
 1

Chapter 1 Introduction

1.1 History of the eP32

The eP32 microprocessor is a Minimal Instruction Set Computer (MISC), vis-à-vis
Complicated Instruction Set Computer (CISC) and Reduced Instruction Set Computer
(RISC). MISC was originally developed by Mr. Chuck Moore, and implemented in
his MuP21 chip. It happened that Chuck also invented the FORTH programming
language. For many years, Chuck sought to put FORTH into silicon, because he
thought FORTH was not only a programming language, but also an excellent
computer architecture.

In the early 1990s, a group of engineers from the MOSIS multiple design chip service
program came to Silicon Valley and started Orbit Semiconductor Corp, offering
foundry services to the general public. Their service was based on a 1.2 micron
CMOS processes on 5 inch wafer, with two metal layers. The smallest design they
accepted was on a 2.4mmx2.4mm silicon die. Chuck figured that he could design a
20 bit CPU in that small area. It was named MuP21, because it was a multiprocessor
chip, with a 20 bit CPU core, a DRAM memory coprocessor, and a video coprocessor,
and all registers and stacks in the CPU core were 21 bits wide, with an extra bit to
preserve the carry bit.

Because of very limited silicon area, the MuP21 had a very small set of instructions,
but they were sufficient to support a complete FORTH operating system and very
demanding applications with real time NTSC video output. The chip was produced
and verified, but productions in plastic packages were not successful because of poor
yield.

When FPGA chips became available, I tried to implement FORTH chips based on
MuP21 instruction set. The first experiments were on an XS40 Kit from Xess Corp.
It had a Xilinx VC4005XL FPGA on board with a 32 kB SRAM chip and an 8051
microcontroller. The purpose of this kit was to demonstrate how easy it was to use
an FPGA to replace all glue logic between RAM and 8051, and to build a complete
working microprocessor system. I managed to squeeze a 16-bit microprocessor, P16,
into the VC4000XL chip and eliminated the 8051.

Over the years, Xilinx added more logic gates and RAM blocks to their FPGAs, and I
was able to put a 32-bit microprocessor, P32, into a VCX1000E chip (which had 16
kB of RAM) to host a FORTH system. This design was also ported to FPGA chips
from Altera and Actel. P32 gradually evolved into eP32 with an eForth operating
system. eForth is a very simple FORTH operating system designed specifically for
embedded systems. However, FPGA chips were expensive, development boards
were expensive, and development software tools were especially expensive. I talked
about eP32 implementations, but very few people in the audience had these
development tools to explore FPGA designs.

It was therefore very exciting to learn about the LatticeXP2 Brevia Development Kit,
which was on sale for $49. Development software was free to download. The Kit
has a LatticeXP2-5E-6TN144C FPGA chip, which has enough logic cells to

 2

implement eP32, and enough RAM memory to host the eForth system. Its RAM
memory is mirrored in flash memory on chip, and you do not need external memory
chips for programs and data. It is truly a single chip solution for microprocessor
system design.

Now, everybody can do his own designs on FPGA chips. It is time to update my
documentation on eP32 and companion eForth to teach people the best way to design
their own CPUs and to explore their applications.

All FPGA manufacturers offer reference designs of microprocessors in their
development software tools, to demonstrate that FPGAs can be used to do
microprocessor system designs, or in a fancier term System-On-a-Chip, SOC.
However, these microprocessors are complicated, and their performance is poor.
A microprocessor does not work without software. Software reference designs from
these FPGA manufacturers are even poorer, as we see them struggle with assemblers,
language compilers, and operating systems.

FORTH offers the best solution for FPGA users. The CPU is simple, the
programming language is simple, the operating system is simple, and the application
programming is simple. It is possible for an average engineer or scientist to
understand and to make use of this complete CPU-Language-Operating
System-Application spectrum in a few weeks. What's required is an open mind, and
a willingness to explore different ways to do things. The very high cost barrier to
experiment with an FPGA is removed by the LatticeXP2 Brevia Kit. The only
barrier left is you yourself.

This book contains two major sections, one on hardware design of the eP32 CPU core
and a few peripheral devices to form a complete microprocessor, and one on the
software design of eForth to run on the eP32. Hardware design is centered on a set
of VHDL files, describing modules in the eP32 microprocessor system. Software
design is centered on a set of FORTH files, which is a metacompiler constructing a
memory image to initialize a RAM memory module in the eP32. Generally, I will
show source code on left hand pages, and commentary on the opposing right hand
pages. My perspective is that source code is supreme. Nothing is more important
than source code. If you understand the complete source code, you understand
everything.

Combining the hardware design of the eP32 and software design of eForth, the result
is a FORTH microprocessor running on a LatticeXP2 Brevia Development Kit. You
can run this FORTH microprocessor from a HyperTerminal console on your PC, and
write application programs. Mastering this book, you have an understanding of one
microprocessor, in and out. This understanding will allow you to develop your own
microprocessor to solve your own application problems.

The eP32 has a 32-bit CPU core with two stacks. It was intended to execute FORTH
instructions efficiently. The processor design is simple to allow implementation on
custom silicon chips as well as on FPGAs. The eP32 employs only 27 instructions,
and instruction can be encoded in 5 bit fields. This design is scalable in word sizes
ranging from 16 bits up to 64 bits. A program word can contain many instructions in
5 bit fields. With this scalable architecture, a CPU designer is freed from the heavy

 3

yoke of program word size, which is a primary constraint on a CPU design.

1.2 What is FORTH?

FORTH was invented by Chuck Moore in the 1960s as a programming language.
Chuck was not impressed by programming languages, operating systems, and
microprocessor hardware of his time. He sought the simplest and most efficient way
to control his computers. He used FORTH to program every computer in his sight.
And then, he found that he could design better computers, because FORTH is much
more than just a programming language; it is an excellent computer architecture.

So what is FORTH?

Many books and many papers had been written about FORTH. However, FORTH is
still elusive because it has many features and characteristics which are difficult to
describe. Now that it has erased the boundary between hardware and software, it is
even more difficult to accurately put it into words.

Let me try this way. Here it goes.

FORTH is a list processor.

FORTH has a set of commands, and an interpreter to process lists of commands.

FORTH commands are records stored in a memory area called a dictionary.

A record of a FORTH command has three fields: a link field linking commands to
form a dictionary, a name field containing the name of this command in an ASCII
string, and a code field containing executable code and data to perform a specific
function for this command. It may have an optional parameter field, which contains
data needed by this command. The link field and name field allow the interpreter to
look up a command in the dictionary, and the code field provides executable code to
perform the function assigned to this command.

A FORTH command has two representations: an external representation in the form of
an ASCII name; and an internal representation in the form of a token, which invokes
executable code stored in code field. In many FORTH systems, the token is an
address. However, a token can take other forms depending on implementation.

There are two types of FORTH commands: primitive FORTH commands having
machine code in their code fields, and compound FORTH commands having token
lists in their code fields.

A FORTH interpreter processes two types of lists: text lists and token lists. A text
list contains a sequence of FORTH command names, separated by white spaces and
terminated by a carriage return. A token list contains a sequence of tokens, which
are internal representations of FORTH commands.

FORTH has two interpreters: a text interpreter (or outer interpreter) and a token
interpreter (or inner interpreter).

 4

The text interpreter processes lists of FORTH commands represented in text, which
consists of names of FORTH commands separated by white spaces and terminated by
a carriage return. The number of commands in a text list is not limited. A list may
be in one line of text, or in a huge text file.

The token interpreter processes lists of tokens contained in compound commands.
It is also called the address interpreter, because in many FORTH systems, tokens are
addresses pointing to code fields.

The text interpreter operates in two modes: interpreting mode and compiling mode.
In interpreting mode, a list of command names is interpreted; i.e., commands are
parsed and executed. In compiling mode, a list of command names is compiled; i.e.,
commands are parsed and corresponding tokens are compiled into a token list. This
token list can be given a name to form a new compound command, by creating a new
command record in the dictionary.

A FORTH compiler is a FORTH text interpreter operating in compiling mode. It
compiles new compound commands, converting a text list of FORTH commands into
an equivalent token list. It builds nested token lists one on top of the other, until a
final solution is reached in the last token list.

This is the most powerful feature of FORTH, in that you can compile new compound
commands, which replace lists of existing commands, both primitive and compound.
The syntax of a new compound command is:
 : <name> <list of existing commands> ;
A FORTH compiler converts a text list of existing commands to a new token list.
Nested token lists are added until the final compound command becomes the solution
to your problem. Lists are built and tested from the bottom up. The solution space
can be explored wider and farther, and an optimized solution can be found more
quickly.

Following are some minor deviations in the syntax of FORTH as a programming
language.

The text interpreter accepts numbers in lists. Numbers are ASCII strings with valid
numeric digits and an optional leading '-' sign. The text interpreter pushes an integer
number onto the data stack. The FORTH compiler compiles an integer literal into
the token list. Later, when the token list is interpreted, the integer literal token
pushes the integer onto the data stack.

The text interpreter accepts strings in lists. A string must follow a string command,
which consumes the string. A string is a sequence of ASCII characters terminated by
a terminating character specified by the preceding string command. A string
command may compile a string literal into the token list. In the token list, a string
literal consists of a string token followed by the string in compiled form. The string
token uses the compiled string, and passes control to the next token after the compiled
string.

Lists are normally processed in consecutive sequence. However, branches and loops

 5

are allowed, using control structure commands. Control structure commands
compile control structures into token lists. Later, when a token list is interpreted,
branching and looping occur within those control structures.

String commands and control structure commands change sequential flow in lists.
They are elements in the FORTH language that require additional grammatical rules
in their usage. Otherwise, all lists are simple, linear, sequential lists.

The preceding exposition describes what FORTH is in terms of a programming
language and operating system. A complete specification of a FORTH system must
include a document on all commands; i.e., names of commands, their effects on data
and return stacks, and their functional descriptions.

The fundamental reason that FORTH lists can be simple, linear sequences of
commands is that FORTH uses two stacks: a return stack to stored nested return
addresses, and a data stack to pass parameters among nested commands. Parameters
are passed implicitly on the data stack, and do not have to be explicitly invoked.
Therefore, FORTH commands can be interpreted in a linear sequence, and tokens can
be stored in simple, linear lists. Language syntax is greatly simplified, internal
representation of tokens is greatly simplified, and execution speed is greatly
increased.

A FORTH CPU thus needs two stacks, efficient means to traverse nested token lists,
and an instruction set to support primitive commands. This is what eP32 is designed
to provide. It has two stacks. It has a small instruction set, which is sufficient to
code all primitive commands in eForth. It has very efficient single cycle subroutine
call and return instructions. When we use the Subroutine Threading Model (where a
compound command consists of a list of subroutine call instructions) and represent
tokens by subroutine call instructions, the eP32 CPU itself becomes the FORTH inner
interpreter. Nested token lists, as nested subroutine lists, are traversed naturally with
very little overhead in execution speed.

The eP32 is the best list processor.

 6

Chapter 2. Design of the eP32

2.1 Overview

The eP32 is a 32-bit CPU. Instructions are encoded in 6-bit fields, and up to 5
instructions are packed into a single 32-bit program word. 27 instructions are
defined to facilitate accessing words in memory, for multiplication and division of
integers, for real time interrupts and to support various IO devices. A return stack is
included in the CPU for nested subroutine calls and returns. A parameter stack is
also included to pass parameters among nested subroutines. The simple instruction
set and dual stack design make it possible to execute all instructions in a single clock
cycle from a single phase master clock. This design optimizes code density,
processing speed, silicon area and power consumption, and is most suitable to serve
as CPU cores in System-On-a-Chip integrated circuits.

As this design was developed and tested on a large FPGA device, the LatticeXP2
from Lattice Semiconductor Corp, a complete microprocessor system, including CPU,
memory and a number of I/O devices, is built on a single FPGA chip.

In this design, the CPU latches all data into appropriate registers and stacks on the
rising edge of a single phase master clock. Such a synchronous design ensures that
all instructions are executed quickly and reliably in a single clock cycle. When the
master clock is held steady, the microprocessor retains all data in registers, stacks and
memory, consuming very little power. It is thus possible to further reduce its power
consumption by reducing the clock rate, or stopping the clock completely.

The eP32 has this set of registers:
Name Register Function
I Instruction latch Holding up to 5 instructions to be executed
P Program counter Pointing to next program word in memory
R Top of return stack Holding return address or loop counts
S Second item of data

stack
Supplying optional second argument to ALU

T Top of data stack Accumulator for ALU
X Address register Supplying address for memory read and write

The eP32 has two stacks to support fast subroutine calling and returning, and to
optimize execution speed:
Name Stack Function
s_stack Data stack Passing arguments among nested subroutines
r_stack Return stack Saving return addresses of nested subroutines

The I and P registers are 32 bits wide to address 4G words of memory. T, R, S, X
and stacks are all 33 bits wide. The most significant bit in T, T(32) is a carry
produced by a 32-bit adder. This carry bit is preserved when T is transferred to other
registers and to stacks. Preservation of carry bit greatly simplifies extended
precision arithmetic operations in the ALU, and allows subroutines and interrupts to
be serviced without having to save a carry bit and restore it on return.

 7

Registers and stacks and their relationship are best shown in Figure 1:

Figure 1. eP32 Architecture

The T register is the center of the eP32. It supplies one argument to the ALU, which
takes an optional second argument from the S register and routes results back to the T
register. Contents in T can be moved to the X register, pushed on data stack S, or
pushed on return stack R.

The T register connects data stack and return stack as a giant shift register. Data can
be shifted towards the return stack by a PUSH instruction, and shifted towards the
data stack by a POP instruction.

Register X holds a memory address, which is used to read data from memory into the
T register, or write data from the T register to memory. The address in X can be auto
incremented, so that the eP32 can conveniently access data arrays in memory.

P is a program counter and holds the address of the next program word to be fetched
from memory. After a program word is fetched, P is auto incremented and ready to
read the next word. When a CALL instruction is executed, the address in P is
pushed onto the return stack. When a RET return instruction is executed, the
previously saved address on the return stack is popped back into P. The execution
sequence interrupted by CALL can then be resumed.

The depth of both stacks is 32 levels, which allows very deep nesting of subroutine
calls. Stacks are implemented as circular buffers. Overflow and underflow

 8

overwrite data previously pushed onto the stack 32 levels before. No effort is made
in detecting and handling overflow and underflow conditions, because stack
overflow/underflow is not really a very serious error condition, although it is dreaded
by programmers using conventional languages. Commands may consume stack
items, and may push data onto a stack. It is impossible for an operating system to
determine whether the stack effects of a command are due to errors or due to the
programmer’s intention. Therefore, it is best left to the programmer to make sure
that stacks behave correctly.

The 6-bit code field supports up to 64 instructions. Five 6-bit instructions are
packed into one 32-bit word, and are executed consecutively after a program word is
fetched from memory. It can be viewed as a 5 instruction cache, which provides an
optimal balance between a slow RAM memory and a fast CPU. For example, if
32-bit words can be fetched from RAM at a rate of 20 MHz, the 5 instructions can be
executed at a rate of 100 MHz.

The design and functions of the eP32 are best presented in functional blocks. The
eP32 can be divided into the following 4 functional blocks, in four quadrants of the
above diagram:
 Program Execution Unit in Quadrant 1
 Memory Address Multiplexer in Quadrant 2
 Return Address Processing Unit in Quadrant3
 Data Processing Unit in Quadrant 4

These blocks will be discussed in the following pages.

2.2 Program Execution Unit

A synchronous Program Execution Unit is a finite state machine, controlling
execution of instructions in the eP32. It has a COUNTER register driven by external
“reset” and “clock” signals. When “reset” is asserted, COUNTER is cleared to 0,
which is output to “slot”. When “reset” is released, external clock signal “clock”
drives COUNTER, which is incremented on the rising edge of “clock”. “slot” is
incremented from 0 to 5, and back to 0. When “slot”=0, eP32 reads the next
program word from the Data Bus, and latches it into the I register on the rising edge
of “clock”.

As “slot” is incremented between 1 and 5, it selects from the I register one 6-bit
instruction “code” through instruction multiplexer IMUX. “code” drives
DECODER, which produces all control signals to run the eP32. These control
signals select appropriate data through multiplexers, and present them to registers and
stacks. On the rising edge of “clock”, selected data are latched into appropriate
registers and stacks, and thus starts another instruction cycle.

When executing transfer instructions like CALL, BRA, BZ, BC, NEXT, RET and
NOP, the “slot0” signal is set. It clears COUNTER and forces next cycle back to
slot0, fetching a new program word from the Data Bus.

The rising edge of the “clock” signal thus paces the eP32 to execute instructions read
from external memory through the Data Bus. The eP32 is a synchronous CPU.

 9

Registers and stacks are changed only on the rising edge of “clock”. Otherwise, all
registers and stacks are static, and hold their contents indefinitely.

Figure 2. Program Execution Unit

2.3 Memory Address Multiplexer

The Memory Address Multiplexer supplies a 32-bit address on the Address Bus to
external devices. When executing the next program word, the AMUX multiplexer
routes the address stored in the P register to the Address Bus. When accessing data
in memory, the XMUX multiplexer routes the address stored in the X register to the
Address Bus. This symmetrical arrangement of P and X registers and address
multiplexers AMUX/XMUX allows all memory operations to be completed in a
single machine cycle. This is the simplest memory management system of a von
Neumann machine. It is entirely unnecessary to use very complicated memory
modes to access memory, as in CISC computer designs.

Depending on the current instruction being executed, PMUX selects one of 4 inputs to
the P register: the next program address (P+1), a target address in the address field of
the current program word in the I register, the return address in the R register, and an
interrupt vector. The selected new address is latched into the P register on the rising
edge of master clock.

Depending on the current instruction being executed, XMUX selects one of 5 inputs
to the X register: the T register, the next data word address (X+1), the left-shifted
(T+S):X register pair in a divide step instruction, the right-shifted T:X register pair in
multiply step instruction, and the (T+S):S register pair in a multiply step instruction.
Selected new data is latched into the X register on the rising edge of the master clock.

 10

Figure 3. Address Unit

2.4 Data Processing Unit

The Data Processing Unit contains a data stack and an ALU. The top item of data
stack is implemented as the T register, which is like an accumulator in conventional
CPU designs. The top element of data stack is designated as the S register. The
ALU takes T and S registers as its input and generates a set of logic and arithmetic
signals. TMUX selects one of these results and routes it to the T register. A
specific machine instruction will select the result it needs and latch it into the T
register on the rising edge of the master clock. This strategy—Compute Everything
and Select the One You Need—allows all ALU operations to be complete in a single
machine cycle.

All ALU instructions select the results they want through TMUX. You can
recognize these instructions by the signals in front of TMUX.

The PUSH instruction selects the S register to load the T register. The POP
instruction selects the R register to load T. The XT instruction selects X to load T.
Memory read instructions select the Data Bus to load T.

 11

Figure 4. Data Processing Unit

2.5 Return Address Processing Unit

The Return Address Processing Unit allows subroutine CALL and RET instructions to
be executed in a single machine cycle. It contains a return stack, whose top item is
implemented as the R register. A CALL instruction pushes the address of the next
program word in the P register onto the return stack through RMUX. A RET
instruction pops the return stack and latches the return address in R back into the P
register.

Subroutine call and return instructions generally are the most complicated machine
instructions in a CISC computer design. They all take many clock cycles to
complete, because many tasks are required in nesting and un-nesting a subroutine call.
Here in the eP32, subroutine call and return are both reduced to a single clock cycle.
As all compound programming languages rely heavily on subroutine calls and returns,
reducing overhead in subroutine calls and returns will significantly improve
performance of programs produced by these language compilers.

The eP32 is also optimized to process loops. During looping, the R register is used
to hold a loop count. The NEXT instruction looks at this count. If R is not zero,
NEXT decrements it and branches to the beginning of the loop. If R is zero, NEXT
terminates the loop. To decrement R, R-1 is selected by RMUX to latch back into R
on the rising edge of the master clock.

 12

Figure 5. Return Stack Unit

2.6 Timing of Instruction Execution

This simple yet efficient design of the eP32 allows all instructions to be executed in a
single clock cycle. Each machine clock cycle is called a “slot”. However, program
words must be read into the CPU before instructions in them can be executed. In the
current implementation, I allocate an extra cycle to read in a program word. This
extra cycle is called “slot0”. After a program word is read in “slot0”, as many slots
are used to execute as many machine instructions in the program word as necessary.
For short instructions, 1 to 5 more slots are used to execute 1 to 5 instructions. For
long instructions, only “slot1” is used to execute a single long instruction in a
program word.

The following diagram shows timing in executing short instructions and long
instructions.

Figure 6. Instruction Exection Timing

NOP and RET instructions can be in any of the 5 slots in a program word. When
these two instructions are executed, “slot0” will be the next slot, and the next program
word will be fetched from memory and then executed. Extra NOP instructions filled

 13

in a program word by a compiler do not waste extra clock cycles.

Under most circumstances, fetching the next program word can be overlapped with
other machine instructions, and “slot0” can be buried to save execution time.
However, an explicit “slot0” to fetch the next program word allows servicing real
time interrupts with very little extra hardware overhead. In “slot0”, interrupt pins
are examined. If not all interrupt pins are 0 and interrupts are enabled, the non-zero
5-bit pattern presented by the interrupt pins are taken as the address of a subroutine
call, and execution is transferred to one of the locations between 1 and 31. In
memory, Location 0 contains the reset vector, and locations 1-31 contain 31 interrupt
vectors.

Interrupt is a big issue in microprocessor designs. If you are familiar with early
microprocessors, you might remember that the 8089 interrupt controller in the 8080
microprocessor family was as complicated as the 8080 itself. Here I provide a very
simple solution. It is not a “be all, do all” solution for interrupts, but it gives you
something to start with.

 14

Chapter 3 eP32 Instructions

3.1 Instruction Classes

The eP32 executes a small but comprehensive set of machine instructions. There are
two types of machine instructions. A long instruction has the following format, with
a 6-bit instruction field and a 24-bit address field:

00 cccccc aaaaaa aaaaaa aaaaaa aaaaaa

When executing a long instruction, the lower 24-bits in the P register are replaced by
the contents of the address field so that the next program word will be fetched from a
new address. Long instructions have 24-bit address fields, which allow branching
inside a 16M-word memory page. If you have to jump to an address outside of the
current memory page and in the full 32-bit addressing space of 4G words, you must
first load a 32-bit address into the T register, push it on return stack, and then execute
a RET instruction. This method allows you to jump to any memory location.

The short instructions are 6-bit in width, and 5 such instructions can be packed into
one program word as shown in the following format:

00 cccccc cccccc cccccc cccccc cccccc

The top two bits in a 32-bit program word are not used. Experienced CPU designers
will find these bits useful in extending the instruction set of the eP32 CPU.

As an instruction code of the eP32 has 6 bits, there can be 64 instructions. We have
defined only 27 instructions in the eP32, leaving plenty of room for sophisticated
designers to add custom instructions for specific applications.

