mul, dupy, popy 
      $656D LIT $1000000 LIT UM* 
      SWAP rr8 rr8 rr8 
\ ' C' -- prove div 
      $2043 LIT 0 LIT $100 LIT UM/MOD 
\      ;; 
 
CRR 
:: COLD ( -- ) 
   DIAGNOSE 
   CR ."| $LIT eP32q v" 
   DECIMAL 
   CC LIT <# # # ( CHAR . ) 2E LIT HOLD # #> TYPE 
   CR QUIT 
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Hardware Reset 
 
When eP32 is powered up, or when it is reset, it executes COLD to start the eForth 
system running.  The first thing COLD does is call a diagnostic routine, DIAGNOSE, 
to run a series of tests, verifying that the eP32 core is working properly.  It is 
superfluous once the eP32 is fully debugged.  However, in implementing the eP32 
on a new FPGA or on a custom chip, DIAGNOSE is extremely helpful in hardware 
simulation and in hardware verification.  In about 1000 cycles, you can observe most 
instructions executed, and verify that they execute correctly. 
 
DIAGNOSE tests the following machine and primitive commands in the eP32: 
LIT 
0< 
BZ 
UM+ 
DROP 
XOR 
AND 
OR 
DUP 
OVER 
SWAP 
BRA 
@ 
! 
>R 
R@ 
R> 
NEXT 
TX 
STXP 
LDXP 
RR8 
UM* 
UM/MOD 
 
Cold Boot 
 
COLD initializes the eP32 to start eForth.  The eP32 is a real FORTH 
microprocessor, and the hardware initializes itself.  COLD does not have much to 
do.  It first executes DIAGNOSE to run a few tests on eP32 machine instructions, 
displays a sign-on message, and then jumps to QUIT.  COLD is the first compound 
command executed after power up or after chip reset.  Its address is placed in 
memory location 0, which is the hardware reset vector. 
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CRR .( Structures ) CRR 
:: BEGIN ( -- a ) anew HERE ;; IMMEDIATE 
:: THEN ( A -- ) BEGIN SWAP +! ;; IMMEDIATE 
:: FOR ( -- a ) 1C79E79E LIT , BEGIN ;; IMMEDIATE 
CRR 
:: NEXT ( a -- )  5000000 LIT OR , anew ;; IMMEDIAT E 
:: UNTIL ( a -- ) 2000000 LIT OR , anew ;; IMMEDIAT E 
:: AGAIN ( a -- ) 0000000 LIT OR , anew ;; IMMEDIAT E 
:: IF ( -- A )   BEGIN 2000000 LIT , ;; IMMEDIATE 
CRR 
:: AHEAD ( -- A ) BEGIN 0000000 LIT , ;; IMMEDIATE 
:: REPEAT ( A a -- ) AGAIN THEN ;; IMMEDIATE 
:: AFT ( a -- a A ) DROP AHEAD BEGIN SWAP ;; IMMEDI ATE 
:: ELSE ( A -- A )  AHEAD SWAP THEN ;; IMMEDIATE 
:: WHEN ( a A -- a A a ) IF OVER ;; IMMEDIATE 
:: WHILE ( a -- A a )    IF SWAP ;; IMMEDIATE 
 
CRR 
:: ABORT" ( -- ; <string> ) 
   forth_' abort" >body forth_@ LIT (CALL) HERE ! 
   $," ;; IMMEDIATE 
:: $" ( -- ; <string> ) 
   forth_' $"| >body forth_@ LIT (CALL) HERE ! 
   $," ;; IMMEDIATE 
:: ." ( -- ; <string> )  
   forth_' ."| >body forth_@ LIT (CALL) HERE ! 
   $," ;; IMMEDIATE 
 
CRR 
': doVAR popr ret 
:: CODE ( -- ; <string> ) TOKEN $,n OVERT align ;; 
:: CREATE ( -- ; <string> ) CODE  
    forth_' doVAR >body forth_@ LIT (CALL) , ;; 
:: VARIABLE ( -- ; <string> ) CREATE 0 LIT , ;; 
:: CONSTANT CODE $A040000  LIT , , ;; 
:: DOES ( -- ) R> (CALL) LAST @ NAME> ! ;; 
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Structures 
 
BEGIN Begin a loop structure.  Leave address “a” of the current program word 

on the stack. 
THEN Resolve address field in a transfer instruction at “a”. 
FOR Assemble a PUSH instruction and leave the address of the next word 

“a” on the stack. 
NEXT Assemble a NEXT instruction using target address “a”. 
UNTIL Assemble a BZ instruction using target address “a”.   
AGAIN Assemble a BRA instruction using target address “a”.   
IF  Assemble a BZ instruction whose address, “a”, is left on the stack. 
AHEAD Assemble a BRA instruction whose address, “a”, is left on the stack. 
REPEAT Assemble a BRA instruction using target address “a”. Use the address 

of the next program word to resolve the address field of the branch 
instruction at “a”..   

AFT  Assemble a BZ instruction and leave its address as “a”,. Replace the 
address “a” left by FOR with the address of the next program word. 

ELSE Assemble a BRA instruction, and use the address of the next program 
word to resolve the address field of the BZ instruction in “a”..  Replace 
“a”with the address of its BRA instruction. 

WHILE Assemble a BZ instruction and leave its address, “a”, on the stack.  
Address “a” is swapped to the top of the data stack.   

 
String Commands 
 
ABORT" Compile an error message. This error message is displayed when the top 

of the stack is non-zero. 
."  Compile a string literal, which will be displayed at run time. 
$"  Compile a string literal. When it is executed, only the address of the 

string is left on the data stack for the next commands to access this 
string. 

 
Defining Commands 
 
Defining commands are molds to create many commands that share the same run time 
execution behavior. 
 
CODE Create a new primitive command that is intended to contain 

machine instructions. 
: Create a new compound command to compile a tokens list. The text 

interpreter is switched to compiling mode, which handles integer 
literals and control structures more gracefully. 

CREATE Create a new data array without allocating memory. 
VARIABLE  Create a new variable, initialized to 0. 
CONSTANT Create an integer constant. 
DOES Define the run time execution routine for a new class of commands.  

This execution routine follows the DOES command.  It is similar 
to the DOES> command that we used in the assembler. 



 138 

CRR 
(makehead) .( ( -- ) 29 LIT PARSE TYPE ;; IMMEDIATE  
(makehead) \ ( -- ) #TIB @ >IN ! ;; IMMEDIATE 
(makehead) ( 29 LIT PARSE 2DROP ;; IMMEDIATE 
(makehead) IMMEDIATE $80 LIT LAST +! ;; 
 
CRR 
(makehead) EXIT popr pops ret 
(makehead) EXECUTE pushr ret 
(makehead) ! tx stx ret 
(makehead) @ tx ldx ret 
(makehead) R> popr tx popr xt pushr ret 
(makehead) R@ popr tx popr pushs pushr xt pushr ret  
(makehead) >R popr tx pushr xt pushr ret 
(makehead) SWAP 
   pushr tx popr xt ret 
(makehead) OVER 
   pushr pushs tx popr 
   xt ret 
(makehead) 2DROP 
   pops pops ret 
 
(makehead) +  add ret 
(makehead) NOT com ret 
(makehead)  NEGATE 
   com 1 ldi add ret 
(makehead) 1- 
   -1 ldi add ret 
(makehead) 1+ 
   1 ldi add ret 
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Makehead Commands 
 
(makeHead) compiles only a header in the target dictionary and such commands are 
invisible to the metacompiler.  In contrast, the “::” command compiles a header in 
the target dictionary and a header in the metacompiler, and the command thus defined 
will compile itself to the target dictionary when subsequently invoked.  After 
(makehead) commands are defined in the target dictionary, they can still be used in 
the metacompiler as usual. 
 
.( Display the following string, delimited by ). 
\ Start a comment. Ignore all characters until end of line. 
 ( Start a comment. Ignore the following string, delimited by ).  
IMMEDIATE  Set the immediate bit in the name field of the last defined command.  

Such a command will be executed, not compiled, in compiling 
mode. 

 
Redefine Macro Commands 
 
A set of macro commands were defined in eP32 assembler to produce optimized code 
in the eForth system.  These commands are also needed in the target system.  Here 
they are re-defined as primitive commands for the eP32 target system.  In the eForth 
target, they will be compiled as a subroutine call without optimization.  To produce 
optimized code for the target, we need an optimizing assembler for the target.  It was 
so implemented in one of our earlier eP32 systems, and was fairly complicated.  We 
decide to leave it out for this XP2 FPGA implementation. 
 
Command Function 
EXIT  Return from subroutine 
EXECUTE Jump to address 
!  Store integer to address 
@  Fetch integer from address 
R>  Pop from return stack 
R@  Copy top of return stack 
>R  Push on return stack 
SWAP Exchange top two integers on stack 
OVER  Duplicate second integer on stack 
2DROP  Discard two integers off stack 
+  Add top two integers on stack 
NOT Complement top of stack 
NEGATE  Negate top of stack 
1-  Add -1 to top of stack 
1+  Add 1 to top of stack 
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(makehead) BL 
   20 ldi ret 
(makehead) +! 
   tx ldx add stx 
   ret 
(makehead) - 
   com add 1 ldi add 
   ret 
(makehead) OR 
   com pushr com 
   popr and com ret 
(makehead) ROT 
   pushr pushr tx popr 
   popr xt ret 
(makehead) 2DUP 
   pushs pushr pushr 
   pushs tx popr xt popr 
   ret 
(makehead) 2! 
   tx pushr stxp 
   popr stx ret 
(makehead) 2@ 
   tx ldxp ldx ret 
(makehead) COUNT  
   tx ldxp pushr xt 
   popr ret 
 
(makehead) DUP pushs ret 
(makehead) DROP pops ret 
(makehead) AND and ret 
(makehead) XOR xor ret 
(makehead) COM com ret 
 
h forth_@ 
 
0 org  
forth_' COLD >body forth_@ #, 
0 #, 0 #, 0 #, 
 
$24 org 
$80 #, 
0A #, 
lasth forth_@ #, 
             #, 
lasth forth_@ #, 
forth_' $INTERPRET >body forth_@ #, 
forth_' QUIT >body forth_@ #, 
0 #, 
0 #, 
lasth forth_@ #, 
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BL  Return $20 
+!  Add second integer to address on top of stack 
-  Subtract top of stack from second integer 
OR OR top two integers on stack 
ROT  Rotate third integer to top of stack 
2DUP Duplicate top two integers on stack 
2!  Store second and third integers as a double integer to the address on 

top of stack 
2@  Fetch double integer from address on top of stack 
COUNT  Read contents from address on top of stack; increment address 
DUP  Duplicate top of stack 
DROP  Discard top of stack 
AND  AND top two integers on stack 
XOR  XOR top two integers on stack 
COM 1’s Complement of top of stack 
 

Initialize System Variables 

 
When the eP32 powers up, the P register is cleared to 0, so we have to have some 
valid machine instruction at address 0 to boot up the eP32.  The eForth boot up 
routine is the command COLD.  Therefore, in memory location 0, we assemble a 
JMP COLD instruction. 
 
Memory locations 1-$1F contain an interrupt vector table for interrupt services.  
However, no interrupt is expected in this eP32 system, and this area is cleared to 0.  
System variables are in the area between $20 and $2F.  They contain vital 
information for the eP32 eForth system to work properly.  Only the following system 
variables have to be initialized: 
 
System 
Variable 

Address Initial 
Value 

Function 

'TIB $24 $80 Pointer to Terminal Input Buffer. 
BASE $25 $0A Number base for numeric conversions. 
CONTEXT $26 $7C1 Pointer to name field of last command in 

dictionary. 
CP $27 $7C3 Pointer to top of dictionary, first free memory 

location to add new commands. It is saved by "h 
forth_@" on top of the source code page. 

LAST $28 $7C1 Pointer to name field of last command. 
'EVAL $29 $4A0 Execution vector of text interpreter, initialized to 

point to $INTERPRET.  It may be changed to 
point to $COMPILE in compiling mode. 

'ABORT $2A $4D2 Pointer to QUIT command to handle error 
conditions. 

tmp $2B $0 Scratch pad. 
cpi $2C $0 Instruction slot counter for assembler. 
cpw $2D $7C3 Pointer to top of dictionary, first free memory 

location to assemble machine instructions. 
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6.6 eP32 Simulator 
 
An accurate and fast logic simulator is extremely valuable in designing and testing a 
new CPU.  It is also very useful in separating hardware and software development, 
so that hardware and software can be developed simultaneously.  This eP32 
simulator served me well in the process of developing the eP32 CPU and its 
associated eForth system simultaneously. 
 

 
 
Figure 37.  eP32 Simulator 

 
This eP32 simulator faithfully replicates the logic behavior of the eP32 CPU on a 
cycle-by- cycle basis.  The eP32 CPU is composed of a set of registers and two 
stacks.  The registers and stacks latch input signals on the rising edge of the master 
clock.  It is very simple to simulate this behavior logically in software. 
 
The adder in the eP32 produces a 32-bit sum and a carry bit.  To allow maximal 
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programming flexibility, the carry bit must be preserved in all registers and on stacks.  
Each register and all stack elements are represented by two 32-bit words.  The first 
word contains the current value of the register, and the second word contains the carry 
bit associated with this value. 
 
A large array, REGISTER, is opened to host these 64-bit double integers.  It is 
divided in two banks: a FROM bank and a TO bank.  The FROM bank contains 
current values of all registers and all stack elements.  A machine instruction takes 
data in the FROM bank, modifies them, and writes updated data into the TO bank.  
The rising edge of the master clock copies the TO to the FROM bank, and thus 
simulates a machine instruction.  Multiplexers in the eP32 are replaced by FORTH 
words that perform logic functions and update values from the FROM bank to the TO 
bank. 
 
The Slot Machine, which fetches a program word from memory, and executes 5 
machine instructions in this word, is simulated by a 32-bit counter.  The least 
significant 3 bits in this counter steps through slots 0 to 5 in 6 clock cycles.  Then 
this 3-bit field is cleared to zero and the upper 29-bit field is incremented.  Therefore, 
the upper 29-bit field in this counter gives an accurate program word count. 
 
The most interesting feature of this eP32 simulator is that it vectors KEY and EMIT 
commands to equivalent Windows functions “get” and “put”, so that the simulator can 
actually run eP32 eForth interactively on a Windows computer, and produces identical 
outputs as actual an eP32 microprocessor would do on a terminal.  The simulator 
was proven to run identically to an actual eP32 microprocessor.  This simulator can 
be used for software development, in place of a real eP32 microprocessor. 
 
The source code of this simulator is in SIM32q.F.  It is loaded at the end of 
META32q.F, which builds an eP32 eForth system in memory array “ram”.  The 
simulator reads program words from this array and executes instructions contained in 
these program words. 
 
The KEY and EMIT commands in the target eP32 system are patched so that eForth 
accepts characters from a PC keyboard and sends characters to the weFORTH console 
window on the PC screen.  We add two machine instructions in the simulator: 
Instruction “get” (code $3E) receives a character from the PC and instruction “put” 
(code $3F) sends a character to the PC.  Program word $3E11E79E contains these 
machine instructions: get/ret/nop/nop/nop, and is patched into the code field of KEY.  
Program word $3F11E79E contains these machine instructions: put/ret/nop/nop/nop, 
and is patched into code field of EMIT.     
 
Once the KEY and EMIT commands are patched to do equivalent Windows functions, 
this simulator can actually run the eP32 eForth interactively, and it produces identical 
output as actual eP32 microprocessor would do on a terminal.   
 
“forth_forget h” truncates the eForth dictionary back to where “h” was defined.  It 
thus deletes words defined in the metacompiler, assembler, kernel, and target eP32.  
eForth is cleaned to a pristine state to host a new application, which is the eP32 
simulator. 
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To manipulate double integers representing a value in registers and stacks, we need a 
set of ALU commands operating on double integers: 
 
Command Function 
D+  Add top two double integers. 
D-  Subtract top double integer from second double integer. 
DNEGATE  Negate top double integer. 2’s complement. 
D2/  Shift double integer to right by 1 bit. 
D2*  Shift double integer to the left by 1 bit. 
LIMIT Limit stacks depths are 256 levels.  
RANGE  Limit program size to 32kB, the size of the ‘RAM’ array 
CLOCK  A variable that has a 29-bit program word count field and a 3-bit 

SLOT field. The SLOT field sequences program word fetch and 
execution of up to 5 instructions in the program word. 

BREAK   A variable holding breakpoint address. 
(REGISTER) A variable pointing either to the FROM bank or to the TO bank. 
FROM Switch register array to the FROM bank. 
TO Switch register array to the TO bank. 
REGISTER  Base address of registers and stack arrays. 
 
The eP32 CPU is paced by a single master clock.  Registers, stacks, and memory 
contents are latched on the rising edge of the master clock.  This latching action must 
be simulated accurately.  The eP32 Simulator uses two register arrays, a FROM bank 
and a TO bank.  Logic circuitry takes data from the FROM array and operates on 
them according to the current machine instruction, and stores results in the TO array.  
The rising edge of the master clock is simulated by copying the contents of the TO 
array to the FROM array, and then the system is ready for actions in the next clock 
cycle. 
 
Registers and stacks are defined as pointers pointing into the REGISTER array: 
 
Register Function 
P Program counter 
T Accumulator, top item on data stack 
S Second item on data stack 
R Top of return stack 
X Address register 
I Instruction latch 
I1 Machine instruction in slot1 
I2 Machine instruction in slot2 
I3 Machine instruction in slot3 
I4 Machine instruction in slot4 
I5 Machine instruction in slot5 
RP Return stack pointer 
SP Data stack pointer 
RSTACK0 Origin of return stack 
SSTACK0 Origin of data stack 
RSTACK Address of top of return stack 
SSTACK Address of top of data stack 
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HEX 
3E11E79E forth_' KEY  >body forth_@ ram! 
3F11E79E forth_' EMIT >body forth_@ ram! 
forth_forget h 
DECIMAL 
: D+ ROT + >R UM+ R> + ; 
: DNEGATE NEGATE >R NEGATE DUP IF -1 ELSE 0 THEN R>  + ; 
: D- DNEGATE D+ ; 
: D2/ DUP 2/ >R 1 AND IF 2/ $80000000 OR ELSE 2/ $7 FFFFFFF AND THEN 
R> ; 
: D2* 2* >R DUP $80000000 AND IF 2* R> 1 OR ELSE 2*  R> THEN ; 
 
$1F CONSTANT LIMIT ( stack depth ) 
$1FFF CONSTANT RANGE ( program memory size in words  ) 
VARIABLE CLOCK ( slot is in the last 3 bits ) 
VARIABLE (REGISTER) ( where registers and stacks ar e ) 
VARIABLE BREAK 
 
: REGISTER  (REGISTER) @ ; 
: FROM  PAD (REGISTER) ! ; 
: TO    PAD $600 + (REGISTER) ! ; 
 