The complete instruction set is shown in Appendix A for your reference.

eP32 instructions can be divided into five classes:

Instruction Class Instructions
Transfer Instructions BC, BRA, BZ, CALL, NEXT, RET
Memory Access Instructions LDI, LDX, LDXP, STX, STXP
ALU Instructions ADD, AND, COM, DIV, MUL, RR8, SHL, SHR,

XOR
Register/Stack Instructions DROP, DUP, NOP, OVER, POP, PUSH, SWAP, TX,

XT
Miscellaneous Instructions EI

Transfer instructions BC, BRA, BZ, CALL and NEXT are long instructions with a
24-bit address field. These instructions allow a program to branch to a new location
inside the current page of memory. A page is 16M words in size. The current page
is where the current program word resides.

 15

Names, binary code and function of these instructions are listed below, sorted by
instruction code.

Instruction Code Function

BRA 000000 Branch to address contained in address field.

RET 000001 Return from a subroutine to calling program. Pop return
address from return stack and deposit it in P.

BZ 000010 If T=0, branch to address in address field; else continue.

BC 000011 If Carry is 1, branch to address in address field; else
continue.

CALL 000100 Push address in P on R stack, and branch to address in
address field.

NEXT 000101 If R is not 0, branch to address in address field, and
decrement R by 1; else pop R stack and continue.

EI 000110 Enable interrupts.

LDXP 001001 Push T on S stack; read data word pointed to by X into
T. Increment X by 1.

LDI 001010 Push T on S stack; read data word pointed to by P into T.
Increment P by 1.

LDX 001011 Push T on S stack; read data word pointed to by X into
T.

STXP 001101 Store T into word pointed to by X. Increment X by 1.
Pop S stack to T.

RR8 001110 Rotate T right by 8 bits.

STX 001111 Store T into word pointed to by X. Pop S stack to T.

COM 010000 Complement T (1’s complement).

SHL 010001 Shift T left by 1 bit.

SHR 010010 Shift T right by 1 bit.

MUL 010011 Multiplication step. If X(0)=1, add S to T. Shift T:X
pair right by 1 bit.

XOR 010100 Pop S stack and XOR it to T.

AND 010101 Pop S stack and AND it to T.

DIV 010100 Division step. If T+S produces a carry, shift (T+S):X
pair left by 1 bit and set X(0); else shift T:X left by 1 bit.

ADD 010111 Pop S stack and add S to T.

POP 011000 Push T onto S stack. Pop R stack to T.

XT 011001 Push T onto S stack. Copy X to T.

DUP 011010 Push T onto S stack. T remains unchanged.

OVER 011011 Push T onto S stack. Copy original contents of S to T.

PUSH 011100 Push T onto R stack. Pop S stack to T.

TX 011101 Copy T to X. Pop S stack to T.

NOP 011110 No operation.

DROP 011111 Pop S stack to T.

 16

All other instructions are short 6-bit instructions. Up to 5 short instructions can be
packed in to a single 32-bit program word. However, when the RET instruction is
executed, execution is transferred to the address saved on the return stack, and
subsequent short instructions in the same program word are ignored. NOP behaves
similarly so that extra NOP instructions filled in by the compiler are ignored.

In many instances, a program word cannot be filled with useful short instructions,
because the next instruction is a long instruction, and the rest of the current program
word must be filled with NOP instructions. Instead of wasting time to execute these
NOP instructions, the instruction sequencer in eP32 will abandon the current program
word, immediately fetch the next program word and execute it when it encounters the
first NOP instruction. However, the user does not have to worry about this, because
the compiler automatically packs as many short instructions into a program word as
possible. Only when the compiler must start a long transfer instruction does it fill
the current program word with NOPs.

3.2 Transfer Instructions

Instruction Code Function
BC 000011 If Carry is 1, branch to address in address field; else

continue.
BRA 000000 Branch to address in address field.
BZ 000010 If T=0, branch to address in address field; else

continue.
CALL 000100 Push the address in P on R stack, and branch to address

in address field; else continue.
NEXT 000101 If R is not 0, branch to address in address field, and

decrement R by 1; else pop R stack and continue.
RET 000001 Return from a subroutine to calling program. Pop return

address from return stack and deposit it in P.

BRA is an unconditional branch instruction. It branches to a location in the current
memory page of 16M words. BZ is the branch on zero instruction. It branches to a
new location when the lower 32 bits in T are all 0. Otherwise it is a NOP. It is used
extensively in FORTH to construct IF-ELSE-THEN branch structures, and
BEGIN-UNTIL and BEGIN-WHILE-REPEAT loop structures.

BC is the branch on carry instruction. It branches to a new location if the carry bit
produced by adder in the ALU is set. Otherwise it is a NOP. This instruction is not
used in compound commands, but is used to implement many primitive commands
where extended precision integer arithmetic operations require a carry bit.

CALL and RET are used to do subroutine nesting and unnesting. The eForth
software system uses a Subroutine Threading Model. All compound commands are
defined as subroutines.

The NEXT instruction reduces a looping operation to a single cycle instruction. In
eForth, one enters a FOR-NEXT loop structure by pushing a loop count into the R
register. By adding auto-decrement and zero-detect functions to the R register, it is
possible to implement NEXT in hardware as a single cycle machine instruction, and

 17

thus optimize counted looping operations in eForth.

3.3 Memory Access Instructions

Instruction Code Function
LDI 001010 Push T on S stack, read data word pointed by P into T.

Increment P by 4.
LDX 001011 Push T on S stack, read data word pointed by X into T.
LDXP 001001 Push T on S stack, read data word pointed by X into T.

Increment X by 1.
STX 001111 Store T into memory pointed by X. Pop S stack to T.
STXP 001101 Store T into memory pointed by X. Increment X by 1.

Pop S stack to T.

The P-series microprocessor addresses memory in words of whatever the width is of
program and data words. The eP32 instruction set assumes 32-bit addresses and
32-bit program and data words. It does not address bytes in memory.

The LDI instruction reads the next word in program memory and pushes it on the data
stack. The word address is in the P register. The P register is auto-incremented to
skip the data word. LDI allows literal integers to be stored in programs and read into
the CPU at run time. Literal integers are very important constituents of programs,
and LDI instructions optimize their storage and usage.

The LDX instruction loads a 32-bit word from memory to the T register. STX stores
the 32-bit word that is in the T register to a word location in memory. The memory
address is in the X register.

LDXP and STXP are like LDX and STX, respectively, except that after memory
access, the X register is auto-incremented. Auto-incrementing the X register allows
consecutive memory locations to be read or written with minimal overhead.

3.4 ALU Instructions

Instruction Code Function
ADD 010111 Pop S stack and add it to T.
AND 010101 Pop S stack and AND it to T.
COM 010000 Complement T (1’s complement).
DIV 010100 Division step. If T+S produces a carry, shift the

(T+S):X pair left by 1 bit and set X(0); else shift T:X
left by 1 bit.

MUL 010011 Multiplication step. If X(0)=1, add S to T. Shift the T:X
pair right by 1 bit.

RR8 001110 Rotate T right by 8 bits.
SHL 010001 Shift T left by 1 bit.
SHR 010010 Shift T right by 1 bit.
XOR 010100 Pop S stack and XOR it to T.

In the original MuP21 design, only COM, SHL, SHR, AND, XOR, and ADD

 18

instructions were defined. Other logic and arithmetic operations were implemented
in terms of these basic instructions. In the eP32, MUL, DIV and RR8 are added.

COM, SHL, SHR, and RR8 are unary operations on the T register alone.

COM does one’s complement on T register. SHL shifts the T register 1 bit to the left.
SHR shifts T register 1 bit to the right.

RR8 rotates the contents of the T register to the right by 8 bits. This instruction is
very useful in a word-addressing CPU like the eP32. It allows individual bytes in
memory to be accessed with minimal effort.

ADD, AND and XOR are binary operations on the T and S registers. They pop the
data stack and discard the data in the S register.

ADD adds S to T. AND ands S to T. XOR exclusive ors S to T.

OR is not implemented as a machine instruction. It is implemented in software
using De Morgan’s theorem. In many cases, XOR can be used to perform OR
functions.

MUL and DIV are ternary operators, involving the T, S and X registers. MUL is a
muliply step instruction and DIV is a divide step instruction.

Multiplication and division are important arithmetic operations frequently used in
computation-intensive applications. It is possible to implement a full
multiplier-adder for DSP applications. However, a fast multiplier-adder requires a
large number of gates and significantly increases power consumption. In the eP32, a
multiplication step instruction, MUL, and a division step instruction, DIV, are
implemented. They make use of the 32-bit adder and shifter already existing in the
ALU. Very little hardware is added, and very little additional power is needed.

In the MUL instruction, the T and X registers are considered a 65-bit right-shift
register. Initially, a partial sum is loaded in the T register, a multiplier in the X
register, and a multiplicand in the S register. If the least significant bit in X is 1, S is
added to T, and the resulting T-X pair is shifted right by 1 bit. If the least significant
bit in X is 0, T is not changed, and the T-X pair is shifted right by 1 bit. This MUL
instruction is repeated 32 times, after which the T-X register pair will contain a
double-word product of X*S +T. The MUL instruction is shown in the following
diagram:

 19

Figure 7. Mulitlication Step

In the DIV instruction, the T and X registers are considered a 65-bit left-shift register.
A double integer dividend is in the T-X register pair, and a negated divisor is in the S
register. In the ALU, the sum of S and T is always computed by an adder. If the
carry bit in the adder is 1, S is added to T, and the resulting T-X pair is shifted left by
1 bit. If the carry bit in the adder is 0, T is not changed, and the T-X register pair is
shifted left by 1 bit. In either case, the carry bit is shifted into the least significant bit
in the X register. After repeating the DIV instruction 32 times, the X register
contains quotient, and the T register contains 2x of the remainder of the division.
The DIV instruction is shown in the following diagram:

Figure 8. Division Step

3.5 Register/Stack Instructions

Instruction Code Function
DUP 011010 Push T on the S stack. T remains unchanged.
DROP 011111 Pop S stack to T.
NOP 011110 No operation.
OVER 011011 Push T onto S stack. Copy original contents of S to T.
POP 011000 Push T onto S stack. Pop R stack to T.
PUSH 011100 Push T onto R stack. Pop S stack to T.
TX 011101 Copy T to X. Pop S stack to T.
XT 011001 Push T onto S stack. Copy X to T.

DUP, DROP, SWAP and OVER are the 4 classic stack operations.

DUP pushes the T register on the data stack. DROP pops the data stack back into T.

 20

SWAP exchanges T and S, the top two elements on the conceptual data stack.
OVER duplicates S, and pushes it into T.

Both SWAP and OVER copy the second item onto the stack to the top of the stack.
The difference is that OVER preserves the second item in S while SWAP destroys it.
We chose to implement OVER in hardware, and leave SWAP to software.

POP pops the top item on the return stack and pushes it onto the data stack. PUSH
pops T from the data stack and pushes it onto the return stack. These operations are
best viewed by considering return stack/R/T/S/data stack as a giant shift register array,
with the three-register R/T/S window at center, exposed to the ALU. The POP
instruction shifts this shift register array to the right, and the PUSH instruction shifts it
to the left.

The TX and XT instructions are used to manage the X register. The X register is
used to read data from memory and write data to memory. It usually holds a
memory address. However, it can be used as a scratch pad register to save and
restore the T register. TX pops the data stack and copies T to X. XT pushes T onto
the data stack and copies the contents in X to T.

3.6 Miscellaneous Instructions

Instruction Code Function
EI 111110 Enable interrupts.

The eP32 provides the simplest mechanism to support real time interrupts. Five
input pins on the eP32 package are allocated for real time interrupts. If interrupts are
enabled, and at least one of 5 interrupt pins is not zero, a subroutine call to one of 31
locations in memory address 1 to 31 is forced on the CPU in the slot0 clock cycle.
The address is selected by reading the signals on the 5 interrupt pins, and
zero-extending it to form an address pointing to a memory location between 1 and 31.
By filling proper branch instructions in memory locations 1 to 31 as an interrupt
vector table, this microprocessor system can respond to external interrupt requests in
real time.

This simple scheme allows 5 external devices to interrupt the CPU directly. If
additional decoding logic were added, it could service interrupts from 31 external
devices. With only 5 interrupt devices, the eP32 can respond to simultaneous
interrupts from multiple devices, by constructing the interrupt vector table properly,
and inserting the EI instruction properly in interrupt service routines. It is assumed
that after booting, the microprocessor system configures itself so that page 0 of
memory is in RAM memory, and software can change the interrupt table dynamically.

When servicing an interrupt, further interrupts are disabled and an interrupt
acknowledge signal is asserted. Interrupting devices should remove their interrupt
requests when seeing interrupt acknowledge. After interrupt service is completed,
the interrupting service routine, or the main program must execute an EI instruction to
enable future interrupts. It is a trivial matter to add a complement instruction DI to
disable interrupts, but it seems to be superfluous at the moment.

 21

Chapter 4. Implementing eP32 on the Brevia Kit

4.1 The Brevia2 Development Kit

I had opportunities to use FPGAs from Xilinx, Altera and Actel before. I
implemented various versions of the eP32 on all of them. I was not particularly
impressed with these companies and their FPGA products. FPGA chips were
generally expensive, development boards were more expensive, and development
software systems were even more expensive, bulky and usually slow.

When Lattice Semiconductor Corp announced its Brevia Development Kit at $49, I
got excited. A friend Masa Kasahara loaned me his kit. I bought 2 more when
Lattice had a special sale for $29. I downloaded its free development software
ispLEVEL and started porting the eP32 to the LatticeXP2-5E-6TN144C FPGA chip.
Working intensely for three weeks, I succeeded in getting the eP32 to work. The
XP2-5E has enough logic cells to implement the eP32 CPU core, a UART, and a
general purpose I/O port. It also has enough RAM memory to host the eForth
operating system. The nicest thing is that its RAM memory is mirrored in on-chip
flash memory, and the entire eP32 system is contained in a single XP2-5E chip. All
other FPGAs required external components to host a complete microprocessor system.
The XP2 is my dreamed SOC chip.

My only complaint is that its software development system, ispLEVER, is too bulky.
It required me to free up 5 GB of disk space to install it, with accompanying
Synplicity synthesis tools and Aldec ActiveHDL simulation tools. One other thing is
that the Brevia Kit requires a COM port and a parallel printer port on my PC for
communication and for a JTAG interface. It is not a big deal for me, because I have
this old desktop computer, which has these ports.

Recently Lattice replaced the Brevia Kit with Brevia2 Kit, and upgraded ispLEVEL to
Diamond IDE. Two cables connecting to the COM and printer ports were replaced
by a single USB cable.. The eP16r implementation is tested and verified on the
Brevia2 Kit, with Diamond 1.4 IDE system. I had trouble installing the USB drivers
on on of my PC, but that's another story.

Here is a laundry list of components included in the Brevia Kit:
� LatticeXP2 FPGA: LFXP2-5E-6TN144C
� 2 Mbit SPI Flash Memory
� 1 Mbit SRAM
� A single USB cable for programming and communication
� 2x20 and 2x5 Expansion Headers
� Push buttons for General Purpose I/O and Reset
� 4-bit DIP Switch for user-defined inputs
� 8 Status LEDs for user-defined outputs

Since the XP2-5E has 166K bits of embedded block RAM, I do not need the external
SPI flash memory and SRAM. The USB interface actually implemented two
devices: an UART port for communication, and a parallel port to program the FPGA.
The LEDs, push buttons, and switches are very useful for demonstrations. This kit

 22

has everything I need to demonstrate my eP32 microprocessor design and the eForth
operating system.

Here I will show you steps to get the eP32 implemented on my Brevia2 Kit and to get
the eForth system to run, talking to HyperTerminal on a PC.

You have to download the Diamond IDE suite from www.latticsemi.com to
implement the eP32. You need the Diamond System for Windows, the Synplify
Synthesis Module, and the Aldec Active-HDL Lattice Web Edition Module. They
take up a huge amount of disk space. Then you have to apply for a license from
Lattice. Lattice also provides many examples for you to evaluate. You may want
to look at their Demo Application, which contains a LatticeMico8 Reference Design.
LatticeMico8 is an 8-bit microprocessor. Only after you studied LatticeMico8 will
you appreciate that the eP32, a 32-bit microprocessor, can be simpler than an 8-bit
microprocessor with conventional architecture.

4.2 Synthesize the eP32

You have to install Diamond first. When Diamond is up and running, open a new
project. Name this project eP32, if you do not have a better name. A New Project
Wizard will help you set up this project. You have to select LatticeXP2-5E as your
target device and VHDL as your programming language. Now, import the following
files into the above project.

File Module
ep32_chip.vhd Top level microprocessor system
ep32.vhd eP32 CPU module
ram_memory.vhd RAM memory module
uart.vhd Serial UART module
gpio.vhd General purpose parallel IO module
ep32q_tb.vhd Test bench for the eP32 system

In the Diamond Project panel, select the File List tab. You will see that all the above
files are imported as shown in Figure 9.

Click the Process tab in the Project panel, and you will see the modules arranged in a
hierarchy as in Figure 10:

 23

Figure 9. Diamond IDE, File List

Figure 10. Diamond IDE, Process View

As I ported the eP32 design from a project using an Altera FPGA, ep32.vhd, uart.vhd,
and gpio.vhd all remain unchanged and Syplicity compiles them correctly.
ram_memory.vhd was changed to use the RAM_DQ module provided in the Diamond
system. If you change the eForth system and get a new target image in mem.mif,
you have to generate a new ram_memory.vhd file, so that the new eForth target image

 24

can be included in ram_memory.vhd.

To change ram_memory.vhd, click Tools>IPexpress to invoke IPexpress. Select
RAM_DQ module. Fill in a file name of ram_memory and select VHDL as module
output, and you get a screen like Figure 11.:

Figure 11. RAM_DQ in IExpress

Click the Customize button, and you get a RAM_DQ configuration panel, like that
shown in Figure 12. Make the following selections:

Memory depth: 4096
Memory width: 32 bits
No output latch
Memory type: synchronous
Optimization: time
Initializing file: mem.mif
File type: Hex-address

Click the Generate button and a new mem_memory is produced. There is a
ram_memory_templ.vhd file containing the VHDL configuration code you can copy
and paste into ep32_chip.vhd.

In the Project panel, click Process tab and select all the process boxes, as shown in
Figure 13.

 25

Figure 12. RAM_DQ Module Configuration

Figure 13. Select Synthesis Process

Pull down the Process Menu and select the Rerun All button. It invokes Synplicity
Synthesis tools to analyze and to synthesize this design. Synplicity will analyze all

 26

VHDL files and synthesize this design accordingly. After each process step, a green
check mark is places after each selection box to indicate that this step is completed
successfully.

If you are to change this design, this is probably the place you will spend lots of time
editing and adding to your VHDL files and then run Synplicity Synthesizer. The
synthesizer is very generous in sending you warning and error messages. Look up
each error message and try to fix the problem in your VHDL files.

4.3 Simulate the eP32

Lattice bundles Active-HDL simulation tools from Aldec in the Diamond system.
Active-HDL itself is a very complicated system, and you need to spend considerable
time learning it.

In the older ispLEVEL IDE, you need a test bench VHDL file to simulate your design.
It can generate a template of a test bench for any VHDL module in your design, to
help you build the test bench. In Diamond, you can specify simulation functions to
input signals directly, and a test bench file is not needed.

Pull down the Tools Menu and select the Simulation Wizard button. The
Active-HDL simulator starts and shows you a series of windows. One window asks
you for a project name. Another asks you to confirm your RTL simulation level.
Just click the Next> button until the simulator is actually loaded. Then you get a
screen like Figure 14.

Figure 14. HDL Simulator

On the Design Browser panel to the left, click the Structure tab at the bottom, then

 27

select the eP32_chip(Behavioral) model button, and you get a list of signals as shown
in Figure 15.

Figure 15. Select cp32 chip module

Figure 16. Select Simulation Signals.

 28

Now, pull down the Simulation Menu and select the Initialize Simulation button. It
will change the values of all the signals in the eP32_chip design from “Unavailable”
to “U” and “X”. Select the signals you like to simulate. I reccomand that you
select the following signals:

Aclk
Arst
Uart_o
Memory_data_o
Memory_data_i
Memory_addr
System_addr
System_data_o

Right chick on the selected signals and select “Add to Waveform” option and you will
see the screen as shown in Figure 16.

Before running the simulation, you have to specify two input signals aclk and arst.
Right click the aclk under “Signal Name” and select the “Simulators…” option in the
pop-up menu. The Simulators window pops up. Select “Clock” in the “Type”
panel, and you get the screen shown in Figure 17.

Figure 17. Simulate Master Clock

Click the Apply button and then the Close button to confirm that you apply a 10 MHz
clock signal to aclk input.

Right click the arst signal under “Signal Name” and select the “Simulators…” option
in the pop-up menu. The Simulators window pops up. Select “Formula” in the
“Type” panel, and specify that the reset signal starts at “0” level for 1000 ns and then

 29

changes to “1”. Now you get the the screen shown in Figure 18.

Click the Apply button and then the Close button to confirm that you apply the proper
reset signal to arst input.

Figure 18. Simulate Master Reset

Now, pull down the Simulation Menu and select the Run Until button. Enter “1 ms”
in the data box to let the simulator run for 1 ms:

Figure 19. Select Simulation Time

Click the OK button and the simulator produces the waveforms as shown in Figure
20.

 30

Figure 20. Simulation Waveforms

Look at the signal uart_o. It is showing that Ep32 sends out a Carriage Return
(ASCII 0xD) and a Line Feed (ASCII 0xA) character. You are now assured that the
eP32 is coded correctly.

Click the Zoom In button (A magnifier glass with a + sign) 12 times, and drag the
waveforms to the beginning to the left, you will see this screen in Figure 21.

Figure 21. Expanded View of the Waveforms

 31

The signals memory_addr and system_addr make the following sequence of changes:
 000->001->68D->68E->640->641
which show that eP32 starts at address 0 on reset, jumps to COLD, which calls
DIAGNOSE. These are the correct sequence of instructions after eP32 starts. You
are now completely assured that the eP32 is running correctly.

4.4 Layout the eP32

After logic design of the eP32 is verified by synthesis and simulation, you have to
assign input and output signals to proper pins on the XP2-5E-5TN144C chip
according to the board layout of the Brevia Kit, so that you can actually run the eP32
on the Brevia2 Kit.

Pull down Tools Menu, and select Package View. In Package View, you see a
Package panel on the right in Figure 22.

Figure 22. Package View of XP2 Chip

Pull down the View Menu and select Preference Preview, you get to see the contents
of the preference file eP32.pdf. It looks like that in Figure 23.