: P     REGISTER ; 
: I     REGISTER 4 + ; 
: I1    REGISTER 8 + ; 
: I2    REGISTER 9 + ; 
: I3    REGISTER 10 + ; 
: I4    REGISTER 11 + ; 
: I5    REGISTER 12 + ; 
: RP    REGISTER 13 + ; 
: SP    REGISTER 14 + ; 
: T     REGISTER 16 + ; 
: R     REGISTER 24 + ; 
: X     REGISTER 32 + ; 
: S     REGISTER 56 + ; 
: RSTACK  RP C@ LIMIT AND 8 * REGISTER + $100 + ; 
: SSTACK  SP C@ LIMIT AND 8 * REGISTER + $200 + ; 
 
: CYCLE TO P FROM P $600 CMOVE 1 CLOCK +! ; 
 
: JUMP  CLOCK @ 7 OR CLOCK ! ; 
 
: RPUSH ( d -- , push d on return stack ) 
        FROM R 2@ RP C@ 1 + LIMIT AND TO RP C! RSTA CK 2! R 2! ; 
 
: RPOPP ( -- d , pop d from return stack ) 
        FROM R 2@ RSTACK 2@ RP C@ 1 - LIMIT AND TO RP C! R 2! ; 
 
: SPUSH ( d -- , push d on data stack ) 
        FROM S 2@ SP C@ 1 + LIMIT AND TO SP C! SSTA CK 2! 
        FROM T 2@ TO S 2! 
        TO T 2! ; 
 
: SPOPP ( -- d , pop d from data stack ) 
        FROM T 2@ 
        FROM S 2@ TO T 2! 
        FROM SSTACK 2@ SP C@ 1 - LIMIT AND TO SP C!  S 2! ; 
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The Slot Machine paces the simulator through eP32 instructions stored in ‘RAM’ 
memory, just like the real eP32 CPU would do.  Instead of using a single phase clock 
as master clock, we use a CLOCK variable as source of a multiple phase clock.  The 
lowest three bits in CLOCK, Slot Counter, runs the slots in the slot machine.  Its 
value indicates which slot is currently running.  If it is 0, Slot0 is executed.  If it is 1, 
Slot1 is executed.  Etc.  On the rising edge of the master clock, this slot counter is 
incremented.  When slot count is 5, Slot5 is executed and the slot counter is reset to 
0, so that next time Slot0 is executed. 
 
JUMP also clears the Slot Counter to 0.  JUMP is used by all transfer instructions to 
force the slot machine to enter slot0 on the rising edge of the next clock. 
 
Command Function 
CYCLE Simulate rising edge of master clock by incrementing CLOCK. 
JUMP Fetch next program word by forcing a 7 into Slot Counter in CLOCK. On 

the rising edge of the master clock, CLOCK is incremented and clears 
Slot Counter to 0.  The upper 29-bit field in CLOCK is incremented, 
indicating that a new word is fetched from memory. Thus the upper 29 
bits in CLOCK keeps an accurate count of eP32 words that have been 
executed. 

RPUSH Push double integer d on return stack. 
RPOPP Pop return stack and leave double integer on system stack. 
SPUSH Push double integer d on data stack. 
SPOPP  Pop data stack and leave double integer on system stack. 
 

“continue” simulates functions performed in slot0 in the Slot Machine, which fetches 
the next program word from memory and stores it in instruction register I.  Machine 
instructions in slot1 to slot5 are extracted to operate a decoder, which generates 
control signals for all components in the eP32. 
 
“continue” also increments the P register, and copies machine instructions in slot1 to 
slot5 to instruction registers I1-I5. 
 
To execute a machine instruction, the simulator takes current values in registers and 
stacks in the FROM bank, computes desired new values, and deposits them back in 
registers and stacks in the TO bank.  On the rising edge of the master clock, which is 
simulated by command CYCLE, the contents of the TO bank are copied to the FROM 
bank.  Machine instructions are defined as commands in this simulator, and they read 
values in the FROM bank, make necessary changes, and store new values in the TO 
bank. 
 
As registers and stacks are represented in double integers, math operations are 
performed using double integer math commands defined at the beginning of the 
simulator.  They are D+, D-, DNEGATE, D2*, and D2/. 
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: continue 
        FROM P @ DUP 1+ TO RANGE AND P ! 
        ram@ DUP I ! 
        64 /MOD SWAP I5 C! 
        64 /MOD SWAP I4 C! 
        64 /MOD SWAP I3 C! 
        64 /MOD SWAP I2 C! 
        63 AND I1 C! 
        ; 
 
: nop   JUMP ; 
: ei    ; 
: di    ; 
: bra   I @ TO RANGE AND P ! JUMP ; 
: ret   RPOPP DROP TO RANGE AND P ! 
        JUMP ; 
: bn    SPOPP DROP 0< ( branch on sign ) 
        IF bra ELSE JUMP THEN ; 
: bc    SPOPP SWAP DROP ( branch on carry ) 
        IF bra ELSE JUMP THEN ; 
: bz    SPOPP DROP ( branch on zero ) 
        IF JUMP ELSE bra THEN ; 
: call  FROM P @ 0 RPUSH bra ; 
: next  FROM R 2@ DROP 
        IF ELSE RPOPP 2DROP JUMP EXIT THEN ( exit l oop ) 
        FROM R 2@ DROP 1- 0 TO R 2! ( decrement R )  
        FROM bra ; 
: times FROM R 2@ DROP 
        IF ELSE JUMP EXIT THEN ( exit loop ) 
        R 2@ 1 0 D- TO R 2! ( decrement R ) 
        FROM -1 P +! TO -1 P +! ; 
: pushr SPOPP RPUSH ; 
: dupr  FROM R 2@ SPUSH ; 
: popr  RPOPP SPUSH ; 
: andd  SPOPP DROP TO T 2@ DROP AND 0 T 2! ; 
: xorr  SPOPP DROP TO T 2@ DROP XOR 0 T 2! ; 
: com   FROM T 2@ DROP -1 XOR 0 TO T 2! ; 
: add   SPOPP DROP 0 TO T 2@ DROP 0 D+ TO 1 AND T 2 ! ; 
: mul   FROM X 2@ DROP 1 AND 
        IF S 2@ T 2@ D+ 
        ELSE T 2@ THEN 1 AND 
        2DUP D2/ TO T 2! 
        DROP 1 AND >R 
        FROM X 2@ DROP 2/ $7FFFFFFF AND R> IF $8000 0000 OR THEN TO 0 
X 2! ; 
: div   FROM S 2@ DROP 0 T 2@ DROP 0 D+ 
        1 AND DUP >R DUP 
        IF ELSE 2DROP T 2@ THEN 
        D2* ( diff) 1 AND X 2@ DROP $80000000 AND I F 1 0 D+ THEN TO T 
2! 
        FROM X 2@ DROP 2* R> IF 1+ THEN TO 0 X 2! ;  
: shr   FROM T 2@ DROP 2/ 1 TO T 2! ; 
: shl   FROM T 2@ D2* 1 AND TO T 2! ; 
: rr8   FROM T 2@ DROP DUP 7 FOR D2/ NEXT DROP 0 TO  T 2! ; 
: ldi   FROM P @ 1+ TO RANGE AND P ! 
        FROM P @ RANGE AND ram@ 0 SPUSH ; 
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nop   No operation.  
ei   Enable interrupt.  
di   Disable interrupt.  
bra   Jump to address contained in current instruction. 
ret   Return from a subroutine to main program. Pop return address from 

return stack and store it in P. 
bn   If T<0 is set, jump to address contained in current instruction; else 

continue. 
bc   If Carry is set, jump to address contained in current instruction; else 

continue. 
bz   If T=0, jump to address contained in current instruction; else continue.   
call   Push address in P on R stack, and jump to address contained in current 

instruction; else continue. 
next   If R is not 0, jump to address contained in current instruction, and 

decrement R by 1; else pop R stack and continue. 
times   Micro loop. Similar to “next”, except repeating instructions in current 

program word. 
pushr   Push T onto R stack. Pop S stack to T. 
dupr   Push T onto S stack. Dup R to T. 
popr   Push T onto S stack. Pop R stack to T. 
andd   Pop S stack and AND it to T. 
xorr   Pop S stack and XOR it to T. 
com   Complement T (1’s complement ).   
addd   Pop S stack and add it to T. 
mul   Multiplication step. If X(0)=1, add S to T, otherwise T is not changed.  

Shift T:X pair right by 1 bit. 
div   Division step. If T+S produces a carry, add S to T, otherwise T is not 

changed. Shift T:X pair left by 1 bit. Shift carry into X(0). 
shr   Shift T right by 1 bit. 
shl   Shift T left by 1 bit. 
rr8   Rotate T right by 8 bits. 
ldi   Push T on S stack, read memory word pointed by P into T. Increment P 

by 1. 
pushs   Push T on S stack. 
xt   Push T on S stack. Copy X to T. 
pops Pop S stack to T. 
overr   Push T on S stack. Copy original contents of S to T. 
tx   Copy T to X. Pop S stack to T. 
ldx   Push T on S stack, read memory word pointed by X into T. 
ldxp   Push T on S stack, read memory word pointed by X into T. Increment 

X by 1. 
ldrp   Push T on S stack, read memory word pointed by R into T. Increment 

R by 1. 
stx   Store T into memory pointed by X. Pop S stack to T. 
stxp   Store T into memory pointed by X. Increment X by 1. Pop S stack to T. 
strp   Store T into memory pointed by R. Increment R by 1. Pop S stack to T.  
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We want the simulator to run the eP32 eForth system.  The real eP32 microprocessor 
talks to a host computer through a UART serial port.  Normally we use 
HyperTerminal in Windows to interact with the eP32.  To simulate interaction 
between the eP32 and HyperTerminal, we have to hijack the output of EMIT and send 
it to the weFORTH console window, and intercept keyboard strokes from the 
computer keyboard and feed them to KEY in eForth.  These two functions are 
implemented in the simulator by creating two special machine instructions, “get” and 
“put”, which use machine codes $3E and $3F, respectively. 
 
“get” and “put” are patched into the code fields of KEY and EMIT in the memory 
array “ram” so that when the simulator executes EMIT, a character is displayed on the 
weFORTH console, and when KEY is executed, an ASCII character is accepted from 
the keyboard.  With “get” and “put”, the simulator runs the eP32 eForth system 
identically like the eP32-HyperTerminal system. 
 
get  Force simulator to get a character from keyboard under Windows. 
put Force simulator to send a character to weFORTH console window. 
 

“execute” is a giant case statement that gets “code” from the top of the stack and 
selects the proper commands to simulate a machine instruction in this emulator.  
Since weForth did not bother to define case structure and associated control 
commands, we just use lots of IF-THEN structures to emulate a case structure.  
“code” is duplicated on the stack and compared with consecutive machine code.  If a 
match is found, the corresponding command is executed to simulate that machine 
instruction.  After that, EXIT is executed, and “execute” is terminated.  Further 
comparisons are not necessary. 
 
If “code” does not match a valid machine code, we have a very serious problem.  
Either the eForth program has a bug, or the eP32 simulator has a bug.  This simulator 
is aborted.  The offending “code” is displayed with an error message.  The eForth 
system returns to its default text interpreter, and you can type in eForth commands to 
find and correct this bug.   
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: pushs FROM T 2@ SPUSH ; 
: xt    FROM X 2@ SPUSH ; 
: pops  SPOPP 2DROP ; 
: overr FROM S 2@ SPUSH ; 
: tx    SPOPP TO X 2! ; 
: ldx   FROM X 2@ DROP RANGE AND ram@ 0 SPUSH ; 
: ldxp  ldx 
        FROM X 2@ 1 0 D+ 1 AND TO X 2! ; 
: ldrp  FROM R 2@ DROP RANGE AND ram@ 0 SPUSH 
        FROM R 2@ 1 0 D+ 1 AND TO R 2! ; 
: stx   SPOPP DROP FROM X 2@ DROP RANGE AND ram! ; 
: stxp  stx 
        FROM X 2@ 1 0 D+ 1 AND TO X 2! ; 
: strp  SPOPP DROP FROM R 2@ DROP RANGE AND ram! 
        FROM R 2@ 1 0 D+ 1 AND TO R 2! ; 
: get   KEY DUP $1B = ABORT" done" 
        0 SPUSH ret ; 
: put   SPOPP DROP $7F AND EMIT ret ; 
 
HEX 
: execute ( code -- ) 
        DUP 00 = IF DROP bra   EXIT THEN 
        DUP 01 = IF DROP ret   EXIT THEN 
        DUP 02 = IF DROP bz    EXIT THEN 
        DUP 03 = IF DROP bc    EXIT THEN 
        DUP 04 = IF DROP call  EXIT THEN 
        DUP 05 = IF DROP next  EXIT THEN 
        DUP 06 = IF DROP times EXIT THEN 
\        DUP 07 = IF DROP di    EXIT THEN 
        DUP 08 = IF DROP ldrp  EXIT THEN 
        DUP 09 = IF DROP ldxp  EXIT THEN 
 
        DUP 0A = IF DROP ldi   EXIT THEN 
        DUP 0B = IF DROP ldx   EXIT THEN 
        DUP 0C = IF DROP strp  EXIT THEN 
        DUP 0D = IF DROP stxp  EXIT THEN 
        DUP 0E = IF DROP rr8   EXIT THEN 
        DUP 0F = IF DROP stx   EXIT THEN 
        DUP 10 = IF DROP com   EXIT THEN 
        DUP 11 = IF DROP shl   EXIT THEN 
        DUP 12 = IF DROP shr   EXIT THEN 
        DUP 13 = IF DROP mul   EXIT THEN 
        DUP 14 = IF DROP xorr  EXIT THEN 
        DUP 15 = IF DROP andd  EXIT THEN 
        DUP 16 = IF DROP div   EXIT THEN 
        DUP 17 = IF DROP add   EXIT THEN 
        DUP 18 = IF DROP popr  EXIT THEN 
        DUP 19 = IF DROP xt    EXIT THEN 
        DUP 1A = IF DROP pushs EXIT THEN 
        DUP 1B = IF DROP overr EXIT THEN 
        DUP 1C = IF DROP pushr EXIT THEN 
        DUP 1D = IF DROP tx    EXIT THEN 
        DUP 1E = IF DROP nop   EXIT THEN 
        DUP 1F = IF DROP pops  EXIT THEN 
        DUP 3E = IF DROP get   EXIT THEN 
        DUP 3F = IF DROP put   EXIT THEN 
        . ABORT" :Illegel instruction" ; 
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Here are the commands that run Slot Machine, and show the contents of pertinent 
registers and stacks.  Originally, I thought of implementing a set of break points to 
allow user the freedom to break execution at a number of different memory locations.  
Eventually, I realized that only one break point is necessary and a simple ‘GO’ 
command is sufficient.  This is the G command show below. 
 
Command Function 
.stack  Display the contents of a stack. 
.sstack  Display the contents of data stack. 
.rstack  Display the contents of return stack. 
.registers  Display the contents of all the relevant registers. 
S  Show all the registers and stacks at this cycle.  
sync  Execute the current machine instruction using CLOCK to determine 

which slot is being executed.  CLOCK points to one of the routines in 
SYNC-TABLE, which contains the following entries:  
CONTINUE, fetch next program word  
SYNC1, execute instruction in I1  
SYNC2, execute instruction in I2  
SYNC2, execute instruction in I2  
SYNC3, execute instruction in I3  
SYNC4, execute instruction in I4  
SYNC5, execute instruction in I5 

C Run one clock cycle and display all registers and stacks. 
reset Clear the REGISTER array, simulating hardware reset. 
 

“C” is the single stepper in simulator.  It runs the Slot Machine for one cycle, and 
displays all registers and stacks.  This is the most useful command to debug the eP32 
in the early development stage.  You can see all data in all registers and stacks.  In 
the eP32 eForth system, the first command executed is COLD, which executes a 
diagnostic word, DIAGNOSE.  DIAGNOSE runs simple tests on most machine 
instructions.  By single stepping through DIAGNOSE, you can validate most 
machine instructions.  If all tests in DIAGNOSE run successfully, it is very likely the 
eP32 will run correctly in the FPGA. 
 
“reset” clears the REGISTER array, and initializes the simulator to run at memory 
location 0. 
 
This simulator has a very simple text-based user interface.  The most used 
commands are: 
 
Command Stack 

Effects 
Function 

G  -- Run and stop at address given on FORTH stack. This is a 
very efficient way to set breakpoints and then run till a 
breakpoint is triggered.  It allows the user to execute a 
large portion of the program and stop only at a specified 
location. 

PUSH n -- Push a new integer into the T register and data stack. 
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POP -- Discard contents in T and pop data stack back into T.  
D -- Display memory starting at address in P. 
M a -- Dump 128 words in memory using “show” command. 
RUN -- Continue stepping with any key, terminated by ESC. 
P a -- Start simulating at the address on stack. 
 
This simulator is most effective in debugging short sequences of program words to 
verify that the sequences are executed correctly.  After eP32 machine instructions are 
verified, use the G command to execute a long stretch of program and break only at a 
specified location.  This allows large segments of programs to be tested.  If the 
simulator runs forever and cannot reach the break point you specified, you can stop 
the G command by hitting a key on the keyboard to terminate it. 
 
When weForth runs the metacompiler to compile an eForth system for the eP32, it 
displays names and code field addresses of all commands compiled into the target 
image.  The display is a symbol table.  You can look up a command and find its 
code field address.  The code field addresses are the best place to set your break 
point.  To debug a command, find its code field address and enter it with the G 
command.  The simulator will break at the beginning of this command, and you can 
use the C command to single step through it. 
 
Typing lots of “C” commands is tedious.  The RUN command lessens your typing 
chore.  After executing RUN, the simulator displays registers and stacks and pauses.  
Pressing any key will single step Slot Machine for one cycle.  You can run many 
steps easily this way.  When you want to stop RUN, press the ESC key. 
 
To examine memory, type an address followed by the “M” command.  It will display 
128 words of memory starting from that address.  The “D” command displays 8 
program words starting at this address. 
 
If you want to start debugging at a particular address, type the address followed by the 
“P” command.  This address is stored in the program counter register, P, and “C” or 
“RUN” commands will single step words starting at this memory address. 
 
If you want to change the data stack to run simulation with the data you want on the 
stack, use “PUSH” and “POP” commands.  Type a number followed by “PUSH”, 
and this number is pushed on the data stack in the simulator.  You can enter as many 
numbers on stack as you like in this way.  If you want to pop a number off the data 
stack, type “POP”.   
 
The above commands allow you to set up the eP32 in the simulator exactly the way 
you want before running simulation. 
 