 32

Figure 23. Pin Assignments of eP32

Signals on the eP32 chip and their corresponding pins on the XP2-5E-5TN144C chip
package are listed in the following table:

Signal Pin Number
aclk 21
arst 19
interrupt_i[0] 58
interrupt_i[1] 57
interrupt_i[2] 56
interrupt_i[3] 55
interrupt_i[4] 54
ioport[7] 37
ioport[8] 53
ioport[9] 52
ioport[0] 46
ioport[1] 45
ioport[2] 44
ioport[3] 43
ioport[4] 40
ioport[5] 39
ioport[6] 38
ioport[10] 50
ioport[11] 1
ioport[12] 2
ioport[13] 5

 33

ioport[14] 6
ioport[15] 7
uart_i 110
uart_o 109

You have to get the signals assigned to correct pins; otherwise, the eP32 will not work
on the Brevia2 Kit. Other minor things like clock frequency and signal delays do not
affect the implementation, except that you will get lots of warning messages
complaining that physical layout does not meet timing and delay requirements.

4.5 Programming eP32

The Brevia2 Kit includes a USB cable to connect to a PC. Connect Brevia2 Kit to
your PC. If you have done the systhesis and simulation of eP32 correctly, you can
now program eP32 to Brevia2 and test eP32.

Bring up Diamond, and open the eP32 project. Pull down Tools Menu and select
Programmer. A Programmer window opens up like that shown in Figure24.

Figure 24. Diamond Programmer

From the File Name section, click the Browse button. The File Name window
appears. Browse to the eP16 project folder, select the ep32_xp2.jed file, and click
the Open button. From the Operation list, choose Flash Erase, Program, Verify, and
click the OK button.

The last button to the right on the top of the Programmer Panel is the Program button.
Click it and Diamond reprograms the XP2 chip on the Brevia2 Kit.

 34

If the UART cable is connected to a COM port on the PC, and HyperTerminal is
already opened and configured to 115,200 baud, 1 start bit, 8 data bits, 1 stop bit, no
parity, and no flow control, you should see that the eP32 boots up and displays a
sign-on message, “eP32q v2.05”, as shown in Figure 25:

Figure 25. eP32 Sign-on Message

You can now type in FORTH commands and interact with the eForth system that runs
on the eP32 microprocessor you just downloaded to the Brevia Board.

Type these commands:
: TEST1 CR ." HELLO, WORLD!" ;
TEST1

You will see that eForth produces the results as shown in Figure 26:

To demonstrate that you have full control over the Brevia Board, let us do some
exercises on the GPIO port. First, here are the registers in the GPIO module, which
we can access by reading and writing to memory locations 0xE0000000-0xE0000002:

Address Register Function
0xE0000000 gpio_out When written, send data to gpio port
0xE0000001 gpio_dir_reg Select port pin direction: 0-input; 1-output
0xE0000002 gpio_in Read gpio port

 35

Figure 26. The Universal Greeting

Type the following commands to configure the lower 8 bits in the GPIO port as
outputs and the next upper 8 bits as inputs:

HEX
FF E0000001 !

Now, you will see that all 8 LED's on the Brevia are turned on. To turn them off,
type:
FF E0000000 !

To turn on only one LED, type:
FE E000000 !

To read the push button switches on the Brevia Board, type:
E0000002 ?

FFFE is the result displayed. The lower 8 bits (FE) show that only one LED was
turned on. The upper 8 bits (FF) show that all push button switches are off. Push
down switch SW5 and type:
E0000002 ?

The returned results change to FDFE, as closing SW5 pulls down bit 9 of the GPIO
port.

The above exercises leave this display on HyperTerminal, as shown in Figure 27:

 36

Figure 27. IO Exercises on Brevia2 Kit

These exercises should be very convincing that you have a nice interactive operating
system hosted on the top of a very versatile and powerful 32-bit microprocessor. All
these things on a $49 FPGA development kit!

 37

Chapter 5. The eP32 Design in VHDL

Here I will describe a complete 32-bit microprocessor designed in VHDL. It
includes a CPU core, a RAM memory module, a UART, and a general purpose GPIO
port. Together with the eForth operating system produced by a metacompiler, I build
a complete running Forth system, ready for application development. It is a
complete hardware and software development system to explore SOC applications.
The FPGA chip LatticeXP2-5E can host this complete microprocessor system, and it
is implemented on the LatticeXP2-5E Brevia Development Kit, using the ispLEVER
FPGA Development Software System..

In the following sections, I will present VHDL code in the following files
implementing various modules of the eP21 microprocessor system:

File Module
ep32_chip.vhd Top level microprocessor system
ep32.vhd eP32 CPU module
ram_memory.vhd RAM memory module
uart.vhd Serial UART module
gpio.vhd General purpose parallel IO module

Following is a block diagram of the eP32 chip, showing modules in it and signals and
busses connecting these modules:

Figure 28. Components in eP32 Chip

 38

5.1 Top Level eP32 Chip

VHDL code in ep32_chip.vhd instantiates all modules in the eP32 system.

Here are port signals defined for the top level eP32 chip. Since RAM is
implemented as an internal module, it is not necessary to bring out address and data
signals from the CPU core to the chip package. Therefore, only aclk, arst,
interrupt_i, acknowledge_o, uart_i, uart_o and useful GPIO pins are necessary to
implement a chip that runs the eForth system for program development. This eP32
system can be hosted in a very small package with 8-14 pins.

I/O pins of this eP32 chip and their functions are as follows:

Port Signal Function
aclk External clock input
arst External reset input
interrupt_i External interrupt input
acknowledge_o Interrupt acknowledge
uart_i UART receiver input
uart_o UART transmitter output
ioport General purpose I/O port

In component declarations, the following modules are declared:

Component Module Function
ep32 eP32 CPU core module
ram_memory RAM memory module
uart Serial UART module
gpio General purpose parallel I/O module

These modules are later instantiated and all their ports are connected to signals
defined in the top level system module.

eP32 Module

The eP32 module is a complete CPU core. Its input/output signals are as follows:

clk Input master clock
clr Input master reset
interrupt Input external interrupt
data_i Input data bus
intack Output interrupt acknowledge
read Output memory/io read enable
write Output memory/io write enable
addr Output address bus
data_o Output data bus

 39

--
*** *************
-- * (C) Copyright 2002, eForth Technology Inc. *
-- * ALL RIGHTS RESERVED *
--
== ============
-- * Project: FG in PROASIC *
-- * File: ep32_chip.vhd *
-- * Author: Chien-Chia Wu *
-- * Description: Top level block *
-- * *
-- * Hierarchy:parent: *
-- * child : *
-- * *
-- * Revision History: *
-- * Date By Who Modification *
-- * 09/19/02 Chien-Chia Wu Branch from ep16a . *
-- * 01/02/03 Chien-Chia Wu Add SDI. *
-- * 01/29/03 Chien-Chia Wu Add Boot. *
-- * 02/24/03 Chien-Chia Wu Modify the module as 32-bits *
-- * version. *
-- * 02/27/03 Chien-Chia Wu Modify SDRAM as b yte-assecable. *
-- * 03/02/03 Chien-Chia Wu Add internal SRAM module. *
-- * 06/29/06 Chen-Hanson Ting Add HMPP/Shifter /Controller. *
-- * 11/18/10 Chen-Hanson Ting Port to LatticeX P2 Brevia Kit *
--
*** *************

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_unsigned.all;

entity ep32_chip is
port(
 -- input port
 aclk: in std_logic;
 arst: in std_logic;
 interrupt_i: in std_logic_vector(4 d ownto 0);
 -- input port
 uart_i: in std_logic;
 -- output port
 uart_o: out std_logic;
 -- GPIO Interface
 ioport: inout std_logic_vector(15 do wnto 0)
);
end entity ep32_chip;

 40

UART module

The UART module conforms to standard RS232 UART specifications, although we
only use two I/O pins, rxd_i and txd_o. No handshake or flow control signals are
used. Input/output signals in the UART module are as follows:
rst_i Input reset
ce_i Input chip enable
read_i Input read enable
write_i Input write enable
addr_i Input address bus
data_i Input data bus
data_o Output data bus
rx_empty_o Output receiver empty flag
rx_irq_o Output receiver interrupt request
tx_irq_o Output transmitter interrupt request
rxd_i Input receiver data
txd_o Output transmitter data
cts_i Input clear to send
rts_o Output ready to send

RAM Module

The RAM_MEMORY module is configured to use the RAM_Q memory of embedded
block memory EBR in the LatticeXP2-5E FPGA chip. Input/output signals are as
follows:
Clock Input master clock
ClockEn Input clock enable
Reset Input master reset
WE Input write enable
Address Input address bus
Data Input data bus
Q Output data bus

GPIO Module

Input/output signals are as follows:
clr Input master reset
clk Input master clock
write Input write enable
read Input read enable
ce Input chip enable
addr Input address bus
data_in Input data bus
gpio_in Input GPIO data
data_out Output data bus
gpio_out Output GPIO data
gpio_dir OutPut GPIO direction

 41

architecture behavioral of ep32_chip is
 -- component declaration
 component ep32 is
 port(
 -- input port
 clk: in std_logic;
 clr: in std_logic;
 interrupt: in std_logic_vector(4 downto 0);
 data_i: in std_logic_vector(31 downt o 0);
 intack: out std_logic;
 read: out std_logic;
 write: out std_logic;
 addr: out std_logic_vector(31 downt o 0);
 data_o: out std_logic_vector(31 downto 0)
);
 end component;

 component uart is
 port(
 -- input
 clk_i: in std_logic;
 rst_i: in std_logic;
 ce_i: in std_logic;
 read_i: in std_logic;
 write_i: in std_logic;
 addr_i: in std_logic_vector(1 downt o 0);
 data_i: in std_logic_vector(31 down to 0);
 -- output
 data_o: out std_logic_vector(31 down to 0);
 rx_empty_o: out std_logic;
 rx_irq_o: out std_logic;
 tx_irq_o: out std_logic;
 -- external interface
 rxd_i: in std_logic;
 txd_o: out std_logic;
 cts_i: in std_logic;
 rts_o: out std_logic
);
 end component;

component ram_memory
 port (Clock: in std_logic; ClockEn: in std_lo gic;
 Reset: in std_logic; WE: in std_logic;
 Address: in std_logic_vector(11 downto 0);
 Data: in std_logic_vector(31 downto 0);
 Q: out std_logic_vector(31 downto 0));
end component;

 42

Top Level Global Signals

Here are global signals defined in the top level eP32 chip. Their principal purposes
are connecting port signals of instantiated modules. However, many signals are
defined in terms of logical equations constructed from other signals. These logical
equations are then presented with relevant modules.

The following are Global signals in the eP32 chip:

Signal Function
m_rst Inverted master reset
m_clk Inverted master clock
memory_data_o Memory data output bus
memory_data_i Memory data input bus
memory_addr Memory address bus
system_addr System address bus
system_data_o System data output bus
system_read System read enable
system_write System write enable
system_ack system interrupt acknowledge
cpu_data_i CPU data input bus
cpu_addr_o CPU address bus
cpu_data_o CPU data output but
cpu_m_read CPU memory read enable
cpu_m_write CPU memory write enable
cpu_intack CPU interrupt acknowledge
cpu_ready_i CPU ready input
cpu_ack_o CPU interrupt acknowledge output
uart_ce UART chip enable
uart_addr UART address bus
uart_data_i UART data input bus
uart_data_o UART data output bus
uart_rx_empty UART receiver empty flag
uart_rx_irq UART receiver interrupt request flag
uart_tx_irq UART transmitter interrupt reuqest flag
uart_rxd UART receiver data
uart_txd UART transmitter data
uart_cts UART clear to send
uart_rts UART ready to send
gpio_ce GPIO chip enable
gpio_addr GPIO address bus
gpio_data_i GPIO data input bus
gpio_in GPIO input pins
gpio_data_o GPIO data output bus
gpio_out GPIO output pins
gpio_dir GPIO input/output direction

 43

component gpio
 port(
 -- input port
 clr: in std_logic;
 clk: in std_logic;
 write: in std_logic;
 read: in std_logic;
 ce: in std_logic;
 addr: in std_logic_vector(1 downto 0) ;
 data_in: in std_logic_vector(31 downto 0);
 gpio_in: in std_logic_vector(15 downto 0);
 -- output port
 data_out: out std_logic_vector(31 downto 0);
 gpio_out: out std_logic_vector(15 downto 0);
 gpio_dir: out std_logic_vector(15 downto 0)
);
end component;

 -- interal globle signal
 signal m_rst: std_logic;
 signal m_clk: std_logic;
 signal memory_data_o: std_logic_vector(31 downto 0);
 signal memory_data_i: std_logic_vector(31 downto 0);
 signal memory_addr: std_logic_vector(11 downto 0);

 -- internal signal for system bus
 signal system_addr: std_logic_vector(31 downto 0);
 signal system_data_o: std_logic_vector(31 downto 0);
 signal system_read: std_logic;
 signal system_write: std_logic;
 signal system_ack: std_logic;

 -- internal signal for cpu
 signal cpu_data_i: std_logic_vector(31 downto 0);
 signal cpu_addr_o: std_logic_vector(31 downto 0);
 signal cpu_data_o: std_logic_vector(31 downto 0);
 signal cpu_m_read: std_logic;
 signal cpu_m_write: std_logic;
 signal cpu_intack: std_logic;
 signal cpu_ready_i: std_logic;
 signal cpu_ack_o: std_logic;

 -- internal signal for uart
 signal uart_ce: std_logic;
 signal uart_addr: std_logic_vector(1 downto 0);
 signal uart_data_i: std_logic_vector(31 downto 0);
 signal uart_data_o: std_logic_vector(31 downto 0);
 signal uart_rx_empty: std_logic;
 signal uart_rx_irq: std_logic;
 signal uart_tx_irq: std_logic;
 signal uart_rxd: std_logic;
 signal uart_txd: std_logic;
 signal uart_cts: std_logic;
 signal uart_rts: std_logic;

 44

CPU Component Binding

cpu1 is the eP32 CPU module instantiated in the eP32 chip. Its port map specifies
how internal signals in cpu1 are connected to global signals in the chip system.

m_rst is inverted from the external master reset, arst. The external master reset, arst,
is connected to a RESET pushbutton on the Brevia Board, and is normally pulled up
to VCC. When RESET is pressed down, arst is pulled down to ground. Internal
reset signals sent to the eP32 CPU and other memory and I/O devices use positive
logic; therefore, arst must be inverted to m_rst, which is used to reset internal
modules.

Here are local signals defined in the top level eP32 system. They are used to
connect the eP32 CPU to other modules.

Local Signal Function
m_rst Master reset, inverted from external reset.
m_clk Master clock, inverted from external clock to accommodate memory

timing constraints.
system_addr System address from CPU to all other modules.
system_read Read enable from CPU to all other modules.
system_write Write enable from CPU to all other modules.
system_ack Acknowledge from CPU.
cpu_ready_i CPU ready.
ready System ready.
cpu_data_i Data from another module to CPU. Individual byte is selected if the

byte_word signal is set.
system_data_o System data bus connected to memory and I/O modules. Memory

and I/O devices are enabled by Bits 31-28 of system address.

UART Component Binding

The UART used in the eP32 is initialized to 115,200 baud, 1 start bit, 8 data bits, 2
stop bits, no parity, and no flow control. CTS and RTS, though defined in the UART
module, are not used and not brought out to the eP32 package. Only RXD and TXD
are brought out.

Local Signal Function
uart_ce UART enable
uart_addr UART register address
uart_data_i Data from CPU
uart_rxd Receiver input
uart_txd Transmitter output

 45

 -- internal signal for gpio
 signal gpio_ce: std_logic;
 signal gpio_addr: std_logic_vector(1 downto 0);
 signal gpio_data_i: std_logic_vector(31 downto 0);
 signal gpio_in: std_logic_vector(15 downto 0);
 signal gpio_data_o: std_logic_vector(31 downto 0);
 signal gpio_out: std_logic_vector(15 downto 0);
 signal gpio_dir: std_logic_vector(15 downto 0);

begin
 --
*** **************

 -- Component Binding
 --
*** **************

 -- ========================= CPU Block ========== =================
 cpu1: ep32
 port map (
 -- input port
 clk => aclk,
 clr => m_rst,
 interrupt => interrupt_i,
 data_i => cpu_data_i,
 intack => cpu_intack,
 read => cpu_m_read,
 write => cpu_m_write,
 addr => cpu_addr_o,
 data_o => cpu_data_o
);

 --
*** **************

 -- Internal Globle Signal Circuit
 --
*** **************

 m_rst <= not arst;
 m_clk <= not aclk;
 system_addr <= cpu_addr_o;
 system_read <= cpu_m_read;
 system_write <= cpu_m_write;
 system_ack <= cpu_ack_o;
 cpu_ready_i <= '1';

 cpu_data_i <= system_data_o;

 system_data_o <= cpu_data_o when (system_write=' 1') else
 memory_data_o when (system_addr(31 downto 28)="0 000")
else
 uart_data_o when (system_addr(31 downto 28)="100 0") else
 gpio_data_o when (system_addr(31 downto 28)="111 0") else
 (others => 'Z');

 46

RAM Component Binding

The RAM module handles only 32-bit words. Memory_addr, sent from CPU to
memory modules, is at bits 11-0 to address 4k words of 32-bit word memory.

All other modules in the eP32 chip are clocked by the external master clock, aclk,
except the RAM memory module, which is clocked by an inverted clock, m_clk.
The reason is that the RAM_Q library module from Lattice IPexpress is a
synchronous RAM memory, in which the rising edge of the clock latches the input
address bus and input data bus. The eP32 expects asynchronous RAM/ROM
memory modules, which must supply memory data to output to the data bus when the
address bus is valid. All registers and stacks in the eP32 behave this way. Latching
the address bus would waste one clock cycle for every memory access, making it
impossible to execute all eP32 machine instructions in a single cycle.

A compromise between design specification and the available RAM_Q memory
module is to clock RAM_Q modules with inverted clock m_clk, which forces latching
the memory address bus a half-cycle earlier, on the rising edge of m_clk, which
occurs on the falling edge of aclk. A disadvantage in clocking the memory address
bus earlier is that the memory access speed must be twice the CPU speed. This is
not a problem with FPGAs running at 50 MHz. Embedded RAM memory in FPGAs
are generally much faster than 50 MHz. However, one should be careful in pushing
CPU speed higher. You have to avoid contentions in accessing the memory bus.

Local Signal Function
system_write Write enable.
memory_addr Word address sent to memory module.
memory_data_i Data sent by CPU to memory module.
memory_data_o Data output from memory module.

GPIO Component Binding

The GPIO module is defined as a 16-bit bidirectional I/O port. The gpio_idr signal
can be used to change the I/O direction dynamically. However, in actual
implementation, I/O devices used are switches, LED display, and LCD display.
They do not require dynamic I/O redirection. In the eP32 system, gpio_in and
gpio_out are merged into one ioport and brought to the eP32 package pins. io_port
pins are defined as inout pins.

Local Signal Function
gpio_ce GPIO chip enable
gpio_addr GPIO register address
gpio_data_i Data send from CPU to GPIO module
gpio_in Data received from GPIO input pins
ioport 16 bit bidirectional GPIO port

 47

 -- ========================= UART Block
===========================
 uart1 : uart
 port map (
 -- input
 clk_i => aclk,
 rst_i => m_rst,
 ce_i => uart_ce,
 read_i => system_read,
 write_i => system_write,
 addr_i => uart_addr,
 data_i => uart_data_i,
 -- output
 data_o => uart_data_o,
 rx_empty_o => uart_rx_empty,
 rx_irq_o => uart_rx_irq,
 tx_irq_o => uart_tx_irq,
 -- external interface
 rxd_i => uart_rxd,
 txd_o => uart_txd,
 cts_i => uart_cts,
 rts_o => uart_rts
);
 uart_ce <= '1' when (system_addr(31 downto 28)="1 000") else '0';
 uart_addr <= system_addr(1 downto 0);
 uart_data_i <= system_data_o;
 uart_rxd <= uart_i;
 uart_o <= uart_txd;

 -- ========================= RAM Block ========== =================
ram_memory_0 : ram_memory PORT MAP (
 Address => memory_addr,
 Clock => m_clk,
 ClockEn => '1',
 Reset => '0',
 Data => memory_data_i,
 WE => system_write,
 Q => memory_data_o
);

 memory_addr <= cpu_addr_o(11 downto 0);
 memory_data_i <= cpu_data_o ;

 48

 -- ========================= GPIO Block
===========================
 gpio1 : gpio
 port map (
 -- input port
 clr => m_rst,
 clk => aclk,
 write => system_write,
 read => system_read,
 ce => gpio_ce,
 addr => gpio_addr,
 data_in => gpio_data_i,
 gpio_in => gpio_in,
 -- output port
 data_out => gpio_data_o,
 gpio_out => gpio_out,
 gpio_dir => gpio_dir
);
 gpio_ce <= '1' when (system_addr(31 downto 28)="1 110") else
 '0';
 gpio_addr <= system_addr(1 downto 0);
 gpio_data_i <= system_data_o;
 gpio_in <= ioport;
 ioport(0) <= gpio_out(0) when gpio_dir(0)='1' e lse 'Z';
 ioport(1) <= gpio_out(1) when gpio_dir(1)='1' e lse 'Z';
 ioport(2) <= gpio_out(2) when gpio_dir(2)='1' e lse 'Z';
 ioport(3) <= gpio_out(3) when gpio_dir(3)='1' e lse 'Z';
 ioport(4) <= gpio_out(4) when gpio_dir(4)='1' e lse 'Z';
 ioport(5) <= gpio_out(5) when gpio_dir(5)='1' e lse 'Z';
 ioport(6) <= gpio_out(6) when gpio_dir(6)='1' e lse 'Z';
 ioport(7) <= gpio_out(7) when gpio_dir(7)='1' e lse 'Z';
 ioport(8) <= gpio_out(8) when gpio_dir(8)='1' e lse 'Z';
 ioport(9) <= gpio_out(9) when gpio_dir(9)='1' e lse 'Z';
 ioport(10) <= gpio_out(10) when gpio_dir(10)='1' else 'Z';
 ioport(11) <= gpio_out(11) when gpio_dir(11)='1' else 'Z';
 ioport(12) <= gpio_out(12) when gpio_dir(12)='1' else 'Z';
 ioport(13) <= gpio_out(13) when gpio_dir(13)='1' else 'Z';
 ioport(14) <= gpio_out(14) when gpio_dir(14)='1' else 'Z';
 ioport(15) <= gpio_out(15) when gpio_dir(15)='1' else 'Z';

 end behavioral;

 49

5.2 The eP32 CPU Module

VHDL code of the eP32 CPU module is in the ep32.vhd file.

When I first learnt VHDL, the text books told me to build things in modules, to
collect modules into libraries, and then call these modules out in the main design.
So I did that in the original design of the P16. After a while, I found that the CPU
was not that complicated, and all modules I needed could be combined together. The
end result was that I had only one module and it is my entire CPU.