The HELP command displays a help screen to remind you of simulation commands 
and arguments they need on the data stack. 
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: .stack ( add # ) FOR AFT DUP 2@ DROP U. 8 - THEN NEXT DROP CR ; 
: .sstack ." S:" T 2@ IF ." C" THEN U. 
        S 2@ DROP U. SSTACK SP C@ .stack ; 
: .rstack ." R:" R 2@ DROP U. RSTACK RP C@ .stack ;  
: .xstack ." X:" X 2@ DROP U. ; 
: .registers ."  P=" P @ . ."  I=" I @ U. 
        ."  I1=" I1 C@ . ."  I2=" I2 C@ . 
        ."  I3=" I3 C@ . ."  I4=" I4 C@ . 
        ."  I5=" I5 C@ . CR ; 
: S  CR ." CLOCK=" CLOCK @ . .registers 
        .sstack .rstack .xstack ; 
 
: sync  CLOCK @ 7 AND 
        DUP 0 = IF continue DROP EXIT THEN 
        DUP 1 = IF   I1 C@ execute DROP EXIT THEN 
        DUP 2 = IF   I2 C@ execute DROP EXIT THEN 
        DUP 3 = IF   I3 C@ execute DROP EXIT THEN 
        DUP 4 = IF   I4 C@ execute DROP EXIT THEN 
        DUP 5 = IF   I5 C@ execute             THEN  
        DROP JUMP ; 
: C     sync CYCLE S ; 
: reset FROM P $C00 0 FILL 0 CLOCK ! ; 
reset 
 
: G     ( addr -- ) 
        CR ." Press any key to stop." CR 
        BREAK ! 
        BEGIN sync P @ BREAK @ = 
              IF CYCLE C EXIT 
              ELSE CYCLE 
              THEN 
              ?KEY 
        UNTIL ; 
: PUSH  ( n ) pushs TO 0 T 2! ; 
: POP   pops ; 
 
: D     P @ 1- four four ; 
: M     show ; 
: RUN   CR ." Press ESC to stop." CR 
        BEGIN C KEY 1B = UNTIL ; 
: P     DUP FROM RANGE AND P ! TO RANGE AND P ! ; 
 
: HELP  CR ." eP32 Simulator, copyright eForth Grou p, 2000" 
        CR ." C: execute next cycle" 
        CR ." S: show all registers" 
        CR ." D: display next 8 words" 
        CR ." addr M: display 128 words from addr" 
        CR ." addr P: start execution at addr" 
        CR ." addr G: run and stop at addr" 
        CR ." RUN: execute, one key per cycle" 
        CR ; 
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Conclusion 
 
In early 1990's, when I worked with Chuck Moore on the MuP21 chip, he was 
daydreaming one afternoon, and said something like this: "I wish that I had a machine 
like a microwave oven on my kitchen table.  I would put in a piece of silicon and 
turn on the power switch.  After half a hour, I would open the door, and there is my 
chip." 
 
With LatticeXP2-5E FPGA chip on Brevia Kit, I am practising Chuck's dream now, 
on my desk. 
 
You can practise Chuck's dream also.  You can design and produce your own 
microprocessor.  You can write your own programming language and operating 
system.  All you have to do is to sit back, think hard, and find a good application that 
you can sell a million chips. 
 
In the FORTH programming language and in the designs of FORTH microprocessors, 
Chuck Moore reduced computer software and computer hardware to their simplest 
forms, which can be understood, reproduced, and improved by ordinary people like us.  
You do not have to be Intel or Microsoft to make computers and to solve application 
problems. 
 
“Yes, we can!  Yes, we can!  Yes, we can!” 
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Appendix A: eP32 Instruction Set 
 
Here I will present formal definitions of all eP32 instructions.  They begin with the 
assembly mnemonics and a name, followed by their code, usage, stack effects, and 
effects on the carry bit.  These attributes are presented in a table.  Then there is a 
detailed description of the instruction’s function followed by some coding examples.  
Usage rows show how an instruction appears in a 32-bit program word, using 
following notations: 
 
Notation Representation 
00 Highest two bits, not used 
iiiiii Current instruction code in binary   
cccccc 6 bit instruction code 
nnnnnn 6 bit data 
aaaaaa 6 bit address 
xxxxxx 6 don’t care bits 
 
The stack effect row shows how this instruction affects the data stack, return stack, 
and sometimes the X register.  Stack effects are shown in the following style: 
 Items before execution – items after execution 
Items are identified using the following notation: 
 
Notation Representation 
n a general 32-bit integer 
a a 32-bit address 
f a logic flag, true=-1, false=0   
 
If an instruction changes the return stack and the X register, these effects are added to 
the data stack effects separated by colons: 
 n1 n2 – n3 n4 ; R: -- n ; X: -- n 
 
The carry row shows how the carry bit is changed by the instruction. 
 
Coding examples are often taken from the kernel of the eForth system in the files 
KERN32q.F and EF32q.F.  Code fragments are generally shown in machine code 
format.  Complete definitions of code commands are shown in eForth assembly 
format and FORTH compound commands are shown in FORTH format.  You are 
encouraged to read these files and examine these examples in their original context. 
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ADD Addition 
 
Code: 23 
Usage Short Instruction 
Stack Effects ( n1 n2 -- n1+n2 ) 
Carry Change according to n1+n2 
 
Function:  
 
Pop S from the data stack and add it to the T register.   
 
Coding Example: 
 
The primitive addition word in eForth is thus defined: 
CODE UM+  ( n n - n carry ) 
   add pushs 
   ifnc pushs pushs xor ret 
   then 
   1 ldi ret 
: NEGATE ( n -- -n )  com 1 ldi add ; 
: 1- ( a -- a )  -1 ldi add ; 
: 1+ ( a -- a )   1 ldi add ; 
: +! ( n a -- )  tx ldx add stx ; 
: - ( w w -- w )   com add 1 ldi add ; 

 
 
AND  Bitwise AND 
 
Code: 21 
Usage Short Instruction 
Stack Effects ( n1 n2 -- n3 ) 
Carry AND of bits n1(32) and n2(32) 
 
Function:  
 
Pop S from the data stack and bitwise AND it to the T register.  All 33 bits in T are 
affected. 
 
Coding Example: 
 
To generate a 0 in the T register: 
 DUP DUP COM AND 
To convert a numeric digit to its corresponding ASCII code: 
:: DIGIT ( u -- c ) 
  9 LIT OVER < 7 LIT AND + 
  ( CHAR 0 ) 30 LIT +  
;; 
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BC  Branch on Carry 
 
Code: 3 
Usage 00 000011 aaaaaa aaaaaa aaaaaa aaaaaa 
Stack Effects ( n -- ) 
Carry Restored from data stack 
 
Function:  
 
Conditionally branch to the 24-bit address in the bit field 23-0 in the current 16M 
word page of memory, if the Carry flag (Bit 32 of T) is set.  It must be in slot1 of a 
program word.  The current value in the T register is destroyed and the data stack is 
popped back to T.  This instruction is different from BRA, which does not change 
the data stack or T. 
 
Coding Example: 
 
The negative flag T(31) is shifted into carry T(32). BC compiled by IFNC tests this. 
 
CODE ABS ( n -- +n ) 
   pushs shl 
   ifnc ret then 
   negate ret 
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BRA  Branch Always 
 
Code: 0 
Usage 00 000000 aaaaaa aaaaaa aaaaaa aaaaaa 
Stack Effects None 
Carry No change 
 
Function:  
Branch to the 24-bit address in bit field 23-0 in the current 16M word page of memory.  
It must be in slot1 of a program word.  BRA is compiled by ELSE, REPEAT and 
AGAIN to construct branch and loop structures. 
 
Restriction: 
 
This instruction allows the program to be redirected to any location within a 16M 
word page of memory.  It does not cross page boundaries.  To jump to locations 
outside of a memory page, one has to push a target address onto the return stack and 
execute the RET instruction to cause a long jump.  This restriction also applies to 
CALL, BZ, BC, and NEXT.  See also RET. 
 
Coding Example: 
 
To delay 50 or 100 micro seconds: 
CODE 50us 
2 ldi skip 
CODE 100us 
1 ldi 
then 
sta -138 ldi 
begin lda add 
-until 
drop 
ret 
SKIP compiles an unconditional branch, BRA, to THEN, to let the routine ‘50us’ 
share a delay loop with the routine ‘100us’. 
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BZ  Branch on Zero 
 
Code: 2 
Usage 00 000010 aaaaaa aaaaaa aaaaaa aaaaaa 
Stack Effects ( n -- ) 
Carry Restored from data stack 
 
Function:  
 
Conditionally branch to the 24-bit address in the bit field 23-0 in the current 16M 
word page of memory, if the T register contains a 0.  It must be in slot1 of a program 
word.   
 
The T register is destroyed and the data stack is popped back to T.  This instruction is 
different from BRA, which does not change the data stack or T.  BZ is compiled by 
IF, WHILE and UNTIL to construct branch and loop structures. 
 
Coding Example: 
 
CODE ?DUP ( w -- w w | 0 ) 
   pushs 
   if pushs ret then 
   ret 
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CALL Call Subroutine 
 
Code: 4 
Usage 00 000100 aaaaaa aaaaaa aaaaaa aaaaaa 
Stack Effects ( -- ; R: -- a ) 
Carry No change 
 
Function:  
 
Call a subroutine whose address is in bit field 23-0 in the current 16M word page of 
memory.  It must be in slot1 of a program word. 
 
The address of the next program word is pushed onto the return stack.  When a 
return instruction in a subroutine is encountered, this address is popped off of the 
return stack back to the program counter and the next program word is executed to 
resume the execution sequence interrupted by the subroutine call. 
 
Restriction: 
 
This instruction allows the program to call any subroutine within the current 16M 
word page of memory.  It does not cross page boundaries. 
 
Coding Example: 
 
All compound FORTH commands are compiled as subroutine calls.  This is the most 
efficient way to build program lists in FORTH. 
:: HERE ( -- a ) CP @ ;; 
:: PAD ( -- a ) CP @ 100 LIT + ;; 
:: TIB ( -- a ) 'TIB @ ;; 
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COM  Bitwise Complement 
 
Code: 16 
Usage Short Instruction 
Stack Effects ( n – 1-n ) 
Carry Reset to 0Complement of T(32) 
 
Function:  
 
Complement all 33 bits in the T register.  It is a one’s complement operation.  
 
Coding Example: 
 
To generate a 0 in the T register: 
 DUP DUP COM AND 
To generate a -1 in the T register: 
 DUP DUP COM XOR 
The first step is to make two copies of T.  The topmost copy is complemented and 
then ANDed or XORed into second copy of T.  All bits are cleared or set, and the 
result is a 0 or a -1 in T. 
 
: NOT ( w -- w ) com ; 
: NEGATE ( n -- -n )  com 1 ldi add ; 
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 DIV  Divide Step 
 
Code: 22 
Usage Short Instruction  
Stack Effects ( n1 n2 -- n1 n3 ) 
Carry Bit T(31) or Bit 31 from adder 
 
Function:  
 
Conditionally add the S register onto the data stack to the T register if the carry bit 
from addition is 1.  If carry is 0, the T register is not modified.  The T-X register 
pair is then shifted to the left by one bit.  Carry is shifted into X(0). 
 
This DIV instruction is useful as a divide step to implement a fast software division 
routine.  Repeating this instruction 33 times will divide the T-X pair by S. The 
quotient is in X and the remainder is in T. 
 
Coding Example: 
 
Divide a 64-bit positive integer by a positive 31-bit divisor.  A negated divisor is in S.  
The 64-bit dividend is in the T-X register pair. 
 
CODE /MOD ( n n -- r q ) 
   com 1 ldi add pushr 
   tx popr 0 ldi 
   then 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div div div div 
   div 1 ldi xor shr 
   pushr pops popr xt 
   ret
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DROP Discard T Register 
 
Code: 31 
Usage Short Instruction 
Stack Effects ( n -- ) 
Carry Restore from data stack 
 
Function:  
 
Pop S from the data stack and store it in the T register.  The original contents in the T 
register are lost.  In assembler, DROP has an alias, ‘pops’. 
 
Coding Example: 
 
: DROP ( w w  -- )    pops ; 
: 2DROP ( w w  -- ) pops pops ;  
 
 
DUP Duplicate T Register 
 
Code: 26 
Usage Short Instruction 
Stack Effects ( n -- n n ) 
Carry No change 
 
Function:  
 
Duplicate the T register and push it onto the data stack.   In assembler, DUP has an 
alias, ‘pushs’. 
 
Coding Example: 
 
Create 0 in T DUP DUP XOR AND 
Create -1 in T DUP DUP XOR COM 
Decrement T DUP DUP XOR COM ADD 
CODE 0< ( n - f ) 
   shl ifnc pushs pushs xor ret 
   then 
   -1 ldi ret 
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EI   Enable Interrupts 
 
Code: 6 
Usage Short Instruction 
Stack Effects None 
Carry No change 
 
Function:  
 
Enable external interrupts through the INTERRUPT(0-4) pins.  When the eP32 is 
powered up, external interrupts are disabled.  After EI is executed, the CPU will 
respond to external interrupts.  Interrupt pins are sampled in slot0.  If any of the 5 
interrupt pins is pulled high, the CPU will force a subroutine call to an address 
between 1 and 31 according to the bit pattern sampled in INTERRUPT(0-4).  Further 
interrupts are disabled, until another EI is executed.   
 
Before executing EI, the system must write valid addresses of interrupt service 
routines into the interrupt vectors from locations 1 to 31, so that the system can 
respond correctly to simultaneous real time interrupts from 5 external devices. 
 
 
 
LDI  Load Immediate 
 
Code: 10 
Usage Short Instruction followed by a 32-bit literal value 
Stack Effects ( -- n ) 
Carry Reset to 0 
 
Function:  
 
Fetch the contents of the next program word and push that number onto the data stack.  
The program counter, PC, is incremented, passing the next program word.  This 
instruction allows a program to enter numbers (literals) onto the data stack at run time.  
It also resets the carry flag (Bit 32) in the T register. 
 
Coding Example: 
 
Push 1 2 3 4 on data stack: 
 LDI LDI LDI LDI 
 1 
 2 
 3 
 4 
CODE = ( w w -- t ) 
   xor 
   if pushs pushs xor ret then 
   -1 ldi ret 
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LDX Load from X Register 
 
Code: 11 
Usage Short Instruction 
Stack Effects ( -- n ) 
Carry Reset to 0 
 
Function:  
 
Fetch the contents of a memory location whose 32-bit address is in the X register and 
push that number onto the data stack.  The address in the X register is not modified. 
 
This fetch instruction is different from the @ instruction in FORTH, which uses the 
address on top of the data stack. 
 
This instruction also resets the carry flag (Bit 32) in the T register. 
 
Coding Example: 
 
: @  ( a - n ) tx ldx ; 
: 2@ ( a -- d ) tx ldxp ldx ; 
 
 
 
LDXP Load from X Register, Auto-Incrementing 
 
Code: 9 
Usage Short Instruction 
Stack Effects ( -- n ; X: a – a+1) 
Carry reset to 0 
 
Function:  
 
Fetch the contents of a memory location whose 32-bit address is in the X register and 
push that number onto the data stack.  The address in the X register is then 
incremented to facilitate accessing the next memory location.  It is most useful in 
reading values from an array in memory. 
 
This fetch instruction is different from the @ instruction in FORTH, which uses the 
address on top of the data stack. 
 
This instruction also resets the carry flag (Bit 32) in the T register. 
 
Coding Example: 
 
: 2@ ( a -- d ) tx ldxp ldx ; 
 
 



 166 

MUL Multiply Step 
 
Code: 19 
Usage Short Instruction 
Stack Effects ( n1 n2 – lo hi ) 
Carry Reset to 0Change to T(31) or sum(31) 
 
Function:  
 
Conditionally add the S register on the data stack to the T register if the lowest bit in 
the X register, X(0), is 1.  If X(0) is 0, the T register is not modified.  The T-X 
register pair is then shifted to the right by one bit. 
 
This MUL instruction is useful as a multiply step in implementing a fast software 
multiplication routine.  Repeating this instruction 32 times will multiply X and S and 
produces a 64-bit product in the T-X register pair.  If the T register is not initialized 
to 0, its contents are added to the product. 
 
Coding Example: 
 
Multiply two 32-bit unsigned integers.  Multiplicand is in X.  Multiplier is in S. 
 
CODE UM* ( u u -- ud ) 
   tx 0 ldi 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   mul mul mul mul 
   pushr pops xt popr 
   ret 
The 32-bit product is in the T-X register pair.  The multiplicand in S is preserved. 
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NEXT  Loop Back 
 
Code: 5 
Usage 00 000101 aaaaaa aaaaaa aaaaaa aaaaaa 
Stack Effects ( -- ; R: n – n-1 if n is not 0, n – if n=0 ) 
Carry No change 
 
Function:  
 
If the top of the return stack, R, is not zero, loop to the 24-bit address in bit field 23-0 
in the current 16M word page of memory.  R is decremented by 1.  If R is 0, pop 
the return stack, terminate the loop, and continue executing the next program word.  
It must be in slot1 of a program word.  NEXT is re-defined in assembler to terminate 
a loop structure by assembling a NEXT instruction. 
 
Coding Example: 
 
:: CMOVE ( b b u -- ) 
   FOR AFT  
      over c@ over c!  
      >R 1+ R> 1+  
   THEN NEXT 2DROP ;; 
:: FILL ( b u c -- ) 
   SWAP FOR SWAP AFT  
      2DUP c! 1+  
   THEN NEXT 2DROP ;; 

 
 
 
NOP  No Operation 
 
Code: 30 
Usage Short Instruction  
Stack Effects (  --  ) 
Carry No change 
 
Function:  
 
No operation.  This instruction forces the execution sequencer to state slot0, and 
causes the next program word to be fetched and executed.  All instructions in the 
current program word following NOP are ignored.  In assembler, NOP is 
automatically padded into a program word to fill unused slots. 
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OVER  Duplicate S Register 
 
Code: 27 
Usage Short Instruction 
Stack Effects ( n1 n2 – n1 n2 n1 ) 
Carry Restore from S register 
 
Function:  
 
Push the T register onto the data stack.  Copy the original contents of S to T. 
 
Coding Example: 
 
:: 2DUP OVER OVER ;; 
 
 
 
POP  Pop Return Stack 
 
Code: 24 
Usage Short Instruction 
Stack Effects ( -- n ; R: n -- ) 
Carry Restore from return stack 
 
Function:  
 
Pop the R register on the return stack to the T register.  The original contents in T are 
pushed onto the data stack. 
 
Coding Example: 
 
Exchanging X and T STA PUSH LDA POP 
Exchanging X and R STA POP LDA PUSH 
Increment T by 4  STA LDP DROP LDA  
Decrement T by 4  DUP DUP XOR COM ADD 
:: CMOVE ( b b u -- ) 
   FOR AFT over c@ over c!  
      >R 1+ R> 1+  
   THEN NEXT 2DROP ;; 
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PUSH  Push Return Stack 
 
Code: 28 
Usage Short Instruction 
Stack Effects ( n -- ; R: -- n ) 
Carry Restore from data stack 
 
Function:  
 
Pop S from the data stack and store it to the T register.  The original contents in the T 
register are pushed onto the return stack.   
 