When RESET is set high, all registers and both stacks are cleared to 0. When
RESET is cleared to 0, the CLOCK input drives the eP32. On the rising edge of
CLOCK, the program word in memory address 0 is read into the I register. The first
instruction in I is decoded; i.e., a set of control signals are sent to all components in
the eP32. On the rising edge of the next CLOCK, new data are latched into
appropriate registers and stacks depending on the instruction. The next instruction is
decoded and thus executed, and so forth.

A memory interface is provided to connect to memory devices through a 32-bit
address bus and a 32-bit data bus, with read enable and write enable control signals.

When reading a program word, the P register drives the external address bus and a
program word is read into the I register. When reading or writing data words, the X
register drives the external address bus, and data are read into the T register, or written
from the T register, to the external data bus.

Two stacks are used in the eP32: a return stack to store return addresses from nested
subroutine call instructions, and a data stack to store parameters passed among nested
subroutines. The top two elements on the data stack are usually implemented as
registers. They are the T register for “top”, and the S register for “second”. The
top of the return stack is also implemented as the R register.

The T and S registers provide two inputs to the ALU, which carries out arithmetic and
logic operations on data from T and S, and returns results to the T register.

The return stack, R, T, and S registers, and data stack can be viewed as a giant shift
register array. Data can be shifted right or left in this giant array. The R, T and S
registers are windows in this giant array visible to programmers in programming.

The eP32.vhd file contains the complete specification of this CPU in VHDL. You
will be amazed at how simple a 32-bit CPU can be. I hope it will stimulate your
mind, and encourage you to design you own dream microprocessor.

 50

--
*** *************
-- * 150nm Extreme Temperarture Radia tion *
-- * Hardened SOC ASIC Project *
--
== ============
-- * FPGA Project: 32-Bit CPU in Altera SOPC Builder *
-- * File: ep32.vhd *
-- * Author: C.H.Ting *
-- * Description: ep32 CPU Block *
-- * *
-- * Revision History: *
-- * Date By Who Modification *
-- * 06/06/05 C.H. Ting Convert EP24 to 32- bits. *
-- * 06/10/05 Robyn King Made compatible wit h Altera SOPC *
-- * Builder. *
-- * 06/27/05 C.H. Ting Removed Line Drawin g Engine. *
-- * 07/27/05 Robyn King Cleaned up code. *
-- * 08/07/10 C. H. Ting Return to eP32p *
-- * 11/18/10 Chen-Hanson Ting Port to LatticeX P2 Brevia Kit *
--
*** *************

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_unsigned.all;

entity ep32 is
 generic(width: integer := 32);
 port(
 -- input port
 clk: in std_logic;
 clr: in std_logic;
 interrupt: in std_logic_vector(4 down to 0);
 data_i: in std_logic_vector(31 dow nto 0);
 intack: out std_logic;
 read: out std_logic;
 write: out std_logic;
 addr: out std_logic_vector(31 dow nto 0);
 data_o: out std_logic_vector(31 downto 0)
);
end entity ep32;

 51

I/O Signals of the eP32 CPU

In VHDL terminology, the entity section specifies the interface signals from circuit
component to the external world. The eP32, as a microprocessor chip, shows the
pin-out of the chip in its entity section: master clock, control signals, data bus,
address bus, and I/O ports. Here are detailed specifications of these busses and
signals:

Signal Function
clk Master clock
clr Master reset
interrupt 5-bit interrupt ports
data_i 32 bit data input bus
intack Interrupt acknowledge
read Memory read enable
write Memory write enable
addr 32 bit address bus
data_o 32 bit data output bus

The eP32 CPU Module

An architecture section in VHDL is the body of the design, in which all internal
signals and logic are contained. In an architecture section, signals and registers are
defined first. Then there is a subsection where you can define concurrent logic, a
subsection where you can define sequential logic, and a subsection defining the finite
state machine that runs the show. For the purpose of documentation and clear
referencing to signals, one can define constants to replace literal references.

 52

architecture behavioral of ep32 is

 type stack is array(31 downto 0) of std_logic_vect or(width downto
0);
 signal s_stack,r_stack: stack;
 signal slot: integer range 0 to 5;
 signal sp,sp1,rp,rp1: std_logic_vector(7 downto 0) ;
 signal t,s,sum: std_logic_vector(width downto 0);
 signal a,r: std_logic_vector(width downto 0);
 signal t_in,r_in,a_in: std_logic_vector(width down to 0);
 signal code: std_logic_vector(5 downto 0);
 signal t_sel: std_logic_vector(3 downto 0);
 signal p_sel: std_logic_vector(1 downto 0);
 signal a_sel: std_logic_vector(2 downto 0);
 signal r_sel: std_logic_vector(1 downto 0);
 signal addr_sel: std_logic;
 signal spush,spopp,rpush,rpopp,inten,intload,intse t,
 tload,rload,aload,pload,iload,reset,z: std_logic;
 signal r_z,int_z: std_logic;
 signal i,p,p_in: std_logic_vector(width-1 downto 0);

 -- machine instructions selected by code

 constant bra : std_logic_vector(5 downto 0) :="000 000";
 constant ret : std_logic_vector(5 downto 0) :="000 001";
 constant bz : std_logic_vector(5 downto 0) :="000 010";
 constant bc : std_logic_vector(5 downto 0) :="000 011";

 constant call: std_logic_vector(5 downto 0) :="000 100";
 constant nxt : std_logic_vector(5 downto 0) :="000 101";
 constant ei : std_logic_vector(5 downto 0) :="000 110";

 constant ldp : std_logic_vector(5 downto 0) :="001 001";
 constant ldi : std_logic_vector(5 downto 0) :="001 010";
 constant ld : std_logic_vector(5 downto 0) :="001 011";

 constant stp : std_logic_vector(5 downto 0) :="001 101";
 constant rr8 : std_logic_vector(5 downto 0) :="001 110";
 constant st : std_logic_vector(5 downto 0) :="001 111";

 constant com : std_logic_vector(5 downto 0) :="010 000";
 constant shl : std_logic_vector(5 downto 0) :="010 001";
 constant shr : std_logic_vector(5 downto 0) :="010 010";
 constant mul : std_logic_vector(5 downto 0) :="010 011";

 constant xorr: std_logic_vector(5 downto 0) :="010 100";
 constant andd: std_logic_vector(5 downto 0) :="010 101";
 constant div : std_logic_vector(5 downto 0) :="010 110";
 constant addd: std_logic_vector(5 downto 0) :="010 111";

 constant popr: std_logic_vector(5 downto 0) :="011 000";
 constant lda : std_logic_vector(5 downto 0) :="011 001";
 constant dup : std_logic_vector(5 downto 0) :="011 010";
 constant over: std_logic_vector(5 downto 0) :="011 011";

 53

Registers, Busses and Signals

Here are the registers, busses, and the internal control signals contained in the eP32
CPU. They are all defined as signals in VHDL. How they are actually
implemented depends on how they are used in concurrent statements and in sequential
statements.

Signal Function
s_stack Data stack.
r_stack Return stack.
slot Output of slot counter in finite state machine.
sp Data stack pointer.
sp1 Alternate data stack pointer. It always has the value of sp+1.
rp Return stack pointer.
rp1 Alternate return stack pointer. It always hads the value of rp+1.
t Accumulator or T register, top of data stack.
s Top element of data stack. S is a pseudo register.
r Top element of return stack. R is a real register.
a Address register, X.
i Instruction register, I.
p Program counter, P.
sum Output from an adder T+S.
t_in Input to T register.
r_in Input to R register.
a_in Input to X register.
p_in: Input to P register.
code 6-bit opcode decoded from I register.
spush Control signals to push data stack.
spopp Control signals to pop data stack.
rpush Control signals to push return stack.
rpopp Control signals to pop return stack.
tload Enable signals to load T register.
aload Enable signals to load X register.
pload Enable signals to load P register.
iload Enable signals to load I register.
z One-bit signal, true if T=0, otherwise false.
r_z One-bit signal, true if R=0, otherwise false.
int_z One-bit signal, true if interrupt inputs are all 0, otherwise false.
inten Enable interrupts.
intset Set if interrupt is enabled
intload Latch interrupt vector into P register.
a_sel Select alternate argument to X register.
p_sel Select alternate argument to P register.
r_sel Select alternate argument to R register.
t_sel Select alternate argument to T register.
addr_sel Select alternate argument to address bus.

 54

 constant pushr: std_logic_vector(5 downto 0) :="01 1100";
 constant sta : std_logic_vector(5 downto 0) :="011 101";
 constant nop : std_logic_vector(5 downto 0) :="011 110";
 constant drop: std_logic_vector(5 downto 0) :="011 111";

-- mux to t register, selected by t_sel
 constant not_t: std_logic_vector :="0000";
 constant s_xor_t: std_logic_vector :="0001";
 constant s_and_t: std_logic_vector :="0010";
 constant s_or_t: std_logic_vector :="0011";
 constant sum_t: std_logic_vector :="0100";
 constant shr_sum: std_logic_vector :="0101";
 constant shr_t: std_logic_vector :="0110";
 constant shr_t_t: std_logic_vector :="0111";
 constant shl_sum_a_t: std_logic_vector :="1000";
 constant shl_t_a_t: std_logic_vector :="1001";
 constant shl_t: std_logic_vector :="1010";
 constant s_t: std_logic_vector :="1011";
 constant a_t: std_logic_vector :="1100";
 constant r_t: std_logic_vector :="1101";
 constant data_t: std_logic_vector :="1110";
 constant rr8_t: std_logic_vector :="1111";

-- mux to a register, selected by a_sel
 constant t_a: std_logic_vector :="001";
 constant a1_a: std_logic_vector :="010";
 constant shr_sum_a: std_logic_vector :="011";
 constant shr_t_a: std_logic_vector :="100";
 constant shl_sum_a: std_logic_vector :="101";

-- mux to r register, selected by r_sel
 constant rout_r: std_logic_vector :="00";
 constant t_r: std_logic_vector :="01";
 constant r1_r: std_logic_vector :="10";
 constant p_r: std_logic_vector :="11";

-- mux to p register, selected by p_sel
 constant pi_p: std_logic_vector :="00";
 constant p1_p: std_logic_vector :="01";
 constant r_p: std_logic_vector :="10";
 constant int_p: std_logic_vector :="11";

-- mux to memory bus, selected by addr_sel
 constant p_addr: std_logic :='0';
 constant a_addr: std_logic :='1';

begin

 data_o<= t(width-1 downto 0);
 intack <= inten;
 s <= s_stack(conv_integer(sp));

 sum <= (('0'&t(width-1 downto 0)) + ('0'&s(width-1 downto 0)));

 55

Opcodes

Machine instructions, opcodes and their functions are as follows:

Instruction Code Function
bra 000000 Jump to address contained in current instruction.
ret 000001 Return from a subroutine to main program. Pop return

address from return stack and store it in P.
bz 000010 If T=0, jump to address contained in current

instruction; else continue.
bc 000011 If Carry is set, jump to address contained in current

instruction; else continue.
call 000100 Push address in P on R stack, and jump to address

contained in current instruction; else continue.
nxt 000101 If R is not 0, jump to address contained in current

instruction, and decrement R by 1; else pop R stack and
continue.

ei 000110 Enable interrupts.
ldp 001001 Push T on S stack, read memory word pointed to by X

into T. Increment X by 1.
ldi 001010 Push T on S stack, read memory word pointed to by P

into T. Increment P by 1.
ld 001011 Push T on S stack, read memory word pointed to by X

into T.
stp 001101 Store T into memory pointed to by X. Increment X by

1. Pop S stack to T.
rr8 001110 Rotate T right by 8 bits.
st 001111 Store T into memory pointed to by X. Pop S stack to T.
com 010000 Complement T (1’s complement).
shl 010001 Shift T left by 1 bit.
shr 010010 Shift T right by 1 bit.
mul 010011 Multiplication step. If X(0)=1, add S to T, otherwise T

is not changed. Shift T:X pair right by 1 bit.
xorr 010100 Pop S stack and XOR it to T.
andd 010101 Pop S stack and AND it to T.
div 010100 Division step. If T+S produces a carry, add S to T,

otherwise T is not changed. Shift T:X pair left by 1 bit.
Shift carry into X(0).

addd 010111 Pop S stack and add it to T.
popr 011000 Push T onto S stack. Pop R stack to T.
lda 011001 Push T onto S stack. Copy X to T.
dup 011010 Push T onto S stack.
over 011011 Push T onto S stack. Copy original contents of S to T.
pushr 011100 Push T onto R stack. Pop S stack to T.
sta 011101 Copy T to X. Pop S stack to T.
nop 011110 No operation.
drop 011111 Pop S stack to T.

 56

 with t_sel select
 t_in <= (not t) when not_t,
 (t xor s) when s_xor_t,
 (t and s) when s_and_t,
 sum when sum_t,
 (t(width-1 downto 0) & '0') when shl_t,
 (t(width-1 downto 0) & a(width-1)) when shl_t_a_t ,
 (sum(width-1 downto 0) & a(width-1)) when shl_sum _a_t,
 ('0'&sum(width downto 1)) when shr_sum,
 ('0'&t(width-1)&t(width-1 downto 1)) when shr_t,
 ("00"&t(width-1 downto 1)) when shr_t_t,
 s when s_t,
 a when a_t,
 r when r_t,
 t(width)&t(7 downto 0)&t(width-1 downto 8) when r r8_t,
 '0'&data_i(width-1 downto 0) when others;

 with slot select
 code <= i(29 downto 24) when 1,
 i(23 downto 18) when 2,
 i(17 downto 12) when 3,
 i(11 downto 6) when 4,
 i(5 downto 0) when 5,
 nop when others;
-- icode <= code;

 with a_sel select
 a_in <= a+1 when a1_a ,
 ('0'&t(0)&a(width-1 downto 1)) when shr_t_a ,
 ('0'&sum(0)&a(width-1 downto 1)) when shr_sum_a ,
 ('0'&a(width-2 downto 0)&sum(width)) when shl_sum _a ,
 t when others;

 with r_sel select
 r_in <= r-1 when r1_r ,
 '0'&p when p_r ,
 r_stack(conv_integer(rp)) when rout_r ,
 t when others;

 with p_sel select
 p_in <= (p(width-1 downto width-8) & i(width-9 dow nto 0)) when
pi_p ,
 r(width-1 downto 0) when r_p ,
 ("000000000000000000000000000"&interrupt(4 downto 0)) when
int_p ,
 p+1 when others;

 with addr_sel select
 addr <= a(width-1 downto 0) when a_addr ,
 p(width-1 downto 0) when others;

 57

Concurrent Assignments

Most of the concurrent assignments (using “<=”) simply route signals from one place
to another. A few concurrent assignments actually do some useful things, like

Signal Source
sum Get sum of T+S.
z z=1 if T=0; z=0 if T is not 0.
r_z r_z=1 if R=0; r_z=0 if R is not 0.

The most interesting concurrent assignments are those of the multiplexers. Here are
a few multiplexers explicitly defined, and their select signals:

Multiplexer Select Signal
TMUX t_sel
RMUX r_sel
XMUX a_sel
PMUX p_sel
Address Bus addr_sel
code slot

The VHDL code on the left page shows constant values used to set selection signals to
the various multiplexers.

Many other more complicated multiplexers are not defined explicitly, but are
implicitly defined in case statements of individual machine instructions. Please
examine these statements to see how particular signals are selected and routed.

data_o, which is the output data bus in the eP32 core, always sends out data in the T
register. When we write data to memory and to peripheral devices, the address is
provided in the X register, and data are provided in the T register.

“intack” is the interrupt acknowledge signal.

The S register is a pseudo-register. It is not defined as a register, but as the top of the
data stack, s_stack, pointed to by the data stack pointer, sp. It is always used as the
second argument, next to the T register, for arithmetic and logic machine instructions
that expect two arguments.

“sum” is the adder in the eP32. It is shared by machine instructions ADD, MUL and
DIV. It adds data from the T register and S register on the top of the data stack.

“t_in” is the output bus of a giant multiplexer, which provides input data to the T
register. Machine instructions changing the T register must provide the proper select
signal, t_sel, to this multiplexer to get the desired data routed to t_in. Then, on the
rising edge of the next clock, data presented on t_in are latched into the T register.

 58

 z <= not(t(width-1) or t(30) or t(29) or t(28)
 or t(27) or t(26) or t(25) or t(24)
 or t(23) or t(22) or t(21) or t(20)
 or t(19) or t(18) or t(17) or t(16)
 or t(15) or t(14) or t(13) or t(12)
 or t(11) or t(10) or t(9) or t(8)
 or t(7) or t(6) or t(5) or t(4)
 or t(3) or t(2) or t(1) or t(0));

 r_z <= not(r(width-1) or r(30) or r(29) or r(28)
 or r(27) or r(26) or r(25) or r(24)
 or r(23) or r(22) or r(21) or r(20)
 or r(19) or r(18) or r(17) or r(16)
 or r(15) or r(14) or r(13) or r(12)
 or r(11) or r(10) or r(9) or r(8)
 or r(7) or r(6) or r(5) or r(4)
 or r(3) or r(2) or r(1) or r(0));

 int_z <= interrupt(0) or interrupt(1) or interrupt (2)
 or interrupt(3) or interrupt(4) ;

 -- sequential assignments, with slot and code
 decode: process(code,a,z,r_z,int_z,t,slot,sum,inte n) begin
 t_sel<="0000";
 a_sel<="000";
 p_sel<="00";
 r_sel<="00";
 addr_sel<='0';
 spush<='0';
 spopp<='0';
 rpush<='0';
 rpopp<='0';
 tload<='0';
 aload<='0';
 pload<='0';
 rload<='0';
 write<='0';
 read<='0';
 iload<='0';
 reset<='0';
 intload<='0';
 intset<='0';

 if slot=0 then
 if (int_z='1' and inten='1') then
 pload<='1';
 p_sel<=int_p;--process interrupts
 rpush<='1';
 r_sel<=p_r;
 rload<='1';
 reset<='1';
 else iload<='1';
 p_sel<=p1_p;--fetch next word
 pload<='1';
 read<='1';
 end if;
 else

 59

“code” is the output bus of the instruction multiplexer, which selects one of 5 machine
instructions stored in the I register. “slot” selects the machine instruction to be
executed in the current clock cycle. “code” will be used in the instruction decoder’s
decode process, to produce relevant control signals to execute the selected machine
instruction.

“a_in” is the input bus of the XMUX multiplexer, which normally gets data from the
T register. However, when executing memory read/write instructions, it can
optionally increment by selecting data from the X register through an increment
circuit. Used in MUL and DIV instructions, it takes data from the X register shifted
to the right or left, respectively. Shifting operations are coordinated with the T
register so that the T:X register pair acts like a 65-bit shift register.

“r_in” is the input bus of the R register, which selects data from the P register for the
CALL instruction, the T register for the PUSHR instruction, the top of the return stack
r_stack for the POPR instruction, and from R-1 for the NEXT instruction. It
manages the return stack in the eP32.

“p_in” is the input bus of the P register, which selects data from P+1 in slot0 to fetch
the next program word, the R register for the RET instruction. In slot0, if interrupt
pins are not all zero and when interrupts are enabled, p_in selects 5 bits from the
interrupt input pins, zero extended to 32 bits, to jump to an interrupt service routine.

“addr” is the output bus of the address multiplexer, which provides addresses to
output bus addr_o of the eP32 module. It outputs address in the P register when
reading program words, or addresses in the X register when reading and writing data
to/from memory or peripheral devices.

“z” returns a 1 if bits T(0) to T(31) are all zero. If any of these bits is not a zero, z
returns a zero. It is used by the BZ instruction to branch to a new program location
when T is zero.

“r_z” returns a 1 if bits R(0) to R(31) are all zero. If any of these bits are not a zero,
r_z returns a zero. It is used by the NEXT instruction to loop to a new program
location when R is zero. It allows looping in a single clock cycle.

“int_z” returns a 1 if bits interrupt(0) to interrupt(4) are all zero. If any of these bits
are not a zero and interrupts are enabled, a jump is made to an interrupt service
routine.

 60

 case code is
 when bra =>
 pload<='1';
 p_sel<=pi_p;
 reset<='1';
 when ret => pload<='1';
 p_sel<=r_p;
 rpopp<='1';
 r_sel<=rout_r;
 rload<='1';
 reset<='1';
 intset<='0';
 intload<='1';
 when bz =>
 if z='1' then
 pload<='1';
 p_sel<=pi_p;
 end if;
 tload<='1';
 t_sel<=s_t;
 spopp<='1';
 reset<='1';
 when bc =>
 if t(width)='1' then
 pload<='1';
 p_sel<=pi_p;
 end if;
 tload<='1';
 t_sel<=s_t;
 spopp<='1';
 reset<='1';
 when call =>
 pload<='1';
 p_sel<=pi_p;--process call
 rpush<='1';
 r_sel<=p_r;
 rload<='1';
 reset<='1';
 when nxt =>
 if r_z='0' then
 p_sel<=pi_p;
 pload<='1';
 r_sel<=r1_r;
 else
 r_sel<=rout_r;
 rpopp<='1';
 end if;
 rload<='1';
 reset<='1';
 when ei =>
 intset<='1';
 intload<='1';

 61

Sequential Assignments

This big sequential assignment is the instruction decoder of the eP32 CPU. In the
“decode” process, control signals are initialized and then set according to the needs of
each different machine instruction. These control signals flow out to concurrent
assignments to select proper signals to be latched into registers and stacks, on the
rising edge of the next clock pulse.

When slot=0, that is, the slot machine is executing a slot0 function, the external 5 bit
interrupt signals are examined. If all interrupt signals are low, the address of the
next program word in the P register is sent out to the address bus. “iload” is set so
that a program word from the external data bus will be latched into the I register.
“pload” is also set so that the P register will be incremented.

If any bit of the interrupt signals is high, then a subroutine call is forced to an address
from location 1 to 31, as specified by the 5-bit interrupt input signals.

If “slot” is not zero, then a machine code in slot1 to slot5 of the I register is selected
and executed. Executing a machine instruction is simply setting some control
signals to route proper data through concurrent logic and connecting multiplexers to
targeted registers and stacks. On the rising edge of the next master clock, all data are
latched and then the next machine instruction is decoded and executed.

First, default values of signals are assigned. In all instructions, only a few of these
signals are changed to achieve specific functions, and we only have to specify those
changed signals for those instructions.

Here are the signals changed when the instruction sequencer is in Slot0. This
includes external interrupt pins. If one or more interrupts are set, the CPU calls an
interrupt service routine from memory location 1 to 31. If no interrupt is set, this
causes the program word pointed to by the P register to be fetched, and the instruction
sequencer is incremented to Slot1, in preparation to execute the first instruction in the
program word.