Coding Example: 
 
: 2DUP ( w1 w2 -- w1 w2 w1 w2 ) 
   over over 
   ; 
: ROT ( w1 w2 w3 -- w2 w3 w1 ) 
   pushr pushr tx popr 
   popr xt ; 

 
RET Return from Subroutine 
 
Code: 1 
Usage Short Instruction 
Stack Effects ( -- ; R: a -- ) 
Carry No change 
 
Function:  
 
Pop the top of the return stack into the program counter, P, and thus resume the 
execution sequence interrupted by the last CALL instruction.  Besides terminating a 
subroutine, this instruction may be used to execute a long jump to a location outside 
of the current memory page.  This instruction can be placed in any slot of a word.  
Instructions before RET are executed.  Instructions following RET are ignored. 
 
Coding Example: 
 
In the Subroutine Threading Model, RET is used to terminal all code commands and 
colon commands.  The word “;” simply compiles a RET to terminate a FORTH 
word. 
 
CODE 0< ( n - f ) 
   shl ifnc pushs pushs xor ret 
   then  -1 ldi ret 
CODE UM+  ( n n - n carry ) 
   add pushs 
   ifnc pushs pushs xor ret 
   then  1 ldi ret 
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RR8  Rotate Right by 8 Bits 
 
Code: 14 
Usage Short Instruction 
Stack Effects ( n1 - n2 ) 
Carry No change 
 
Function:  
 
Rotate T to the right by 8 bits.  The lowest 8 bits are moved to the highest 8 bits.  
This instruction is very useful in extracting bytes from a 32-bit integer in the T 
register, and to pack bytes into T. 
 
Coding Example: 
 
:: wupper ( w -- w' ) \ convert 4 bytes to uppercas e 
   3 LIT FOR 
      DUP FF LIT AND 61 LIT 7B LIT WITHIN 
      IF FFFFFF5F LIT AND THEN  
      RR8 
   NEXT 
   ;; 
 
SHL  Shift Left 
 
Code: 17 
Usage Short Instruction 
Stack Effects ( n -- 2n ) 
Carry Change to T(31) 
 
Function:  
 
Shift all lower 32 bits in the T register to left by 1 bit.  The lowest Bit, T(0), is set 
to 0. 
 
Coding Example: 
 
Multiply T by 3: DUP SHL NOP NOP ADD 
Multiply by 5:  DUP SHL SHL DOP ADD 
Multiply by 6:  SHL DUP SHL NOP ADD 
 
SHL allows the negative bit, T(31), to be tested as the carry bit T(32): 
CODE CELL*  SHL SHL RET 
CODE 0< ( n - f ) 
SHL 
-IF -1 LDI RET 
THEN 
DUP XOR ( 0 LDI ) 
RET 
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SHR  Shift Right 
 
Code: 18 
Usage Short Instruction 
Stack Effects ( n -- n/2 ) 
Carry Reset to 0 
 
Function:  
 
Shift the lower 32 bits in the T register right by one bit.  Bit T(0) is lost.  The sign 
bit, T(31), is preserved.  The carry bit, T(32), is cleared. 
 
Coding Example: 
 
CODE 4/  SHR SHR RET 
 
 
 
 
STX  Store with X Register 
 
Code: 15 
Usage Short Instruction 
Stack Effects ( n -- ) 
Carry Restore from data stack 
 
Function:  
 
Store T into the memory location whose 32-bit address is in the X register.  Pop the 
data stack.  The address in the X register is not modified. 
 
This store instruction is different from the “!” instruction in FORTH, which uses an 
address on top of the data stack. 
 
Coding Example: 
 
: !  ( n a -- ) tx stx ;   
: 2! ( d a -- )  tx pushr stxp popr stx ;
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STXP  Store with X Register, Auto-Incrementing 
 
Code: 13 
Usage Short Instruction 
Stack Effects ( n -- ; X: a – a+1 ) 
Carry Restore from data stack 
 
Function:  
 
Store T into the memory location whose 32-bit address is in the X register.  Pop the 
data stack.   The address in the X register is then incremented by 1 to facilitate the 
next memory access.  It is most useful in storing values to an array in memory. 
 
Coding Example: 
 
See the copying program shown in LDXP. 
 
: 2! ( d a -- )  tx pushr stxp popr stx ; 
 

 
 
TX  Pop T to X Register 
 
Code: 29 
Usage Short Instruction 
Stack Effects ( a -- ) 
Carry Restore from data stack 
 
Function:  
 
Store T in the X register.  Pop the data stack.  The original contents in the T register 
are copied into the X register.  This instruction initializes the X register so that it can 
be used to fetch data from memory or store data into memory.   
 
Coding Example: 
 
: +! ( n a -- )  tx ldx add stx ; 
: 2! ( d a -- )  tx pushr stxp popr stx ; 
: 2@ ( a -- d ) tx ldxp ldx ;
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XOR Bitwise Exclusive OR 
 
Code: 20 
Usage Short Instruction 
Stack Effects ( n1 n2 -- n3 ) 
Carry Exclusive OR n1(32) and n2(32) 
 
Function:  
 
Pop S from the data stack and bitwise exclusive-OR it to the T register.  All 33 bits 
in T are affected.  
 
Coding Example: 
 
To clear T to zero: 
 DUP XOR cccccc cccccc 
To generate a zero in T register: 
 DUP DUP XOR cccccc cccccc 
To generate -1 in T:: 
 DUP DUP XOR COM 
 
::  < ( n n -- t ) 
   2DUP XOR 0<  
   IF DROP 0< EXIT THEN  
   - 0< ;; 

 
 
 
XT  Push X Register to T 
 
Code: 25 
Usage Short Instruction 
Stack Effects ( -- a ) 
Carry Restore from X 
 
Function:  
 
Copy the contents of the X register to the T register.  The original contents in the T 
register are pushed onto the data stack.  With the XT and TX instructions, the X 
register can serve as a scratch pad to save and restore the contents of the T register. 
 
Coding Example: 
 
: SWAP ( n1 n2 - n2 n1 ) 
   pushr tx popr xt ; 
: ROT ( w1 w2 w3 -- w2 w3 w1 ) 
   pushr pushr tx popr 
   popr xt ; 
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Appendix B: eP32 eForth Commands 
 
' <name>  -- xa  Find <name> and leave its execution address, xa. 
-  w1 w2 -- 

w3  
Subtract w2 from w1. w1-w2=w3.  

!  w a --   Store w at a. 
# u1 – u2 Extract least significant digit from u1 and leave quotient, u2. 
#> w -- a u Discard w, and leave address and length of number held in string 

buffer. 
#S u -- 0  Convert u to a number string below PAD buffer. 
$" <string>”  -- a Compile a string literal delimited by “.  At run time, leave its 

address on stack. 
$"|  -- a  Run time command of a string literal. Leave string address, a, on 

stack. 
$," <char> -- Compile a character literal. 
$,n a -- Compile a name field in header with string at a. 
$COMPILE a -- Compile a word whose name string is at a. 
$INTERPRET a -- Interpret a word whose name string is at a. 
( <string>) -- Ignore the comment string delimited by ). 
(CALL) a -- Compile a subroutine call to address a. 
(parse) b u c -- b u 

delta 
Parse next string delimited by c in buffer b, length u. Length of 
parsed string is delta. 

*  n1 n2 -- n3 Multiply. n3=n1*n2. 
*/  n1 n2 n3 -- 

nq  
Leave quotient of (n1*n2)/n3.  

*/MOD  n1 n2 n3 -- 
nr nq  

Leave remainder, nr, and quotient, nq, of (n1*n2)/n3. 

,  w --   Add w to parameter field of the most recently defined command.  
.  n --   Display signed number with a trailing blank. 
." <text>"  --   Compile a string literal <text>. At run-time display <text>. 
."|  --  Run time command of . ". 
.( <text> ) -- Display a string <text>. 
.ID xa -- Display name of a command at xa. 
.OK --  Display system OK message. 
.R  n u -- Display number n right justified in a field of length u. 
.S --  Display the contents of data stack. 
/  n1 n2 – nq  Division. Leave signed quotient of n1/n2. 
/MOD  n1 n2 – nr 

nq  
Division. Leave signed remainder, nr, and quotient, nq, of n1/n2. 

: <name>  --   Begin a colon command of <name>.  
;  --   Terminate a colon command.  
? a -- Display contents of memory at a. 
?DUP w -- w w | 

w 
Duplicate w if it is not 0. Else no operation. 

?KEY -- c true | 
false 

Return a false flag if no character is entered from keyboard. Else 
leave valid character and true. 

?UNIQUE a – a If string at a is a valid command, display “redef” message. 
@  a -- x  Replace address a by its contents.  
@EXECUTE a -- Execute word whose execution address is in address a. 
[  --   Switch from compilation to interpretation. 
[COMPILE] 
<name>  

--   Compile command <name> in input stream. It compiles an 
immediate command. 

\ <text> -- Ignore <text> until end of line. 
]  --   Switch from interpretation to compilation. 
^H a1 a2 a3 – Process backspace. Decrement current character pointer, a3, if it 
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a1 a2 a4 is greater than buffer address a1. 
+  n1 n2 -- n3  Add n1 and n2. 
+!  w a --   Add w to number at address a. 
<  n1 n2 -- 

flag  
True if n1 less than n2. Signed comparison. 

<#  --  Start number conversion process. 
=  n1 n2 -- 

flag  
True if n1 equals n2. 

>B  a b -- a+1 
b+4 count  

Unpack word string at a to byte string at b. Return a+1, b+4 and a 
count to unpack next word. 