If there is an interrupt request, call an interrupt vector.
Signal Function
pload<='1' Load P register
p_sel<=int_p Select interrupt vector for P register
rpush<='1' Push P to R and return stack
r_sel<=p_r Select P for RMUX
rload<='1' Load R register
reset<='1' Force next cycle to slot0
If there is no interrupt request, fetch and execute the next program word.
Signal Function
iload<='1' Load I register
p_sel<=p1_p Select P+1 to P register
pload<='1' Load P register
read<='1' Read program memory to P register

 62

 when ldp => addr_sel<=a_addr;
 a_sel<=a1_a;
 aload<='1';
 tload<='1';
 t_sel<=data_t;
 spush<='1';
 read<='1';
 when ldi => pload<='1';
 p_sel<=p1_p;
 tload<='1';
 t_sel<=data_t;
 spush<='1';
 read<='1';
 when ld => addr_sel<=a_addr;
 tload<='1';
 t_sel<=data_t;
 spush<='1';
 read<='1';
 when stp => addr_sel<=a_addr;
 aload<='1';
 a_sel<=a1_a;
 tload<='1';
 t_sel<=s_t;
 spopp<='1';
 write<='1';
 when st => addr_sel<=a_addr;
 tload<='1';
 t_sel<=s_t;
 spopp<='1';
 write<='1';
 when rr8 =>
 tload<='1';
 t_sel<=rr8_t;
 when com =>
 tload<='1';
 t_sel<=not_t;
 when shl =>
 tload<='1';
 t_sel<=shl_t;
 when shr =>
 tload<='1';
 t_sel<=shr_t;
 when mul =>
 aload<='1';
 tload<='1';
 if a(0)='1' then
 t_sel<=shr_sum;
 a_sel<=shr_sum_a;
 else t_sel<=shr_t_t;
 a_sel<=shr_t_a;
 end if;
 when xorr =>
 tload<='1';
 t_sel<=s_xor_t;
 spopp<='1';

 63

Decoder

The big case statement using “code” as selector determines which machine instruction
to execute, which control signals are set or cleared, which signals must go through
their respective multiplexers, and which signals are to be latched into registers and
stacks.

If the instruction sequencer is not in Slot0, it executes instruction “code” selected
from one of 5 slots in the I register. This is a giant case statement listing all changed
signals associated with each and every instruction. These instructions change
appropriate signals to route proper signals through busses and multiplexers, to be
latched into stacks and registers on the rising edge of the next clock.

Transfer Instructions

Following are transfer instructions, which load a target program address into the P
register, and thus jump to different memory locations. The target address is formed
by appending the contents of the address field of the long instruction to the 8-bit page
address in the P register. Therefore transfer instructions can branch to any location
within the current 16M word page. Only the RET instruction can branch to the
entire 32-bit memory space, because it obtains its target address from the R register.

To execute the BRA instruction, set the following signals:
pload<='1' Load P register
p_sel<=pi_p Select address field for P register
reset<='1' Force next cycle to slot0

To execute the RET instruction, set the following signals:
pload<='1' Load P register
p_sel<=r_p Select R register to load P register
rpopp<='1' Pop return stack
r_sel<=rout_r Select r_stack to load R register
rload<='1' Load R register
reset<='1' Force next cycle to slot0
intset<='0' Clear interrupt enable flag
intload<='1' Load inten register

To execute the BZ instruction, set the following signals if T=0:
pload<='1' Load P register
p_sel<=pi_p Select address field for P register
Always set the following signals:
tload<='1' Load T register
t_sel<=s_t Select top of s_stack to load T register
spopp<='1' Pop s_stack
reset<='1' Force next cycle to slot0

 64

 when andd =>
 tload<='1';
 t_sel<=s_and_t;
 spopp<='1';
 when div =>
 aload<='1';
 tload<='1';
 a_sel<=shl_sum_a;
 if sum(width)='1' then
 t_sel<=shl_sum_a_t;
 else t_sel<=shl_t_a_t;
 end if;
 when addd =>
 tload<='1';
 t_sel<=sum_t;
 spopp<='1';
 when popr =>
 tload<='1';
 t_sel<=r_t;
 spush<='1';
 r_sel<=rout_r;
 rload<='1';
 rpopp<='1';
 when lda =>
 tload<='1';
 t_sel<=a_t;
 spush<='1';
 when dup =>
 spush<='1';
 when over =>
 spush<='1';
 tload<='1';
 t_sel<=s_t;
 when pushr =>
 tload<='1';
 t_sel<=s_t;
 rpush<='1';
 r_sel<=t_r;
 rload<='1';
 spopp<='1';
 when sta =>
 tload<='1';
 t_sel<=s_t;
 a_sel<=t_a;
 aload<='1';
 spopp<='1';
 when nop => reset<='1';
 when drop =>
 tload<='1';
 t_sel<=s_t;
 spopp<='1';
 when others => null;
 end case;
 end if;
 end process decode;

 65

To execute the BC instruction, set the following signals if carry T(32)=1:
pload<='1' Load P register
p_sel<=pi_p Select address field for P register
Always set the following signals:
tload<='1' Load T register
t_sel<=s_t Select top of s_stack to load T register
spopp<='1' Pop s_stack
reset<='1' Force next cycle to slot0
To execute the CALL instruction, set the following signals:
pload<='1' Load P register
p_sel<=pi_p Select address field for P register
rpush<='1' Push R and r_stack
r_sel<=p_r Select P to load R register
rload<='1' Load R register
reset<='1' Force next cycle to slot0

The NXT instruction is probably the most complicated transfer instruction. It is a
single cycle loop instruction. It uses the R register as a loop counter, counting down
towards 0. When R is not zero, it is decremented, and program register P is loaded
with an address in the address field of this long transfer instruction. The loop is then
repeated. When R is decremented to 0, the R register and r_stack are popped, and
execution continues with the next program word. The loop is thus terminated.

To execute the NXT instruction, set the following signals if R is not 0:
p_sel<=pi_p Select address field for P register
pload<='1' Load P register
r_sel<=r1_r Load R-1 into R register
Set the following signals if R is 0:
r_sel<=rout_r Select top of r_stack to load R register
rpopp<='1' Pop r_stack
Always set the following signals:
rload<='1' Load R register
reset<='1' Force next cycle to slot0

Enable Interrupts

To execute the EI instruction, set the following signals:
intset<='1' Set interrupt acknowledge flag
intload<='1' Load inten (interrupt enable) register

 66

Memory Instructions

Following are the memory instructions, which read data from memory to the T
register or write data from the T register to memory. The address of memory is
always in the X register. When reading, the T register is pushed onto the data stack.
When writing, the data stack is popped to the T register.

To execute the LDP instruction, set the following signals:
addr_sel<=a_addr Select X to load memory address bus
a_sel<=a1_a Increment X register
aload<='1' Load X register
tload<='1' Load T register
t_sel<=data_t Select data bus to load T register
spush<='1' Push s_stack
read<='1' Enable memory read

To execute the LDI instruction, set the following signals:
pload<='1' Load P register
p_sel<=p1_p Select P+1 to load P register
tload<='1' Load T register
t_sel<=data_t Select data bus to load T register
spush<='1' Push s_stack
read<='1' Enable memory read

To execute the LD instruction, set the following signals:
addr_sel<=a_addr Select X to load memory address bus
tload<='1' Load T register
t_sel<=data_t Select data bus to load T register
spush<='1' Push s_stack
read<='1' Enable memory read

To execute the STP instruction, set the following signals:
addr_sel<=a_addr Select X to load memory address bus
aload<='1' Load X register
a_sel<=a1_a Increment X register
tload<='1' Load T register
t_sel<=s_t Select R to load T register
spopp<='1' Pop s_stack
write<='1' Enable memory write

To execute the ST instruction, set the following signals:
addr_sel<=a_addr Select X to load memory address bus
tload<='1' Load T register
t_sel<=s_t Select R to load T register
spopp<='1' Pop s_stack
write<='1' Enable memory write

 67

ALU Instructions

To execute the RR8 instruction, set the following signals:
tload<='1' Load T register
t_sel<=rr8_t Select T rotate right 8 bit to load T register

To execute the ST instruction, set the following signals:
tload<='1' Load T register
t_sel<=not_t Select not(T) to load T register

To execute the SHL instruction, set the following signals:
tload<='1' Load T register
t_sel<=shl_t Shift T left 1 bit

To execute the SHR instruction, set the following signals:
tload<='1' Load T register
t_sel<=shr_t Shift T right 1 bit

To execute the XOR instruction, set the following signals:
tload<='1' Load T register
t_sel<=s_xor_t Select (S xor T) to load T register
spopp<='1' Pop s_stack

To execute the AND instruction, set the following signals:
tload<='1' Load T register
t_sel<=s_and_t Select (S and T) to load T register
spopp<='1' Pop s_stack

To execute the ADD instruction, set the following signals:
tload<='1' Load T register
t_sel<=sum_t Select (S + T) to load T register
spopp<='1' Pop s_stack

MUL Step

The MUL step and DIV step instructions are the most complicated instructions.
They use T and X as a register pair. The T-X register pair is shifted right or left, and
the T register may either receive results from the adder or remain unchanged.
Repeating these instructions is the simplest and the most efficient way to implement
an unsigned multiplier and an unsigned divider.

In the MUL instruction, the T and X registers are considered a 65-bit right-shift
register. Initially, a partial sum is loaded in the T register, a multiplier in the X
register, and a multiplicand in the S register. If the least significant bit in X is 1, S is
added to T, and the resulting T-X pair is shifted right by 1 bit. If the least significant
bit in X is 0, T is not changed, and the T-X pair is shifted right by 1 bit. After
repeating the MUL instruction 32 times, the T-X register pair will contain a double
product of X*S +T.

 68

To execute the MUL instruction when X(0)=1 :
aload<='1' Load X register
tload<='1' Load T register
t_sel<=shr_sum Select right shifted (S+T):X
a_sel<=shr_sum_a Select right shifted (S+T):X
To execute the MUL instruction when X(0)=0 :
aload<='1' Load X register
tload<='1' Load T register
t_sel<=shr_t_t Select right shifted T:X
a_sel<=shr_t_a Select right shifted T:X

DIV Step

In the DIV instruction, the T and X registers are again considered a 65-bit left-shift
register. A double integer dividend is contained in the T-X register pair, and a
negated divisor is in the S register. In the ALU, the sum of S and T is always
computed by an adder. If the carry bit in adder sum(32) is 1, S is added to T, and the
resulting T-X pair is shifted left by 1 bit. If the carry bit in adder is 0, T is not
changed, and the T-X register pair is shifted left by 1 bit. In either case, the carry bit
is shifted into the least significant bit in the X register. After repeating the DIV
instruction 33 times, the X register contains the quotient, and the T register contains
2x of the remainder of division.

To execute the DIV instruction when the carry bit sum(32)=1 :
aload<='1' Load X register
tload<='1' Load T register
a_sel<=shl_sum_a Select left shifted T:X
t_sel<=shl_sum_a_t Select left shifted (S+T):X
To execute the DIV instruction when the carry bit sum(32)=0 :
aload<='1' Load X register
tload<='1' Load T register
a_sel<=shl_sum_a Select left shifted T:X
t_sel<=shl_t_a_t Select left shifted T:X

Register and Stack Instructions

To execute the POPR instruction, set the following signals:
tload<='1' Load T register
t_sel<=r_t Select R to load T register
spush<='1' Push s_stack
r_sel<=rout_r Select r_stack to load R register
rload<='1' Load R register
rpopp<='1' Pop r_stack

To execute the XT instruction, set the following signals:
tload<='1' Load T register
t_sel<=a_t Select X to load T register
spush<='1' Push s_stack

 69

To execute the DUP instruction, set the following signals:
spush<='1' Push s_stack

To execute the OVER instruction, set the following signals:
spush<='1' Push s_stack
tload<='1' Load T register
t_sel<=s_t Select S to load T register

To execute the PUSHR instruction, set the following signals:
tload<='1' Load T register
t_sel<=s_t Select S to load T register
rpush<='1' Push r_stack
r_sel<=t_r Select T to load R register
rload<='1' Load R register
spopp<='1' Pop s_stack

To execute the TX instruction, set the following signals:
tload<='1' Load T register
t_sel<=s_t Select S to load T register
a_sel<=t_a Select T to load X register
aload<='1' Load X register
spopp<='1' Pop s_stack

To execute the NOP instruction, set the following signals:
reset<='1' Force next cycle to slot0

To execute the DROP instruction, set the following signals:
tload<='1' Load T register
t_sel<=s_t Select S to load T register
spopp<='1' Pop s_stack

 70

-- finite state machine, processor control unit
 sync: process(clk,clr) begin
 if clr='1' then -- master reset
 inten <='0'; slot <= 0;
 sp <= "00000000"; sp1 <= "00000001";
 rp <= "00000000"; rp1 <= "00000001";
 t <= (others => '0');
 r <= (others => '0');
 a <= (others => '0');
 p <= (others => '0');
 i <= (others => '0');
 for ii in s_stack'range loop
 s_stack(ii) <= (others => '0');
 r_stack(ii) <= (others => '0');
 end loop;
 elsif (clk'event and clk='1') then
 if reset='1' or slot=5 then
 slot <= 0;
 else slot <= slot+1;
 end if;
 if intload='1' then
 inten <= intset;
 end if;
 if iload='1' then
 i <= data_i(width-1 downto 0);
 end if;
 if pload='1' then
 p <= p_in;
 end if;
 if tload='1' then
 t <= t_in;
 end if;
 if rload='1' then
 r <= r_in;
 end if;
 if aload='1' then
 a <= a_in;
 end if;
 if spush='1' then
 s_stack(conv_integer(sp1)) <= t;
 sp <= sp+1;
 sp1 <= sp1+1;
 elsif spopp='1' then
 sp <= sp-1;
 sp1 <= sp1-1;
 end if;
 if rpush='1' then
 r_stack(conv_integer(rp1)) <= r;
 rp <= rp+1;
 rp1 <= rp1+1;
 elsif rpopp='1' then
 rp <= rp-1;
 rp1 <= rp1-1;
 end if;
 end if;
 end process sync;
end behavioral;

 71

Finite State Machine

Finite state machine “sync” is a process paced by master clock “clk”. This is what I
called a Slot Machine. The master clock drives a 6-state counter, “slot”, and
increments it from 0 to 5 and then repeats the sequence. Each clock cycle can thus
be named slot0 to slot5, according to the contents of “slot”.

Machine instructions are decoded in the “decode” process, where control and select
signals are set and data are routed through concurrent logic and multiplexers. On the
rising edge of master clock “clk”, selected registers and stacks latch outputs from
respective multiplexers. A machine instruction is thus executed. The “slot”
counter is incremented, and the next instruction from the next slot in the I register is
decoded and executed.

When “slot” is 5, or when a transfer instruction (CALL, RET, BRA, BZ, or BNC) is
executed, the counter “slot” is cleared to 0. In the next clock cycle, slot0, the eP32
will process an interrupt if any interrupt is pending, or fetch the next program word
from memory and start executing machine instructions contained in this program
word.

When “clr” is set, the eP32 is in a reset state. In the reset state, all registers and both
stacks are cleared to 0, except sp1 and rp1, which are initialized to 1. When “clr” is
cleared to 0, the eP32 starts running. Since the P register is cleared to 0 on reset, and
“slot” is 0, the program word in memory location 0 is fetched from memory on the
rising edge of master clock “clk”. On the rising edge of the next clock, the machine
instruction in slot1 of this program word is decoded and executed. What happens
next depends on this instruction.

All elements in s_stack and r_stack are cleared using a for-loop in the sync process.

When “clr” is cleared to 0, the master clock starts driving the Slot Machine and starts
the CPU running. (clk'event and clk='1') specifies that all actions occur on the rising
edge of master clock “clk”.

On the rising edge of “clk”, the counter “slot” is incremented. When “slot” is
incremented to 5, or when reset=1, as a transfer instruction (CALL, RET, BRA, BZ,
or BNC) is executed, “slot” is cleared to 0. In the next clock cycle, slot0, the eP32
will process an interrupt if any interrupt is pending, or fetch the next program word
from memory and start executing machine instructions contained in this program
word.

If intload=1, the inten register is aligned to intset, which enables or disables
interrupts.
If iload=1, the next program word is latched into I register.
If pload=1, the P register is loaded from PMUX.
If tload=1, the T register is loaded from TMUX.
If rload=1, the R register is loaded from RMUX.
When aload=1, the X register is loaded from XMUX.

The data stack and return stack are implemented as 32 33-bit register arrays. Stacks

 72

have to be pushed or popped in a single clock cycle, with all other actions in the CPU.
When pushing, the stack pointer must be pre-incremented, and when popping, the
stack pointer must be post-decremented. In conventional designs, it would take
another cycle to pre-increment a stack pointer. To make sure that all stack actions
are always accomplished in a single cycle, we add two auxiliary stack pointers, sp1
and rp1, which are always one count above the principal stack pointers, sp and rp.
When pushing, sp1 or rp1 is used to write a new stack element above the top of stack.
When popping, sp or rp is used to read the top element on the stack. Whenever sp or
rp is changed, sp1 or rp1 are changed accordingly, too.

When pushing the data stack, spush=1. The T register is copied to the top of s_stack,
pointed to by sp1. This is what is called pre-incrementing, as sp1 is pointing to a
location above the top of the data stack, pointed to by sp. Then, both sp and sp1 are
incremented, so that now sp is pointing to the new location on top of s_stack.

When popping the data stack, spopp=1. Nothing in particular needs to be done, as
the top of s_stack pointed to by sp is read out. On the rising edge of the next clock,
both sp and sp1 are decremented. This is post-decrementing.

When pushing the return stack, rpush=1. The R register is copied to the top of
r_stack, pointed to by rp1. rp1 is pointing to a location above the top of the return
stack, pointed to by rp. Then, both rp and rp1 are incremented, so that now rp is
pointing to the new location on the top of r_stack.

When popping the return stack, rpopp=1. The top of the r_stack pointed to by rp is
read out. On the rising edge of the next clock, both rp and rp1 are decremented.

5.3 RAM Memory Module

The VHDL code of the RAM module is in the ram_memory.vhd file.

The design of the memory module is different for FPGAs from different
manufacturers. It is the only module in the eP32 that cannot be ported across FPGA
chips. However, FPGA manufacturers generally supply memory blocks in VHDL
and Verilog modules. The user can pick the memory block from a library, and
configure it to suit his design requirements. Some FPGA systems allow the user to
initialize a memory block so that the resulting microprocessor system can boot up
immediately on power up.

For the eP32 system, the memory block has to be configured as follows:
Memory word width 32 bits
Memory depth 4096 or more words
Single phase clock
No input latch
No output latch

Some FPGAs contain ROM and RAM memory blocks. ROM memory must be
initialized to contain program code. The LatticeXP2 has only RAM memory blocks,
but RAM memory is initialized from flash memory. This configuration is very
convenient for microprocessor designs, because the microprocessor can be initialized

 73

immediately from flash memory on power up, and programs are executed in RAM.
No extra ROM memory is necessary to store program code, and a single FPGA chip
becomes a complete microprocessor system.

The eForth system software to be executed on the eP32 chip must be compiled and
copied into an mem.mif file. mem.mif must be copied into the eP32 project folder
so that the ispLEVER system can use it to initialize RAM memory. When the eP32
chip design is downloaded into a LatticeXP2 chip, eForth goes along.

The eP32 uses memory of the simplest type, asynchronous RAM memory. No clock
signal is needed for reading. When the address bus is stable, the addressed memory
cell puts its contents on the output data bus. When memory is in write mode,
write-enable is pulled high. Then when the write-clock pulse is high, input data on
the data bus is written into the memory cell addressed by the address bus. This is
how most static RAM memory chips were designed and implemented. Most FPGA
manufacturers, however, choose to implement their RAM modules as synchronous
RAM, which uses a clock pulse to first latch its address and data bus, and then put the
addressed memory cell on the output data bus.

One must be very careful in clocking memory blocks. Synchronous memory is
incompatible with the eP32 design, because the memory contents are not available
before the rising clock edge, after the memory address is changed. In the eP32,
memory contents must be stable before the rising clock edge. This clocking problem
is solved by using synchronous memory blocks and clocking them with the trailing
edge of the master clock. A disadvantage is that the CPU can only run at 1/2 of
maximum memory access speed. It is not a problem with most FPGAs running at 50
MHz. It may become a problem when you have to push the speed higher.
A few lines of data in mem.mif in Addressed-Hex format are as follows:
#Format=AddrHex
#Depth=4096
#Width=32
#AddrRadix=3
#DataRadix=3
#Data
0:68D
24:80
25:A
26:7C6
27:7C8
28:7C6
29:4A0
2A:4D2
2D:7C6
101:564F4405
102:5241
103:1805E79E
104:101
105:3C3002
106:1179E79E
107:3000109
108:1A69405E
109:A05E79E
10A:FFFFFFFF
10B:105

10C:2B4D5503
10D:1769E79E
10E:3000110
10F:1A69405E
110:A05E79E
111:1
112:10C
113:55443F04
114:50
115:1A79E79E
116:2000118
117:1A05E79E
118:179E79E
119:113
11A:454E4407
11B:45544147
11C:10710297
11D:1
11E:1A79E79E
11F:3000121
120:1805E79E
121:1829705E
122:1
123:11A
124:53424103
125:1A45E79E

126:3000128
127:179E79E
128:1029705E

Only the first page of ram_memory.vhd is shown on the left page. It is generated
automatically by the RAM_Q memory module in the IPexpress library of the
ispLEVER system. Terms used in this file are incomrehensible except to experts at
Lattice, and I will not try to comment on it. We just need to know its interface to the
eP32, and leave the details to Lattice and the ispLEVER system.

RAM memory is mapped in the the address space between 0 and 0xFFF.

Port signals defined for the RAM memory module are:

Port Signal Function
address Address from CPU
clock Memory clock, inverted from master clock
clockEn Clock enable, always enabled
data Data input from CPU
reset Clear addfress and data registers, always disabled
we Write enable from CPU
q Data output to CPU

VHDL code for this memory module is generated automatically by IPexpress in the
ispLEVER system. It is not printed here.

RAM memory must be initialized properly with a program in it, so that when the eP32
chip is synthesized and downloaded into the FPGA, the program starts executing after
Reset is released and the clock is applied to the chip. RAM memory is initialized
with the contents of the mem.mif file. This file is produced by the eForth
metacompiler, which builds a memory image of the eForth system, and copies this
image into the mem.mif file. The mem.mif file must be copied into the folder where
all other VHDL files reside. When IPexpress in the ispLEVER System generates
mem_memory.vhd, it reads mem.mif and includes code instantiating program words
into the RAM module.

 75

-- VHDL netlist generated by SCUBA ispLever_v81_SP1 _Build (36)
-- Module Version: 7.1
--D:\ispTool\ispfpga\bin\nt\scuba.exe -w -lang vhdl -synth synplify
-bus_exp 7 -bb -arch mg5a00 -type bram -wp 10 -rp 1 000 -addr_width
12 -data_width 32 -num_rows 4096 -writemode NORMAL -resetmode SYNC
-memfile
d:/isptool/demo_latticexp2_brevia_soc_vhdl/demo_lat ticexp2_brevia
_soc/project/ep32q_xp2_4/mem.mif -memformat orca -c ascade -1 -e

-- Sat Dec 11 08:41:47 2010

library IEEE;
use IEEE.std_logic_1164.all;
-- synopsys translate_off
library xp2;
use xp2.components.all;
-- synopsys translate_on

entity ram_memory is
 port (
 Clock: in std_logic;
 ClockEn: in std_logic;
 Reset: in std_logic;
 WE: in std_logic;
 Address: in std_logic_vector(11 downto 0);
 Data: in std_logic_vector(31 downto 0);
 Q: out std_logic_vector(31 downto 0));
end ram_memory;

architecture Structure of ram_memory is

 -- internal signal declarations
 signal scuba_vhi: std_logic;
 signal scuba_vlo: std_logic;

 -- local component declarations
 component VHI
 port (Z: out std_logic);
 end component;
 component VLO
 port (Z: out std_logic);
 end component;
 component DP16KB
 -- synopsys translate_off
 generic (INITVAL_3F : in String; INITVAL_3E : in String;
 INITVAL_3D : in String; INITVAL_3C : in String;
 INITVAL_3B : in String; INITVAL_3A : in String;
 INITVAL_39 : in String; INITVAL_38 : in String;
 INITVAL_37 : in String; INITVAL_36 : in String;
 INITVAL_35 : in String; INITVAL_34 : in String;
 INITVAL_33 : in String; INITVAL_32 : in String;
 INITVAL_31 : in String; INITVAL_30 : in String;
 INITVAL_2F : in String; INITVAL_2E : in String;
 INITVAL_2D : in String; INITVAL_2C : in String;
 INITVAL_2B : in String; INITVAL_2A : in String;
 INITVAL_29 : in String; INITVAL_28 : in String;
 INITVAL_27 : in String; INITVAL_26 : in String;
 INITVAL_25 : in String; INITVAL_24 : in String;

 76

5.4 UART Module

The VHDL code of the UART module is in the uart.vhd file.

A UART port is the simplest and the most efficient I/O device allowing a FORTH
system to interact with users. With a UART port, we can bring up an eP32 system
on power-up and a user can immediately begin software development.

This UART system is set to 115,200 baud, 1 start bit, 8 data bits, 1 stop bit, no parity,
and no flow control.

4 Registers are defined in the UART module, and their addresses and functions are as
follows:

Address Register Function
Ox80000000 Baud Rate Register 32-bit baud rate counter
Ox80000001 Transmit Register Bits7-0, transmit data;

bit8, transmitter status
Ox80000002 Receive Status Register Bit0, flow control,

bit8 receiver status
Ox80000003 Receive Buffer Register Bits7-0, Receive data

Signals in UART modules are defined in an architecture as follows:

Port Signal Function
clk_i Master clock input
rst_i Master reset input
ce_i UART chip select input
read_i Read enable input
write_i Write enable input
addr_i Register address input
data_i Data input from CPU
data_o Data output to CPU
rx_empty_o Receiver buffer empty
rx_irq_o Receiver interrupt request
tx_irq_o Transmitter interrupt request
rxd_i Receiver data input
txd_o Transmitter data output
cts_i Clear-to-Send input
rts_o Ready-to-Send output

The UART is initialized to run at 115,200 baud. Using a 50 MHz crystal for the
master clock, the baud rate register is set to 431. When I switched to a 16 MHz
clock, the board seemed to work fine at 38,400 baud. UART devices are very
forgiving in clock variations. The baud rate register is a read-write register, and
baud rate can be dynamically changed by writing a new baud rate count into the baud
rate register.

 77

*** *******
-- * UART Serial Interface . *
-- *=== =========*
-- * Project: FG in PROASIC *
-- * File: uart.vhd *
-- * Author: Chien-Chia Wu *
-- * 02/13/03 Chien-Chia Wu Reference uart statem ents t *
-- * 02/14/03 Chien-Chia Wu (1)Copy from bpchip, *
-- * (2)Modify to 32-bits . *
-- * (3)Swap the cts and rts . *
-- ** ***********
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_unsigned.all;
entity uart is
 port(
 -- input
 clk_i: in std_logic;
 rst_i: in std_logic;
 ce_i: in std_logic;
 read_i: in std_logic;
 write_i: in std_logic;
 addr_i: in std_logic_vector(1 downto 0);
 data_i: in std_logic_vector(31 downto 0);
 -- output
 data_o: out std_logic_vector(31 downto 0);
 rx_empty_o: out std_logic;
 rx_irq_o: out std_logic;
 tx_irq_o: out std_logic;
 -- external interface
 rxd_i: in std_logic;
 txd_o: out std_logic;
 cts_i: in std_logic;
 rts_o: out std_logic
);
end uart;

 78

Internal Signals

Following are the internal signals in the UART module:

baudrate_reg Baudrate register
hw_xonoff_ff Hardware xon/xoff flag
tx_shift_reg Transmitter shift register
tx_shift_en Transmitter shift enable
tx_en Transmitter enable
tx_rq Transmitter request
tx_counter Transmitter clock counter
tx_bitcnt Transmitter bit counter
rx_shift_reg Receiver shift register
rx_buffer_reg Receiver buffer register
rxb_full Receiver buffer full flag
rx_full Receiver full flag
rx_en Receiver enable
rx_counter Receiver clock counter
rx_bitcnt Receiver bit counter
rxd_ff Receiver data flag
rts_o Ready to send output flag
rx_empty_o Receiver empty output flag

Read UART Registers

uart_register_file_read is an asynchronous process, by which the eP32 CPU can read
the UART register at any time. When read_i=1 and ce_i=1, the register selected by
addr_1 puts its contents on the data_o bus for the CPU to read.

When addr_i =0, data_o returns the baud rate count in the baud rate register. When
the master clock rate is 50 MHz and the baud rate is 115,200 baud, the baud rate count
is 431.

When addr_i=1, data_o returns transmitter status, where bit 8 shows Transmitter
Ready state.

When addr_i=2, data_o returns receiver status, where bit 8 shows Receiver Ready,
and bit 0 shows flow control state.

When addr_i=3, data_o returns the contents of the receiver buffer, where bits 0-7
show the last character just received.

 79

begin

 rts_o <= hw_xonoff_ff and (not(rx_full));
 rx_empty_o <= rx_full nor rxb_full;

-- ** ********
-- Uart Register Circuit for Read
-- ** ********
 uart_register_file_read:
 process(read_i, ce_i, addr_i, baudrate_reg, tx_en , cts_i,
 hw_xonoff_ff, rxb_full, rx_buffer_reg)
 begin
 if (read_i='1' and ce_i='1') then
 case addr_i is
 when "00" => data_o <= baudrate_reg;
 when "01" => data_o <= -- read TX ready flag
 "00000000" & "00000000" & "0000000" &
 ((not tx_en)and(cts_i or(not hw_xonoff_ff)))
 & "00000000";
 when "10" => data_o <= --only cleared by rxb re ad
 "00000000" & "00000000" &
 "0000000" & rxb_full &
 "0000000" & hw_xonoff_ff;
 when others => data_o <= -- read&clear rxb_full f lag
 "00000000" & "00000000" & "00000000" &
 rx_buffer_reg;
 end case;
 else
 data_o <= (others=>'1');
 end if;
 end process uart_register_file_read;

 -- *** ***********
-- Uart Register File Process for Write
-- ** **********
 uart_register_file_write : process (rst_i, clk_i)
 begin
 if (rst_i='1') then
 baudrate_reg<="00000000000000000000000110101111";
 -- 50 MHz, 115.2Kbps
 tx_shift_reg <= (others=>'0');
 tx_rq <= '0';
 hw_xonoff_ff <= '0';
 elsif (clk_i'event and clk_i='1') then
 if (tx_en='0') then
 if (write_i='1' and ce_i='1') then
 case addr_i is
 when "00"=>baudrate_reg<=data_i;
 when "01"=>
 tx_shift_reg<="11"&data_i(7 downto 0)&'0';
 tx_rq<='1';
 when "10"=>hw_xonoff_ff<=data_i(0);--flow Contro l
 when others => null;
 end case;
 end if;

 80

Write UART Registers

uart_register_file write is a synchronous process, which writes new data into the
UART registers.

When the eP32 is in the reset state, rst_i=1 also causes the UART to be reset. In the
reset state, the UART initializes the baud rate register to 0x1AF (decimal 431), and
sets the baud rate to 115,200 baud when the master clock is 50 MHz. In the
meantime, flags tx_shift_reg, tx_rq, and hw_xonoff_ff are all cleared to 0.

Once the eP32 is in its running state, the UART responds to write commands from the
CPU on the rising edge of clock clk_i when write_i=1 and ce_i=1.

When tx_en=0, the UART is not actively transmitting a character.

Writing with addr_i=0, new data is written into the baud rate register and the new
baud rate will take effect immediately. One should be careful in changing the baud
rate, because the external device connecting to the UART port should be set up so it
responds to the new baud rate correctly.

Writing with addr_i=1, new data is written into the transmitter shift register,
tx_shift_reg. The lower 8 bits of data is a character to be transmitted. Transmit
request, tx_rq, is also set to start transmitting this character.

Writing with addr_i=2, the flow control bit can be changed by bit 0 of the written
data.

When tx_en is not zero, the UART is transmitting a character.

If tx_shift_en=1, the rising edge of clk_i causes the character in the transmitter shift
register, tx_shift_reg, to be shifted right by 1 bit. The lowest bit is shifted out to
txd_o.

Transmit Process

The transmitter in the UART is running in a synchronous process, uart_tx_core.

On booting up, rst_i is set, and all registers in the UART transmitter are cleared to
zero. Only txd_o is pulled up, raising the UART output line TX to high, which is the
rest state of the UART output.

When transmit request, tx_rq, is set, a character is in tx_shift_reg, ready to be
transmitted. tx_counter is initialized by copying the baud rate count from
baudrate_reg, and the transmit bit counter, tx_bitcnt, is initialized to 11 for 1 start bit,
8 data bits and 2 stop bits. tx_en is now set to start the transmitting procedure.

 81

 else
 tx_rq <= '0';
 if (tx_shift_en='1') then
 tx_shift_reg<='1'&tx_shift_reg(10 downto 1);
 end if;
 end if;
 end if;
 end process uart_register_file_write;

-- ** **********
-- Uart TX Core Process
-- ** **********
 uart_tx_core : process (rst_i, clk_i)
 begin
 if (rst_i='1') then
 tx_counter <= (others=>'0');
 tx_bitcnt <= (others=>'0');
 txd_o <= '1';
 tx_en <= '0';
 tx_shift_en <= '0';
 tx_irq_o <= '0';
 elsif (clk_i'event and clk_i='1') then
 tx_shift_en <='0';
 tx_irq_o <= '0';
 if (tx_en='0') and (tx_rq='1') and
 (cts_i='1' or hw_xonoff_ff='0') then
 tx_counter <= baudrate_reg;
 tx_bitcnt <= "1011";
 tx_en <= '1';
 elsif (tx_en='1') then
 if (tx_counter/="00000000000000000000000000000000 ")
 then tx_counter <= tx_counter-1;
 elsif (tx_bitcnt/="0000") then
 tx_bitcnt <= tx_bitcnt-1;
 txd_o <= tx_shift_reg(0);
 tx_shift_en <= '1';
 tx_counter <= baudrate_reg;
 else
 txd_o <= '1'; -- mark-high=stop-bit
 tx_irq_o <= '1'; -- transmitter empty
 tx_en<='0'; -- closed
 end if;
 end if;
 end if;
 end process uart_tx_core;

 82

As tx_en is set, every rising edge causes tx_counter to be decremented. When
tx_counter is 0, one bit in tx_shift_reg is shifted out to txd_o, by setting tx_shift_en,
which causes the uart_register_file_write process to do the shifting. In the meantime,
tx_bitcnt is decremented and tx_counter is re-initialized to baudrate_reg. This
sequence is repeated 11 times to shift out all data bits in tx_shift_reg.

After all 11 bits in tx_shift_reg are shifted out, tx_en is cleared to stop the
transmitting procedure. An interrupt request is activated by setting tx_irq_o. txd_o
is again set to put the UART to its rest state.

Receive Process

The receiver in the UART is running in a synchronous process, uart_rx_core.

On booting up, rst_i is set, and all registers in the UART receiver are cleared to zero.

When the receiver receives a complete character, rx_full=1. On the rising edge of
the master clock, the character received in rx_shift_reg is copied to rx_buffer_register,
which can be sent to the eP32 when eP32 reads rx_buffer_register at location
0x80000003.

rxb_full flag is set only when rx_shift_reg is copied into rx_buffer_reg. It otherwise
is always cleared to 0.

On the rising edge of every clock, the receiver input line, rxd_i, is always sampled
and its state is stored into rx_ff. rxd_i is normally high when the UART is resting.
When rxd_i is lowered to 0, rx_ff is cleared and it indicates that a start bit is detected
and a character is coming. Activities in the next page of VHDL code cause this
character to be received.

When the receiver is resting, rx_en=0. When a start bit is detected and rx_ff is
cleared, the receiver is initialized to prepare receiving a new character. rx_counter is
first initialized to half of the baud rate count in baudrate_reg, so that the receiver line,
rxd_i, will be sampled in the middle of every bit received. rx_en is set, and rx_bitcnt
is initialized to 9, for 1 start bit and 8 data bits.

When rx_en is set, every rising edge of the master clock decrements rx_counter until
it is zero.

When rx_counter=0, rxd_ff is shifted into rx_shift_reg, rx_bitcnt is decremented, and
rx_counter is reinitialized to the baud rate count in baudrate_reg.

When rx_bitcnt is decremented to zero, a complete character is received in
rx_shift_reg. rx_full is set so that the character in rx_shift_reg will be copied into
rx_buffer_reg, and be made available to the eP32. rx_irq_o is set to request an
interrupt, and rx_en is cleared to receive the next character.

 83

 -- *** ***********
-- Uart RX Core Process
-- ** **********
 uart_rx_core : process (rst_i, clk_i)
 begin
 if (rst_i='1') then
 rx_full <= '0';
 rxb_full <= '0';
 rx_irq_o <= '0';
 rx_buffer_reg <= (others=>'0');
 rx_counter <= (others=>'0');
 rx_bitcnt <= (others=>'0');
 rx_en <= '0';
 rx_shift_reg <= (others=>'0');
 rxd_ff <= '0';
 elsif (clk_i'event and clk_i='1') then
 rx_irq_o <= '0';
 rxd_ff <= rxd_i;
 if (rx_full='1') then
 if (rxb_full='0') or
 (read_i='1' and ce_i='1' and addr_i="11") then
 rx_buffer_reg <= rx_shift_reg;
 rxb_full <= '1';
 rx_full <= '0';
 end if;
 else
 if (read_i='1' and ce_i='1' and addr_i="11") then
 rxb_full <= '0';
 end if;
 if (rx_en='0') and (rxd_ff='0') then
 rx_counter <= '0' & baudrate_reg(31 downto 1);
 rx_bitcnt <= "1001";
 rx_en <= '1';
 elsif (rx_en='1') then
 if(rx_counter/="00000000000000000000000000000000 ")
 then -- bit-T-counting
 rx_counter <= rx_counter-1;
 elsif (rx_bitcnt/="0000") then
 -- last bit has been received
 rx_bitcnt <= rx_bitcnt-1;
 rx_shift_reg<=rxd_ff&rx_shift_reg(7 downto 1);
 rx_counter <= baudrate_reg;
 else
 rx_irq_o <= '1';--flag for generate pulse
 rx_full <= '1';
 rx_en <= '0';
 end if;
 end if;
 end if;
 end if;
 end process uart_rx_core;
end behavioral;

 84

 5.5 GPIO Module

The VHDL code of the GPIO module is in the gpio.vhd file.

A general purpose parallel I/O port is most useful in real-time applications to interface
to a wide range of external devices. In the eP32 system, such a GPIO port is
included. It is designed as a 16-bit bidirectional parallel port, but the user can
configure it to suit any purpose. It is declared an entity in the gpio.vhd file.

Port signals of the GPIO module are defined in the GPIO entity as follows:

Port Signal Function
clr Master reset
clk Master clock
write Write enable
read Read enable
ce GPIO chip select
addr Register address
data_in Data input from CPU
gpio_in GPIO input
mem_conf_o Bit0 memory select: 0-ROM; 1-RAM

Bit1 CPU reset
data_out Data output to CPU
gpio_out Data output to GPIO output
gpio_dir Direction select of GPIO

Registers in the GPIO module, their address and functions are as follows:

Address Register Function
0xE0000000 gpio_out When written, send data to gpio port
0xE0000001 gpio_dir_reg Select port pin direction: 0-input; 1-output
0xE0000002 gpio_in Read gpio port

As GPIO is a module in the eP32 system, it is not connected directly to I/O pins on
the eP32 system package. Therefore, gpio_in, gpio_out and gpio_dir signals are all
brought out as ports in the GPIO module. These signals are used in the ep32_chip
top level module to drive I/O pins.

In the eP32, a GPIO port is a 32-bit device. However, we only brought out 16 lines
to pins on the LatticeXP2-5E-TN144C chip to drive 8 LEDs and to monitor 8
pushbutton switches.

Reading GPIO registers is an asynchronous process as shown in the
gpio_register_file_read process. Bits in the gpio_dir register define pins as input or
output. A bit set in gpio_dir makes the corresponding pin an output pin. A bit
cleared in gpio_dir makes the corresponding pin an input pin. Reading the gpio_in
register obtains the status of the input pins. Writing the gpio_out register sends data
to the output pins.

 85

- *** **********
-- * General Purpose Input Output Module *
-- *=== ==========*
-- * Project: FG in PROASIC *
-- * File: gpio.vhd *
-- * Author: Chien-Chia Wu *
-- * 03/02/03 Chien-Chia Wu Created. *
-- ** ***********
library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_unsigned.all;

entity gpio is
 port(
 -- input port
 clr: in std_logic;
 clk: in std_logic;
 write: in std_logic;
 read: in std_logic;
 ce: in std_logic;
 addr: in std_logic_vector(1 downto 0);
 data_in: in std_logic_vector(31 downto 0);
 gpio_in: in std_logic_vector(15 downto 0);
 -- output port
 data_out: out std_logic_vector(31 downto 0);
 gpio_out: out std_logic_vector(15 downto 0);
 gpio_dir: out std_logic_vector(15 downto 0)
);
end gpio;

architecture behavioral of gpio is
 signal gpio_reg: std_logic_vector(15 downto 0);
 signal gpio_dir_reg:std_logic_vector(15 downto 0);
begin
 gpio_out <= gpio_reg;
 gpio_dir <= gpio_dir_reg;

-- ** **********
-- GPIO Register Circuit for Read
-- ** **********
 gpio_register_file_read:
 process(read, ce, addr, gpio_reg, gpio_dir_reg,gpi o_in)
 begin
 if (read='1' and ce='1') then
 case addr is
 when "00" =>
 data_out<="00000000"&"00000000"& gpio_reg;
 when "01" =>
 data_out<="00000000"&"00000000"& gpio_dir_reg;
 when others =>
 data_out<="00000000"&"00000000"& gpio_in;
 end case;
 else
 data_out <= (others=>'1');
 end if;
 end process gpio_register_file_read;

 86

-- ** **********
-- GPIO Register Circuit for Write
-- ** **********
 gpio_register_file_write:
 process(clr, clk)
 begin
 if (clr='1') then
 gpio_reg <= (others=>'0');
 gpio_dir_reg <= (others=>'0');
 elsif (clk'event and clk='1') then
 if (write='1' and ce='1') then
 case addr is
 when "01" => gpio_dir_reg <= data_in(15 downto 0);
 when others => gpio_reg <= data_in(15 downto 0);
 end case;
 end if;
 end if;
 end process gpio_register_file_write;
end behavioral;

Writing the GPIO registers is done using a synchronous process,
gpio_register_file_write.

On reset, rst_i=1, and all GPIO registers are cleared to zero.

When running, on the rising edge of clk_i, if ce_i= and write=1, data from the CPU
on the data_i bus are written into the register selected by addr_i. Writing to the
gpio_reg register send data to output pins. Writing to the gpio_dir register defines
the input and output pins.

5.6 Remarks

Here I had just shown you the design of a complete 32-bit microprocessor in VHDL.
What I want to convey is the idea that CPU is not difficult. It can be very simple.
It was made very complicated because CPU designers did not fully understand the
fundamental components necessary for a CPU to function, and thus made designs
unnecessarily complicated.

I cannot overemphasis the fact that the eP32 CPU executes all instructions in a single
clock cycle. All prior CPU designs required many clock cycles to execute an
instruction. Designers tried very hard to cover up this deficiency with pipelining and
other techniques, and made the CPU even more complicated.

This design of eP32 microprocessor is only a starting point for you to design and
build your own microprocessor. You should consider extending this design in the
following directions:

For immediate applications, you should consider adding new I/O modules to handle
specific tasks in your applications. I gave you a GPIO and a UART as examples.
You can incorporate existing I/O modules into your design. If you understand your

 87

tasks, it is probably easier to design your own I/O modules than pulling ‘library
modules’off the shelf.

For long term development, you should consider adding new instructions to the CPU
core. I am sure you feel constrained by the very small instruction set I put into the
eP32 CPU. There are spaces for 37 more instructions in the current eP32
architecture. If you are ambitious, why not encode instructions in bytes? Then,
you can have 256 instructions. Now, you are at a point to implement a Java Virtual
Machine with byte codes.

The possibility is only limited by your imagination.

How about software? If one changed hardware design, who's going to provide
software to make use of improvments?

As President Obama said: “Yes, we can!”

Read the next chapter.

 88

Chapter 6. Metacompilation of the eP32

In 1990, I hosted monthly meetings of the Forth Interest Group. The morning
sessions were generally for FORML, Forth Modification Laboratory, where we
discussed how to enhance the FORTH of the time. We were brain-storming what
FORTH would be like in the next century. Two different directions were debated.
Tom Zimmer and Andrew McKewan wanted a FORTH for Windows, and developed
Win32Forth to take advantage of the popular Windows platform. It became a huge
and complicated system. Bill Muench and I wanted a simple FORTH portable to all
new and exciting microprocessors coming in the future. We developed eForth and it
was implemented on 30 some different microprocessors and microcontrollers by
many volunteers.

In the meantime, I also worked with Chuck Moore on his next FORTH chip, the
MuP21. It was targeted to a 1.2 micron CMOS process available from Orbit
Semiconductor on shared 5 inch wafers. Dies were 2.4x2.4 mm, and it forced Chuck
to strip bare his CPU. He reduced instructions to 25, and fit a 20-bit microprocessor
on this small die, with an NTSC video coprocessor and a DRAM memory coprocessor.
It was a marvelous design, but we ran out of money before it was perfected.

I compared the designs of eForth and the MuP21, and found great similarity, in spite
of the completely different origins of these two designs. eForth is a software design
and the MuP21 is a hardware design. However, they both were based on primitive
instruction sets with about 30 instructions. Many instructions were identical in these
two instruction sets. Those instructions which were different, were different because
of hardware constraints. I was able to implement eForth on the MuP21, and it was a
very pleasant system, a real FORTH language on a real FORTH CPU.