>CHAR c – n Convert character c to a valid character code. 
>NAME xa -- na | 0 Convert execution address, xa, of a command to its name field 

address. na. If failed, return 0. 
>R  w --   Push top item to return stack for temporary storage. 
0<  n -- flag  Return true if n is negative. 
1- n – n-1 Decrement. 
1+ n – n+1 Increment. 
2! d a -- Store a double integer to address a. 
2@ a – d Fetch a double integer from address a. 
2DROP d -- Drop a double integer. 
2DUP d – d d Duplicate a double integer. 
4/ n – n/4 Divide by 4. 
ABORT  --   Return to terminal interpreter, no error message. 
ABORT" -- Compile an error message. Execute abort" at run time. 
abort" <string>“ flag -- If flag is true, abort and display an error message. 
ABS  n -- u  Convert n to its absolute value, u. 
accept a u1 -- a 

u2 
Accept text from keyboard into buffer at a, length u1. Return with 
a and actual length of text, u2. 

AFT a1 – a2 Start compiling an AFT-THEN structure in a FOR-NEXT loop. 
AGAIN a -- Terminate a BEGIN-AGAIN loop by compiling a branch to 

address a. 
AHEAD -- a Compile a branch instruction. Leave its address on stack to be 

resolved later by THEN. 
ALLOT  u --   Extend u bytes to parameter field of the most recent command. 
AND  w1 w2 -- 

w3  
Logical bit-wise AND. 

B> b a -- b+1 
a 

Pack a byte at b into least significant byte in a. Increment b. 

BEGIN --  Start an indefinite loop like BEGIN-AGAIN, BEGIN-UNTIL or 
BEGIN-WHILE-REPEAT. 

BL -- 32 Get ASCII code of a blank or space. 
CHARS c u --  Display character c u times on terminal. 
CMOVE  a1 a2 u --   Move u bytes starting from address a1 to memory starting at a2. 
CODE <name> -- Define a new primitive comand. 
COLD -- First command executed after CPU powers up. 
COM -- Assemble a COM machine instruction. 
COMPILE -- Compile following command to parameter field of currently 

compiled word. 
CONSTANT 
<name> 

w --   Define a constant. At run-time, w is left on the stack. 

COUNT  a -- a+1 c  Get one byte c from address a and increment a. 
CR  --   Display a new line. 
CREATE 
<name>  

--   Create a new data array with <name>. No parameter field space is 
reserved. 

DECIMAL  --   Set number base to decimal. 
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DIAGNOSE -- 12 chars Produce a string of “eForthMlSemi” to verify primitive 
commands. 

DIGIT u -- c  Convert number u to corresponding ASCII code. 
DIGIT? c base -- u 

flag  
Convert ASCII code c to its corresponding number, u. If 
successful, return u and true. If unsuccessful, return c and false. 

dm+ a u – a+u Dump u bytes of memory starting at address a. 
DNEGATE d -- -d Negate a double integer. 
do$ -- a Run time routine of $. Leave address of the following string 

literal. 
DOES -- Start compiling an interpreter for a new class of defining 

commands. 
DOVAR  -- Run time routine for variables. 
DROP  w --  Discard top of stack. 
DUMP  a u --  Dump u bytes of memory starting at address a. 
DUP  w – w w Duplicate top of stack. 
ELSE --   Terminate a <true> clause, and start a <false> clause in 

IF-ELSE-THEN branch structure. 
EMIT  c --   Display character c on terminal.  
ERROR a --  Display an error message at address a and abort. 
EVAL -- Evaluate (interpret or compile) input stream accepted into 

terminal input buffer. 
EXECUTE  a --   Execute a command whose execution address is a. 
EXIT  --   Terminate execution of a colon command. 
EXPECT a u -- Accept input stream into buffer at address a, length u. 
EXTRACT u1 base – 

u2 c 
Extract least significant digit in u1, with radix base. Return 
quotient u2 and extracted character c. 

FILL a u c -- Fill an array at address a, length u, with byte c. 
find a va -- xa 

na | a 0  
Search vocabulary beginning at va for a word whose name is at 
address a. If success, return execution address, xa, and name field 
address of command found. Else return a and false flag. 

FOR  --   Start a FOR-NEXT loop. 
FORGET 
<name>  

--  Search dictionary for <name> and delete it and all subsequent 
commands from dictionary. 

HERE  -- a   Get address of next available dictionary location. 
HEX --   Set number base to hexadecimal. 
HOLD c -- Add character c to number conversion buffer. 
IF -- Start an IF-ELSE-THEN branch structure. At run time, branch to 

ELSE or THEN if top of stack is 0. 
IMMEDIATE -- Add immediate bit to name of the command currently under 

compilation. An immediate command is executed by compiler. 
KEY  -- c   Wait for an ASCII character c from the keyboard. KEY does not 

echo the character. 
kTAP bot eot cur 

c -- bot eot 
cur 

Add a character, c, received from keyboard to string in terminal 
input buffer. bot is bottom of buffer, eot is end of buffer, and cur 
is pointer to current character in buffer. Process backspace. 

LITERAL  w --   Compile number w as an in-line literal. At run-time, w is pushed 
onto stack. 

M* n1 n2 – d Double precision multiply, d=n1*n2. 
M/MOD d n -- nr 

nq 
Floored division. Return both remainder, nr, and quotient, nq. 

MAX  n1 n2 -- n3  Return n3, the larger of n1 and n2. 
MIN  n1 n2 -- n3  Return n3, the smaller of n1 and n2. 
MOD  n1 n2 -- nr  Modulus, signed remainder of n1/n2. 
NAME? a -- xa na | 

a 0  
Search dictionary for a command at address a. If successful, 
return its execution address, xa, and name field address, na. Else 
return a with a false flag. 
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NAME> a – xa Convert name field address, a, to execution address, xa. 
NEGATE -- Assembler machine instructions to negate top of stack. 
NEXT --   Terminate a FOR-NEXT loop. At run time, decrement index and 

repeat loop until index is 0. 
NOT  w1 -- w2  Bit-wise one’s complement. 
NUMBER? a -- n 1 | a 

0 
Convert a number string at address a to its value. If successful, 
return value n and true; else return a and false. 

OK  -- Compile source text downloaded from terminal to file buffer, 
READBUF. 

OR -- Assembler OR machine instruction. 
OVER -- Assembler OVER machine instruction. 
OVERT -- Make the command last defined visible to interpreter and 

compiler. 
PACK$ a1 u a2 – 

a2  
Pack a counted string in address a1, length u to byte buffer a2. 

PAD  -- a   Get address of a scratch pad area above dictionary of at least 84 
bytes. 

PARSE c -- a u Parse out the next string in terminal input buffer, delimited by 
character c. Return address a and length of parsed string u. 

QUERY -- Wait for a line of text from keyboard and place it in input 
terminal buffer. A line is terminated by carriage return or up to 80 
characters. 

QUIT  --   Return to terminal interpreter, no stack change, no message. 
R@ -- n Duplicate R register to top. 
R> n -- Pop return stack to top. 
READ --  Read text file from terminal into file buffer, READBUF. 
REPEAT  --   Terminate a BEGIN-WHILE-REPEAT loop. 
ROT w1 w2 w3 

-- w2 w3 
w1 

Rotate third item to top. 

SAME? a1 a2 u – 
a1 a2 f 
(-0+) 

Compare two name strings at a1 and a2. Return 0 if identical. 
Return positive value if string1>string2. Return negative value if 
string1<string2. 

SEE <name> --  Decompile the command <name>. 
SEND  a n --  Upload memory array at address a, length u, to host in Intel Hex 

format. 
SIGN n -- If n is negative, add minus sign to number conversion buffer. 
SPACE  --   Display a space. 
SPACES  u --   Display u spaces. 
str  n – a u Convert number n to a number string at address a, length u. 
SWAP -- Assembler machine instruction to swap top of stack. 
TAP  bot eot cur 

c -- bot eot 
cur 

Add a character c received from keyboard to string in terminal 
input buffer. botis bottom of buffer, eot is end of buffer, and cur is 
pointer to current character in buffer. 

THEN --  Terminate IF-ELSE-THEN branch structure. 
TIB  -- a   Get address of terminal input buffer. 
TOKEN -- a  Get the address of next string parsed out of terminal input buffer. 
TYPE  a u --   Display a string of u characters starting at address a. 
U.  u --   Display unsigned number u with a trailing blank. 
U.R n1 u2 -- Display unsigned number u1 in a field of u2 characters. 
U<  u1 u2 – f Unsigned compare. Return true if u1<u2. 
UM* u1 u2 – ud Unsigned double precision multiply. ud=u1*u2 
UM/MOD ud u -- ur 

uq 
Unsigned double precision divide. Leave both remainder, ur, and 
quotient, uq. 

UM+ u1 u2 – u3 
carry 

Double precision add. u3=u1+u2. Return carry also.  
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UNPACK a b -- b Unpack a packed string at a to b. String length is up to 255 
characters. 

UNPACK$ a b -- b Unpack a packed string at a to b. String length is up to 31 
characters. 

UNTIL  --   Terminate a BEGIN-UNTIL loop structure. 
VARIABLE 
<name> 

--   Define a new variable. At run-time, variable <name> leaves its 
address on stack. 

WHILE  --   Start a true clause in BEGIN-WHILE-REPEAT loop structure. At 
run time, repeat true clause while top of stack is non-zero. 

WITHIN u ul uh – 
flag 

Leave true if ul <= u < uh. Else leave false. 

WORD c -- a  Get a string delimited by character c from the input stream and 
leave it as a counted string at address a. 

WORDS  --  Display all words in dictionary. 
XOR -- Assembler XOR machine instruction. 
 
 

 