After the MuP21, Chuck and I went our separate ways. He founded iTV and
Intellesys, and built multiprocessor chips based on the MuP21 core design. I
discovered FPGAs, and developed scalable P-series microprocessors based on the
same core, implementing 16-, 24- and 32-bit versions of the P-microprocessors.

A young fellow in Taiwan, Mr. Cheah-shen Yap, ported eForth to Windows to become
the weForth system. He further enhanced it and released it as the F# system. These
are the simplest FORTH implementations for Windows, but they can call all Windows
APIs to build applications running on a PC. I used both to write metacompilers for
embedded systems. However, for the eP32, I preferred weForth, because it has a
simpler user interface to load applications. When weForth.exe is executed on
Windows, it loads a start.f file, which loads in Windows utilities and application files.
F# has a more sophisticated graphical user interface, and gives the user better ways to
organize software projects. For an eP32 metacompiler, however, weForth is more
than enough, and it is easier to document and to explain.

The complete command set of weForth is shown in Appendix B for your reference.

 89

My goal is to build a FORTH microprocessor based on the eP32 CPU on an FPGA
chip, the LatticeXP2-5E, hosted on a LatticeXP2 Brevia Development Kit. FPGA
synthesis and programming tools are provided in the ispLEVER Development system
supplied by Lattice. The FORTH system on the eP32 is an eForth system, and I
build this eForth target system in weForth, an eForth system running on a Windows
PC.

In FORTH terminology, a metacompiler is a FORTH program which produces an
image of program memory, which is copied into the memory of a target
microprocessor. When the target microprocessor powers up, a FORTH system is
booted up to interact with its user.

I believe the best way to explain this eForth system is through the source code of the
eForth metacompiler in weForth that produces this system. I like to take the same
approach in presenting the eP32 hardware by commenting on its VHDL source files.
I will put eForth source code on left pages, and commentary on opposing right pages.
Going through source code almost line by line, I hope that I can make clear the
process of producing a target system on the eP32, as well as make clear the code and
other relevant information that go into program memory in the eP32.

Before going through source code files in the eForth metacompiler, I will first show
you the metacompiling process in weForth, and how an eP32 target image is
generated. In addition, I will show you a simulator in weForth, which simulates the
eP32 eForth as an eP32 running on a Brevia Development Kit. This way you can try
running an interactive FORTH system on a simulated eP32 without the Brevia Kit.
It is a good way to learn how FORTH works. You have two FORTH systems to
experiment with: weForth as a Windows application, and eP32 eForth as an embedded
application on the Brevia Kit.

6.1 Metacompiling the eP32

All source code of the eP32 eForth system is contained in the ep321_xp2.zip file.
weForth and its Windows utilities are also included here.

Unzip file ep32q_xp2.zip and put all the files into a folder named “ep32q_xp2”.
Start weForth by double clicking weforth2.exe in the ep32q_xp2 folder, as shown in
Figure 29.

weForth opens a console window, loads the eForth metacompiler and generates a new
eP32 target system.

A memory image of the eP32 eForth target system is stored in file mem.mif. While
building this system, weForth prints out large amount of messages on its console
window.The console window at the end of the metacompilation process is shown in
Figure 30.:

Scroll the console window back to its beginning, and you can see that weForth loads
several system files, win32.f, api.f, and ui.f, to bring in the necessary Windows APIs,
as shown in Figure 31.

 90

Figure 29. ep32 Project Folder

Figure 30. Bootup ep32 Metacompiler

 91

Figure 31. Beginning of Metacompilation

The next file loaded is meta32q.f, which is the eP32 metacompiler. It first loads
asm32q.f to bring in the eP32 assembler. It prints out a list of command names
followed by a “reDef” message. These commands are defined in the eP32 assembler,
preparing to assemble commands in the eP32 kernel.

The next file loaded is kern32q.f, which first defines many macro commands. Then
it starts building the eP32 kernel at target memory location $100. There you can see
names of target commands followed by their code field addresses. They form a
symbol table, which you can use to look up names and addresses of target commands.

After the kernel is built, the metacompiler loads in ef32q.f, which compiles the
complete eForth target system, and writes its FORTH dictionary out into a file
mem.mif. This file is used to initialize the RAM_DQ memory array in the
ram_memory.vhd file, and to synthesize the eP16 microcontroller in the FPGA chip
on the Brevia2 Kit as mentioned in the last section.

After the eP32 target system is built, the metacompiler loads sim32q.f, which is an
eP32 simulator. This simulator executes eP32 instructions compiled by the
metacompiler, and can faithfully simulate the eP32, instruction by instruction.

Simulating the eP32

Once the sim32q.f simulator is loaded, type the command:
 HELP

 92

and a list of simulator commands appear, as shown in Figure 32.

Figure 32. HELP Directions of eP16 Simulator

Type this command:
 -1 G
and the simulator boots up the eP32 eForth system and prints out its sign-on message:
 eP32q v2.05

This is what you see next in Figure 33.

Now you can exercise eP32 eForth by typing in FORTH commands.
The following screen shot shows results when you type command:
 WORDS
If you care to count them, there are 167 commands. These commands are
documented in Appendix B.

 93

Figure 33. eP16 in Simulation

Figure 34. WORDS in eP32

Here are more eForth commands you can type into the weForth console to test the
eForth system:

HEX 0 80 DUMP
SEE WORDS

 94

HERE .
1 2 + .
: TEST1 1 2 3 4 5 ;
TEST1
.S
: TEST2 10 FOR R@ . NEXT ;
TEST2
: TEST3 IF 1 ELSE 2 THEN . ;
0 TEST3
1 TEST3
: TEST4 CR .” HELLO, WORLD!” ;
TEST4

After these tests, the weForth console looks as follows.

Figure 35. Tests of eP32 Simulator

6.2 The eP32 Metacompiler

The eP32 metacompiler is contained in file meta32q.f.

“Metacompiler” is a term used by a FORTH programmer to describe the process of
building a new FORTH system on an existing FORTH system. The new FORTH
system may run on the same platform as the old FORTH system. It may be targeted
to a new platform, or to a new CPU. The new FORTH system may share a large
portion of FORTH code with the old system, hence the term “metacompilation”. In
a sense, the metacompiler is very similar to a conventional cross assembler/compiler.

 95

start.f is similar to a MAKE file in UNIX. FORTH commands in this file are
executed by the weForth system upon startup. It loads in a metacompiler in
meta32q.f, which compiles a target eForth system for the eP32. It produces a
memory image file, which will be used to initialize memory blocks by IPexpress in
the Lattice ispLEVER system to program the LatticeXP2-5E FPGA chip. meta32q.f
contains the following commands to load source code from many other files:

asm32q.F eP32 assembler
kern32q.F Primitive commands in eP32 eForth
ef32q.F Compound commands in eP32 eForth
sim32q.F eP32 simulator

 96

(meta32.f for weforth)

HEX
VARIABLE debugging?

: .head (addr -- addr)
 >IN @ 20 WORD COUNT TYPE SPACE >IN !
 DUP .
 ;
: cr CR
 debugging? @
 IF .S KEY 0D = ABORT" DONE"
 THEN
 ;

: forth_' ' ;
: forth_dup DUP ;
: forth_drop DROP ;
: forth_over OVER ;
: forth_swap SWAP ;
: forth_@ @ ;
: forth_! ! ;
: forth_and AND ;
: forth_+ + ;
: forth_- - ;
: forth_word WORD ;
: forth_words WORDS ;
: forth_.s .S ;
: CRR cr ;
: forth_.([COMPILE] .(;
: forth_count COUNT ;
: forth_r> R> ;
: -or XOR ;
: >body 5 + ;
: forth_forget FORGET ;

CREATE ram 8000 ALLOT
: reset ram 8000 0 FILL ;
: ram@ 4 * ram + @ ;
: ram! 4 * ram + ! ;
: binary 2 BASE ! ;
: four 3 FOR DUP ram@ 9 U.R 1+ NEXT ;
: show (a) 0F FOR CR DUP 9 .R SPACE
 four 2 SPACES four NEXT ;
: showram 0 0B FOR show NEXT DROP ;

: dump-ram
 BASE @ binary 0
 1000 FOR AFT
 CR DUP ram@ <# 1F FOR # NEXT #> TYPE
 1+
 THEN NEXT
 DROP BASE ! CR
 ;

 97

We start here to discuss metacompiler commands in the meta32q.f file. All other
files referred to in this file will be discussed in their separate sections.

debugging? A variable containing a switch to turn break points on and off. When

debugging? is set to -1, compilation will stop and the data stack is
dumped when a “cr” command is executed. Sprinkling “cr”
commands in the source code file allows you to watch the progress of
metacompilation and even stops it when necessary.

.head Display name of a command that is about to be compiled. It is used
to display a symbol table. You can look up the code field address of
any command in this table.

cr Stop metacompilation if debugging? is -1, and dump data stack. If
you press control-A, metacompilation is aborted. Otherwise,
metacompilation continues. It is a NOP if debugging? is 0.

During metacompilation, FORTH commands will be redefined so that they compile
subroutine call instructions or assemble other machine instructions into the target
memory image. There are numerous occasions where the original behavior of a
FORTH command must be exercised. To preserve the original behavior of a FORTH
command, it is assigned a different name. Thereby after a command is redefined, we
can still exercise its original behavior by invoking the alternate name.

For example, “+” is a FORTH command that adds the top two numbers on the data
stack in the weForth system. Then in the kern32q.f file, a new “+” command is
defined to assemble an ADD instruction in the target eP32 system. If you still need
to add two numbers, you must use the alternate command “forth_+” as shown below.
All the weForth commands you need to use later must be redefined as “forth_xxx”
commands. If you neglect to redefine them, you will find that the system behaves
very strangely.

The eP32 executes program words and accesses data in the memory range 0-1FFF.
In weForth we allocate a 32k byte memory array, “ram”, to hold the eP32 target image.
This array contains code and data to be copied into eP32 internal memory at 0, to be
executed on the eP32 chip.

ram Memory array in weForth for the eP32 target image. It has a logical
base address of 0 for the eP32. Code and data words in the target are
stored in this array.

ram@ Replace a logical address on stack with data stored in “ram” image
array.

ram! Store second integer on stack into logical address of “ram” image
array.

reset Clear “ram” image array, preparing it to receive code and data for the
eP32.

four Display four consecutive words in target.
show Display 128 words in target from address “a”. It also returns a+128

to “show” the next block of 128 words.
showram Display the entire eP32 image of 2k words.
dump-ram Display 4k words of data in binary.

 98

VARIABLE hFile
CREATE CRLF-ARRAY 0D C, 0A C,

: CRLF
 hFile @
 CRLF-ARRAY 2
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error"
 QUIT THEN
 ;

: open-mif-file
 Z" mem.mif"
 $40000000 (GENERIC_WRITE)
 0 (share mode)
 0 (security attribute)
 2 (CREATE_ALWAYS)
 $80 (FILE_ATTRIBUTE_NORMAL)
 0 (hTemplateFile)
 CreateFileA hFile !
 ;

: write-mif-line
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 CRLF
 ;

: write-mif-header
 hFile @
 $" #Format=AddrHex "
 write-mif-line
 hFile @
 $" #Depth=4096 "
 write-mif-line
 hFile @
 $" #Width=32 "
 write-mif-line
 hFile @
 $" #AddrRadix=3 "
 write-mif-line
 hFile @
 $" #DataRadix=3 "
 write-mif-line
 ;

 99

The eP32 metacompiler builds a target image for the eP32 chip in “ram”, a memory
array in weForth. This image eventually will be imported to the ispLEVER system
so that this target image will be incorporated in the RAM_Q module, which will be
synthesized with the eP32 core logic to be implemented in the LatticeXP2-5E FPGA
chip. IspLEVER requires that the target image be written in a file conforming to its
Addressed-Hex format, which consists of a header with a few lines of system
information in ASCII text, and then a body containing memory information in
hexadecimal numbers. The header and first few lines of the body are as follows:

#Format=AddrHex
#Depth=4096
#Width=32
#AddrRadix=3
#DataRadix=3
#Data
0:68D
24:80
25:A
26:7C6
27:7C8
28:7C6
29:4A0
2A:4D2
2D:7C6
101:564F4405
102:5241
103:1805E79E
104:101
105:3C3002
106:1179E79E
107:3000109
108:1A69405E
109:A05E79E

In the body of mem.mif, each line of data consists of an address and its contents as
hexadecimal numbers separated by a colon character.

hFile A variable holding a file handle.
CRLF Insert a carriage return and a line feed into the currently

opened file.
open-mif-file Open a file named mem.mif for writing.
write-mif-line Write one line of text into current file.
write-mif-header Write a header required by ispLEVER into current file.

“mif” is a leftover term used when I was implementing the eP32 for the Xilinx FPGA,
and its development system expected a memory file to be in its mif format. Now,
ispLEVER from Lattice wants a mem file. So be it. FPGA development systems
from Actel and Altera also require different memory file formats. It is easy to
conform to their requirements by changing these xxx-mif-yyy commands here.

 100

: write-mif-data
 0 (initial ram location)
 $1000 FOR AFT
 DUP ram@ IF
 hFile @
 OVER
 <# 3A HOLD #S #>
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 hFile @
 OVER ram@
 <# #S #>
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 CRLF
 THEN
 1+
 THEN NEXT
 DROP (discard ram location)
 ;

: close-mif-file
 hFile @ CloseHandle DROP
 ;

: write-mif-file
 open-mif-file
 write-mif-header
 write-mif-data
 close-mif-file
 ;

FLOAD asm32q.f
FLOAD kern32q.f
FLOAD ef32q.f
write-mif-file
FLOAD sim32q.f

 101

write-mif-data Write a 4k word image of the eForth System from memory array

“ram” to the mem.mif file.
close-mif-file Close the mem.mif file.
write-mif-file Write a file mem.mif containing 2k words of the eForth System

according to the Address-Hex format required by IPexpress.

IPexpress in the ispLEVER FPGA development system expects an eP32 target image
in Hex-Address format. A mem file has a header containing system information, and
a body that contains memory data in hexadecimal ASCII characters.

Write-mif-file opens an mem.mif file, writes a header, writes data, and then closes the
file. The mem.mif file must be copied into the eP32 project in the ispLEVER
system to be synthesized with the eP32 VHDL files, in order to build the eP32 system
for the LatticeXP2-5E FPGA chip.

The eP32 metacompiler continues to load the eP32 assembler in asm32q.f, the eP32
kernel in kern32q.f, and the eForth system in ef32q.f with the following commands:
 FLOAD asm32q.f
 FLOAD kern32q.f
 FLOAD ef32q.f

The target image is complete, and can be now written out into mem.mif by the
write-mif-file command.

The metacompiler now loads in the simulator in sim32q.f with:
 FLOAD sim32q.f

The eP32 eForth system can now be simulated in weForth. It is most satisfying to
see that the output of this simulator matches exactly what is produced by the eP32
eForth system in the XP2 FPGA chip. This simulator is a simulator, working at
machine instruction level. It is much more convenient to run than the Active-HDL
simulator which works at clock cycle level. Once a development cycle is closed in
this fashion, we have very high confidence that any software change in source code of
the eForth system will work in the FPGA, if it first passed this high-level simulator.

6.3 The eP32 Optimizing Assembler

The ASM32q.f file contains a structured, optimizing assembler for the eP32. It
packs up to 5 machine instructions into one 32-bit program word. The strategy of
this eP32 assembler is to clear a program location pointed to by a variable “hw”,
preparing it to receive up to 5 machine instructions. Assembly commands are
executed to insert machine instructions into consecutive slots. Assembly commands
make necessary decisions as to whether to add more instructions to the current
program word, or start a new program word.

 102

The eP32 has two types of instructions, 32-bit long instructions and 6-bit short
instructions. The long instruction format is:

31-30 29---24 23---18 17---12 11----6 5-----0
00 cccccc aaaaaa aaaaaa aaaaaa aaaaaa

and the short instruction format is:

31-30 29---24 23---18 17---12 11----6 5-----0
00 cccccc cccccc cccccc cccccc cccccc

cccccc is a 6-bit machine instruction, and aaaaaa-aaaaaa-aaaaaa-aaaaaa is a 24-bit
address. Each 32-bit program word can contain a long instruction, or 5 short
instructions.

Assembly commands for long instructions are defined by the word JUMP, and
assembly commands for short instructions are defined by the word INST. Defining
words in FORTH makes this optimizing assembler very simple and very efficient.

However, this assembler does not use long instructions directly to redirect program
flow. Instead, it uses standard FORTH control structure commands to build control
structures in assembly programs. It thus avoids complications in labels and forward
referencing. It significantly simplifies this optimizing assembler.

The eP32 eForth system is based on the Subroutine Threading Model, in which a
compound command consists of a list of subroutine call instructions. As call and
return instructions execute in a single cycle, the eP32 is very efficient in executing
FORTH compound commands as a list of subroutine call instructions. Compound
commands in the form of lists of subroutine call instructions can be freely intermixed
with other machine instructions. Thus this optimizing assembler becomes an
optimizing compiler as well.

 103

HEX

VARIABLE h
VARIABLE lasth 0 lasth ! \ init linkfield address lfa

: namer! (d --)
 h @ ram! \ store doubl e to code buffer
 1 h +! \ bump nameh
 ;

: COMPILE-ONLY 40 lasth @ ram@ XOR lasth @ ram! ;
: IMMEDIATE 80 lasth @ ram@ XOR lasth @ ram! ;

VARIABLE hi
VARIABLE hw
VARIABLE bi (for byte packing)
: align 14 hi ! ;
: org DUP . CR h ! align ;
: allot (n --) h +! ;

CREATE mask 3F000000 , FC0000 , 3F000 , FC0 , 3 F ,
: #, (d) h @ ram! 1 h +! ;
: ,w (d) hw @ ram@ OR hw @ ram! ;
: ,i (d) hi @ 14 = IF 0 hi ! h @ hw ! 0 #, THEN
 hi @ mask + @ AND ,w 4 hi +! ;
: spread (n - d) DUP 40 * DUP 40 * DUP 40 * DUP 4 0 * + + + + ;
: ,l (n) spread ,i ;
: ,b (c) bi @ 0 = IF 1 bi ! h @ hw ! 0 #, ,w EX IT THEN
 bi @ 1 = IF 2 bi ! 100 * ,w EXIT THEN
 bi @ 2 = IF 3 bi ! 10000 * ,w EXIT THE N
 0 bi ! 1000000 * ,w ;

: inst CONSTANT DOES> R> @ ,i ;
1E spread inst nop

: anew BEGIN hi @ 14 < WHILE nop REPEAT 0 bi ! ;
: # (d) 0A spread ,i #, ;
: ldi # ;
: LIT (d --) # ;

 104

COMPILE-ONLY Patch Bit 6 in first word of name field in current target

command. Text interpreter checks it to avoid executing
compiler commands.

IMMEDIATE Patch Bit 7 in first word of name field in current target
command. Compiler checks it to execute commands while
compiling.

h A variable pointing to the next free memory cell at the top of the target

dictionary.
lasth A variable pointing to the name field of the current target command under

construction.
namer! Compile a 32-bit value, “d”, to the top of the target dictionary.
hw A variable pointing to a new program word being constructed.
hi A variable pointing to a slot to pack the next machine instruction.
bi A variable pointing to a byte to pack the next ASCII character.
align Initialize pointer “hi” to start assembling a new program word.
org Initialize pointer “h” to a new address to start assembling.
allot Add a “n” to pointer “h”. It skips an area in target memory and starts

assembling above this area.
mask An array of 5 masks to isolate one 6-bit machine instruction from a 32-bit

instruction pattern. A machine instruction can be assembled in one of 5
instruction slots selected by “hi”.

#, Compile “d” to top of target dictionary. It is the most primitive assembler
and compiler. The eP32 assembler is an extension of this primitive
assembly command.

,w OR “d” to the program word pointed to by “hw”. It generally fills the
address field in the current program word.

spread Repeat 6-bit machine instruction “n” in all 5 slots to form a 32-bit
instruction pattern. “mask” uses it to select a slot for assembling.

,i Use “hi” to select one machine instruction in “d” and assemble it into the
program word selected by “hw”.

,l Spread a 6-bit machine instruction to a 32-bit pattern and assemble a
machine instruction with “,i”.

,b Pack byte “b” into current program word. Pointer “bi” determines which
byte field to pack. “bi” is incremented to facilitate packing of next byte.

inst Define short instruction assembly commands. It creates a short instruction
assembly command like a constant. When a short instruction assembly
command is later executed, this constant is retrieved as an instruction
pattern and a short machine instruction is assembled into the current
program word by command “,i”.

nop First short instruction assembly command defined by “inst”.
anew Fill current program word with NOPs and initialize hi and hw to assemble

new machine instructions in the next program word.
Assemble a load literal LDI instruction. Its literal value is assembled in

the next program word pointed to by "h".
ldi Alias of “#”.
LIT Alias of “#”.

 105

: (makehead)
 anew
 20 WORD \ get name o f new definition
 lasth @ namer! \ fill link fi eld of last word
 h @ lasth ! \ save nfa in lasth
 COUNT DUP ,b \ store count
 1- FOR
 COUNT ,b \ fill name field
 NEXT
 DROP anew
 ;

: makehead
 >IN @ >R \ save inter preter pointer
 (makehead)
 R> >IN ! \ restore wo rd pointer
 ;

: $LIT (--)
 anew
 22 WORD
 COUNT DUP ,b (compile count)
 1- FOR
 COUNT ,b (compile characters)
 NEXT
 DROP anew ;

: jump CONSTANT DOES> anew R> FFFFFF AND @ OR #, ;
 0 jump bra 0 jump jmp
2000000 jump bz
3000000 jump bc
4000000 jump call
5000000 jump next
5000000 jump NEXT
5000000 jump <NEXT>

: return CONSTANT DOES> R> @ ,i anew ;
 1 spread return ret
 6 spread return times

 106

In the eP32 eForth system, all target commands are compiled in a target dictionary,
and linked as a list. Each target command has a link field of one 32-bit word, a
variable length name field in which the first byte contains a length followed by the
ASCII code of the name string, null filled to a 32-bit word boundary, and a
variable-length code field containing 32-bit program or data words. Primitive target
commands have machine instructions in their code fields. Compound target
commands generally have call instructions in their code fields. As call instructions
can intermix with other machine instructions, primitive words are indistinguishable
from compound words.

(makehead) Build a header for a new target command. The header includes a link

field and a name field. The address of the name field in the last
target command is stored in “lasth”, and is compiled into the link
field. “h” points to the name field of the new command, and is copied
into “lasth”. Now, the following string is packed into the name field,
starting with its length byte, and null filled to the word boundary.
Now, “h” points to the code field of this new target command.

makehead Build a header with (makehead) and save the name string to define a
compiler command in metacompiler. It displays the name and code
field address. A string can be used repeatedly by saving and restoring
its pointer in a “>IN” word.

$LIT Compile a packed string for a string literal. It works similarly as
(makehead). However, the name string is delimited by the space
character (ASCII 0x20), while a string literal is delimited by the
double-quote character (ASCII 0x22).

jump A defining command that creates long instruction assembly
commands. It uses transfer instruction code like a constant. When
a long instruction assembly command is later executed, it retrieves
this code, ORs it with a 24 bit address, and assembles a transfer
instruction in the target dictionary.

Following are the eP32 long instruction assembly commands defined by “jump”:

bra Assemble a branch always instruction, BRA.
bz Assemble a branch on zero instruction, BZ.
bc Assemble a branch on carry instruction, BC.
call Assemble a subroutine CALL instruction.
next Assemble a loop NEXT instruction.

return A defining command to create assembly commands that abandon

remaining slots in the current program word, and start fetching the
next program word.

ret Assembly command to return from subroutine call. “ret” is similar to
“nop”, in that all machine instructions following them in the same
program word will be ignored.

times Assembly command to terminate a micro loop. It is not implemented
in eP32.

 107

: begin anew h @ ;
: until bz ;
: untilnc bc ;
: jmp bra ;

: if h @ 0 bz ; (5F80000)
: ifnc h @ 0 bc ; (5F40000)
: skip h @ 0 bra ; (5FC0000)
: then begin OVER ram@ OR SWAP ram! ;
: else skip SWAP then ;
: while if SWAP ;
: whilenc ifnc SWAP ;
: repeat bra then ;
: again bra ;
: aft (a -- a' a")
 DROP skip begin SWAP ;

: BEGIN anew h @ ;
: UNTIL bz ;
: UNTILNC bc ;
: JMP bra ;

: IF h @ 0 bz ; (5F80000)
: IFNC h @ 0 bc ; (5F40000)
: SKIP h @ 0 bra ; (5FC0000)
: THEN begin OVER ram@ OR SWAP ram! ;
: ELSE skip SWAP then ;
: WHILE if SWAP ;
: WHILENC ifnc SWAP ;
: REPEAT bra then ;
: AGAIN bra ;
: AFT (a -- a' a")
 DROP skip begin SWAP ;

: ': begin .head CONSTANT DOES> R> @ call ;
: CODE makehead ': ; \ for eforth kerne l words
: code makehead ': ; \ for eforth kerne l words

 08 spread inst ldrp 09 spread inst ldxp
(0A spread inst ldi) 0B spread inst ldx
 0C spread inst strp 0D spread inst stxp
 0E spread inst rr8 0F spread inst stx
 10 spread inst com 11 spread inst shl
 12 spread inst shr 13 spread inst mul
 14 spread inst xor 15 spread inst and
 16 spread inst div 17 spread inst add
 18 spread inst popr 19 spread inst xt
 1A spread inst pushs 1B spread inst over
 1C spread inst pushr 1D spread inst tx
(1E spread inst nop) 1F spread inst pops

: for (-- a)
 pushr begin ;
: FOR (-- a)
 pushr begin ;

 108

The eP32 transfer instructions are not used directly. They are used by control
structure commands to construct control structures. These commands are in lower
case for the assembler and in upper case for the compiler:

Command Function
begin Mark current location in target for later address resolution.
until Terminate a begin-until loop if zero-flag is cleared.
untilz Terminate a begin-until loop if zero-flag is set.
untilnc Terminate a begin-until loop if carry-flag is cleared.
jmp Jump to the address on top of the data stack.
if Start a conditional branch structure. Assemble a bz instruction.
ifnc Start a conditional branch structure. Assemble a bc instruction.
skip Start a branch structure. Assemble a bra instruction.
then Terminate a conditional branch structure by resolving the branch

instruction at “if” or “else”.
else Resolve branch instruction at “if”, and start a branch structure.

Assemble a bra instruction.
while Start a conditional branch structure in a begin-while-repeat loop.

Assemble a bz instruction.
whilenc Start a conditional branch structure in a begin-while-repeat loop.

Assemble a bc instruction.
repeat Terminate a begin-while-repeat loop, and assemble a bra instruction to

“begin”.
again Terminate a begin-again loop, and assemble a bra instruction to “begin”.

CODE defines new primitive commands in the eP32 target. Primitive commands
thus defined will assemble CALL instructions in code fields of compound commands
in the eP32 target. Using the Subroutine Threading Model, primitive commands are
the same as compound commands. Their difference is only conceptual.

 ‘: Define a nameless subroutine. “begin” points to the code field and is

defined as a constant in the metacompiler. The run time behavior of
this constant is changed to execute commands after DOES>, which uses
the saved code field address to assemble a CALL instruction. It also
displays the name of the new command and its execution address on the
terminal, with the .head command.

CODE Define a new target command. It creates a new header in the target, and
then uses ‘: to start a new subroutine. It also creates an assembly
command in the metacompiler. This assembly command assembles a
subroutine call instruction.

code Alias of CODE.
for Assemble a “pushr” to start a FOR-NEXT loop.
FOR Alias of FOR.

All short eP32 instruction assemblers are defined by “inst”. Their names are the same
as mnemonics of respective machine instructions.

 109

6.46.46.46.4 The eP32 KernelThe eP32 KernelThe eP32 KernelThe eP32 Kernel

In the original eForth Model, a small group of FORTH commands were identified as
kernel commands, low level commands, or primitive commands. These commands
were coded in machine instructions of the host microprocessor. All other commands
were written as lists of commands, and are called high level commands or compound
commands. Compound commands are lists of primitive commands and other
compound commands. This division of commands was very useful in porting eForth
to many different microprocessors, because only primitive commands needed to be
rewritten when moving eForth to a new microprocessor.

In eP32 eForth, we retained this division, and put primitive commands in the
KERN32a.F file. However, we optimized commands in the eP32 so that the system
executes at the highest speed and occupies the least memory space. All commands
that can be are written in assembly. Much more optimization is achieved by a set of
assembly macros, which assemble the most commonly used compound commands in
machine instructions and pack these machine instructions as tightly as possible. The
end results are that code size is significantly reduced and execution speed greatly
increased.

Commands in this file also serve as programming examples for the optimal use of the
eP32 CPU. It is worth your time to study them carefully, and use them as templates
when you want to convert compound commands into assembly.

In the LatticeXP2-5E FPGA chip, there are 166K bits of Embedded Block Memory,
EBM, and we use them to implement 4096 words of 32-bit RAM memory. The
nicest feature of EBM is that it can be initialized from on-chip flash memory. In fact,
this RAM memory can be used to host programs and data that otherwise would have
to be implemented in ROM memory. This feature makes it possible to implement a
complete FORTH system on a single FPGA chip, which has never been possible in
other brands of FPGA.

Using EBM, the memory map of eP32 eForth is greatly simplified:

Address Function
0x0 Reset and interrupt vectors
0x20 System variables
0x30 Text buffer
0x80 Terminal input buffer
0x100 Start of eForth dictionary
0x1FFF End of RAM memory
0x80000000 Start of UART registers
0xE0000000 Start of GPIO registers

The data stack and return stack are in the eP32 core, and do not need RAM memory.

 110

System variables are variables used by the eForth system to perform all its various
functions. They are defined as assembly macro commands, with LDI machine
instructions pointing to their respective addresses in the system variable area, starting
at location $20. These assembly macro commands are tools used by the
metacompiler to compile the optimized system variables referenced in the eP32 target
system.

Command Address Function
HLD 20 Pointer to a buffer holding next digit for numeric

conversion.
SPAN 21 Number of characters received by EXPECT.
>IN 22 Input buffer character pointer used by text interpreter.
#TIB 23 Number of characters in input buffer.
'TIB 24 Address of Terminal Input Buffer.
BASE 25 Number base for numeric conversion.
CONTEXT 26 Vocabulary array pointing to last name fields of

vocabularies.
CP 27 Pointer to top of dictionary, the first available memory

location.
LAST 28 Pointer to name field of last command in dictionary.
'EVAL 29 Execution vector switching between $INTERPRET and

$COMPILE.
'ABORT 2A Execution vector to handle error condition.
TEXT 30 Buffer to unpack text strings.
tmp 2B Pointer to a scratch pad.
cpi 2C Pointer to slots in assembler.
cpw 2D Pointer to program word under construction.
etxbuf 80000001 Transmit data register.
etxbempty 80000001 Transmit status register.
erxbfull 80000002 Receiver status register.
erxbuf 80000003 Receiver data register.

 111

HEX
cr .(system variables)
: HLD 20 ldi ; \ scratch
: SPAN 21 ldi ; \ #chars input by expect
: >IN 22 ldi ; \ input buffer offset
: #TIB 23 ldi ; \ #chars in the input buffer
: 'TIB 24 ldi ; \ tib
: BASE 25 ldi ; \ number base

cr
: CONTEXT 26 ldi ; \ first search vocabulary
: CP 27 ldi ; \ dictionary code pointer
: LAST 28 ldi ; \ ptr to last name compiled
: 'EVAL 29 ldi ; \ interpret/compile vector
: 'ABORT 2A ldi ;
: TEXT 30 ldi ; \ unpack buffer
: tmp 2B ldi ; \ ptr to converted # string
: cpi 2C ldi ; \ assembler slot poiner
: cpw 2D ldi ; \ pointer to word under cons truction

: etxbuf 80000001 ldi ;
: etxbempty 80000001 ldi ;
: erxbfull 80000002 ldi ;
: erxbuf 80000003 ldi ;

cr .(macro words) cr
: DOLIT # ;
: EXIT ret ;
: EXECUTE (a) pushr ret anew ;
: ! (n a --) tx stx ;
: @ (a - n) tx ldx ;
: R> (- n) popr ;
: R@ (- n) popr pushs pushr ;
: >R (n) pushr ;
: DUP (n - n n) pushs ;
: SWAP (n1 n2 - n2 n1)
 pushr tx popr xt ;
: DROP (w w --)
 pops ;
: 2DROP (w w --)
 pops pops ;
: + (w w -- w) add ;
: NOT (w -- w) com ;
: AND and ;
: XOR xor ;
: OVER over ;
: NEGATE (n -- -n)
 com 1 ldi add ;

 112

Assembly macro commands assemble one or more machine instructions into the
target dictionary. One 32-bit program word can hold up to 5 short machine
instructions. These assembly macro commands pack as many instructions in a
program word as possible to make the most efficient use of memory and execution
time. They allow the metacompiler to produce optimized code for the target system.

Macro Function
DOLIT Same as LIT. Assemble LDI; attach a value in next word.
EXIT Single machine instruction.
EXECUTE Push address in T to R and use RET to execute it.
! Pop T to X and then store value in memory.
@ Pop T to X and then read value from memory.
R> Single machine instruction.
R@ Pop R to T, duplicate T, and push T to R.
>R Single machine instruction.
DUP Single machine instruction.
SWAP Use R and X to swap T and S.
DROP Single machine instruction.
2DROP Pop T twice.
+ Single machine instruction.
NOT Single machine instruction.
AND Single machine instruction.
XOR Single machine instruction.
OVER Single machine instruction.
NEGATE Compliment T and add 1 to it.
1- Add -1 to T.
1+ Add 1 to T.
BL Return $20, ASCII code for space.
+! Add n to contents of a. Pop a in T to X, fetch number, add n, and

store back.
- Subtract w3=w1-w2. Complement w2, add 1, and add w1.
OR w3=w1 or w2. Complement w2, push it to R, complement w1,

pop /w2, AND /w1, and complement results.
ROT Rotate w1, w2, w3. Push w3, push w2, save w1 to X, pop w2,

pop w3, and copy w1 back from X.
2DUP Duplicate w1/w2 pair. Dup w2, push w2, push w2, dup w1, pop

w1 to X, pop w2, push w1 from X, pop w2.
2! Store double integer d in a. Pop address a to X, push dh, store dl,

pop dh, and store dh.
2@ Fetch double integer from a. Pop address a to X, read dl, read dh.
COUNT Retrieve n from a, and increment a. Pop address a to X, read n,

push n, restore a+1 from X, pop n back.

 113

: 1- (a -- a)
 -1 ldi add ;
: 1+ (a -- a)
 1 ldi add ;
: BL (-- 32)
 20 ldi ;
: +! (n a --)
 tx ldx add stx
 ;
: - (w1 w2 -- w3)
 com add 1 ldi add
 ;
: OR (w1 w2 - w3)
 com pushr com
 popr and com ;
: ROT (w1 w2 w3 -- w2 w3 w1)
 pushr pushr tx popr
 popr xt ;
: 2DUP (w1 w2 -- w1 w2 w1 w2)
 pushs pushr pushr
 pushs tx popr xt popr
 ;
: 2! (d a --)
 tx pushr stxp
 popr stx ;
: 2@ (a -- d)
 tx ldxp ldx ;
: COUNT (b -- b +n)
 tx ldxp pushr xt
 popr ;
cr .(kernel words) cr
$100 org

code DOVAR popr ret
code 0< (n - f)
 shl ifnc pushs pushs xor ret
 then
 -1 ldi ret
code UM+ (n n - n carry)
 add pushs
 ifnc pushs pushs xor ret
 then
 1 ldi ret
code ?DUP (w -- w w | 0)
 pushs
 if pushs ret then
 ret

 114

We are now actually compiling new commands into the target dictionary. First,
assembly command ORG initializes the dictionary pointer, h, to memory location
$100. The memory area below $100 is reserved for reset and interrupt vectors,
system variables, text buffer, and the terminal input buffer.

The following are the first few code commands compiled into the eP32 target
dictionary. They are defined using the CODE command, and when they are
referenced later in the EP32q.F file, each of them will compile a subroutine call
instruction pointing to their code field. The choice to define a CODE command as
an assembly macro is rather arbitrary. However, if a command requires a branch
instruction, it has to be coded as a CODE command, because macro commands
cannot handle branch instructions gracefully. Assembly macro commands only do
simple machine instruction placement.

Many compound commands defined in the original eForth model are now coded in
assembly and moved to this kernel. We tried to do our best in giving you the
smallest and fastest FORTH system. All commands that can be optimized are so
optimized.

Command Function
DOVAR Execution code for variables. Return address of following program

word. DOVAR is always followed by its value in the next program
word, whose address happens to be in the R register. Pop return
stack and this address is popped back onto the data stack.

0< If n<0, return true flag; otherwise, return false flag. Negative flag is in
bit T(31). Shift T left sends this bit into carry bit T(32), which is
tested for branching by ifnc.

UM+ Add two integers on stack; return sum and carry. ADD adds two
integers on data stack and carry bit is in T(32). “ifnc” tests this bit and
pushs a 1 or 0 on stack accordingly.

?DUP If w is not 0, duplicate it; otherwise, do nothing. w is duplicated and
tested by “if”.

DNEGATE Negate double integer d on stack. dh is first complemented and
pushed onto the return stack. dl is complemented and incremented.
If carry is set, dh is retrieved and incremented; otherwise, dh is
retrieved but not incremented

ABS Return absolute value of n. n is duplicated and tested for being
negative by a left shift and “ifnc”. If negative, negate it; otherwise,
leave it alone.

= Return a true flag if the two numbers on data stack are equal;
otherwise, return false flag. Use “xor” and “if” to test equality.

B> Pack a byte at “b” into least significant 8 bits in “a”. Return b+1 and
“a” to pack next byte.

>B Unpack 4 bytes from “a” to byte array at “b”. Return a+1 and b+4 to
unpack next word. Least significant byte in “a” is also returned, as it
may be the count of a packed string.

 115

cr
code DNEGATE (d -- -d)
 com pushr com 1 ldi
 add pushs
 ifnc popr ret
 then
 popr 1 ldi add ret
code ABS (n -- +n)
 pushs shl
 ifnc ret then
 NEGATE ret

cr
code = (w w -- t)
 xor
 if pushs pushs xor ret then
 -1 ldi ret

cr (pack b> and unpack >b strings)
code B> (b a -- b+1 a)
 pushr tx ldxp pushr
 xt popr popr tx
 $FF ldi and
 ldx $FFFFFF00 ldi and xor
 rr8 stx xt ret
code >B (a b -- a+1 b+4 count)
 pushr tx ldxp pushr
 xt popr popr (a+1 n b) tx
 pushs $FF ldi and stxp rr8
 pushs $FF ldi and stxp rr8
 pushs $FF ldi and stxp rr8
 pushs $FF ldi and stxp rr8
 pushr xt popr $FF ldi and
 ret

 116

Figure 36. The eForth Operating System

 117

6.5 eP32 Compound Commands

The EF32q.F. file contains compound commands to be compiled into the eP32 target
image. These commands are defined with the “::” command and terminated by “;;”
command. They are like the regular “:” and “;” commands in FORTH, but they
compile new eP32 commands into the eP32 target image.

The ultimate goal of these commands is to implement an interactive operating system,
or a text interpreter, which accepts a line of FORTH commands from a terminal,
executes these commands in sequence, and waits for another line of commands.
This FORTH system is best represented in the flowchart shown on the left page, in
which all FORTH commands are enclosed in rectangles. As we go through source
code in EP32q.F line by line, you will see how these commands are implemented, and
will appreciate the overall design of this eP32 eForth system.

The text interpreter is also called the outer interpreter in FORTH. It is functionally
equivalent to an operating system in a conventional microprocessor. It accepts
commands similar to English words entered by a user, and carries out tasks specified
by the commands. As an operating system, the text interpreter could be very
complicated, because of all the things it has to do. However, because FORTH
employs very simple syntax rules, and has very simple internal structures, the FORTH
text interpreter is much simpler than conventional operating systems. It is simple
enough that we can make a diagram of it as shown on the left page.

Let us summarize what a text interpreter does:

COLD Power up routine
QUIT Text interpreter
QUERY Accept text input from a terminal
EVAL Evaluate or interpret a line of text
PARSE Parse out a string from input text
$INTERPRET Interpret a string
$COMPILE Compile a string
NAME$ Search dictionary for a commands
NUMBER? Translate a text string into an integer
EXECUTE Execute a commands
IMMED? Is this command an immediate command?
LITERAL Compile a integer literal
COMPILE Compile a command token

FORTH allows us to build and integrate these functions gradually in modules. All
modules finally fall into their places in the command QUIT, which is the text
interpreter itself.

You might want to look up the code of QUIT first and see how the modules fit
together. A good feeling for the big picture will help you in understanding lower
modules. Nevertheless, we will doggedly follow the loading order in the source
code, and hope that you will not get lost in the process.

 118

 : :: code ;
: ;; ret ;

CRR .(Chararter IO) CRR
:: ?KEY erxbfull @ ;;
:: KEY begin erxbfull @ until erxbuf @ ;;
:: EMIT begin etxbempty @ until etxbuf ! ;;

CRR .(Common functions) CRR
:: U< (u u -- t) 2DUP XOR 0< IF SWAP DROP 0< EXIT THEN - 0< ;;
:: < (n n -- t) 2DUP XOR 0< IF DROP 0< EXIT THEN - 0< ;;
:: MAX (n n -- n) 2DUP < IF SWAP THEN DROP ; ;
:: MIN (n n -- n) 2DUP SWAP < IF SWAP THEN DROP ; ;
:: WITHIN (u ul uh -- t) \ ul <= u < uh
 OVER - >R - R> U< ;;

CRR .(Divide) CRR
CODE UM/MOD (ud u -- ur uq)
 com 1 ldi add tx
 pushr xt pushr tx
 popr popr
 skip
CODE /MOD (n n -- r q)
 com 1 ldi add pushr
 tx popr 0 ldi
 then
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div 1 ldi xor shr
 pushr pops popr xt
 ret
CODE MOD (n n -- r)
 /MOD
 pops ret
CODE / (n n -- q)
 /MOD
 pushr pops popr ret
:: M/MOD (d n -- r q) \ floored
 DUP 0< DUP >R
 IF NEGATE >R DNEGATE R>
 THEN >R DUP 0< IF R@ + THEN R> UM/MOD R>
 IF SWAP NEGATE SWAP THEN ;;

 119

Defining Compound Target Commands

:: Create a new compound target command. Because eForth uses the

Subroutine Threading Model, compound commands and low level
primitive commands are the same.

;; Terminate a compound command. Assemble a RET machine
instruction. All commands are called as subroutines, and RET will
unnest a subroutine call, as well as a list of subroutine calls.

Character I/O

?KEY Inspect register “erxbfull” and return a true flag if a character has

been received. If no character was received, return a false flag.
KEY Wait for a character, and return it after receiving it in “erxbuf”.
EMIT Wait until transmit buffer is empty, by testing register “etxbempty”.

Then send out a character to register “etxbuf”.

Common Functions

= Return true if two integers are equal.
U< Compare two unsigned integers. Return true if second integer is less

than top integer. It is used to compare addresses.
< Compare two signed integers. Return true if second integer is less

than top integer.
MAX Retain the larger of top two signed integers on stack.
MIN Retain the lesser of top two signed integers on stack.
WITHIN Check whether the third signed integer on stack is within range

specified by top two signed integers. The range is inclusive of the
lower limit and exclusive of the upper limit. If the third item is within
range, a true flag is returned.

Divide

UM/MOD Divide an unsigned double integer by an unsigned single integer.

Return unsigned remainder and unsigned quotient. Unsigned double
integer dividend is in the T:X register pair, and a negated 32-bit
divisor is in the S register. Repeat “div” step 33 times. Remainder in
the T register is shifted once too many, and it has to be shifted back
one bit to the right.

/MOD Divide a signed single integer by a signed integer. Return signed
remainder and quotient.

MOD Divide a signed single integer by a signed integer. Return signed
remainder.

/ Divide a signed single integer by a signed integer. Return signed
quotient.

M/MOD Divide a signed double integer by a signed single integer. Return
signed remainder and signed quotient.

M/ Divide a signed double integer by a signed single integer. Return
signed quotient.

 120

CRR .(Multiply) CRR
CODE UM* (u u -- ud)
 tx 0 ldi
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 pushr pops xt popr
 ret
:: * (n n -- n) UM* DROP ;;
:: M* (n n -- d)
 2DUP XOR 0< >R ABS SWAP ABS UM* R> IF DNEGATE T HEN ;;
:: */MOD (n n n -- r q) >R M* R> M/MOD ;;
:: */ (n n n -- q) */MOD SWAP DROP ;;

CRR .(Bits & Bytes) CRR
:: >CHAR (c -- c)
 $7F LIT AND DUP $7F LIT BL WITHIN
 IF DROP (CHAR _) $5F LIT THEN ;;

CRR .(Memory access) CRR
:: HERE (-- a) CP @ ;;
:: PAD (-- a) CP @ 50 LIT + ;;
:: TIB (-- a) 'TIB @ ;;
CRR
:: @EXECUTE (a --) @ ?DUP IF EXECUTE THEN ;;
:: CMOVE (b b u --)
 FOR AFT >R DUP @ R@ ! 1+ R> 1+ THEN NEXT 2DROP ;;
:: FILL (b u c --)
 SWAP FOR SWAP AFT 2DUP ! 1+ THEN NEXT 2DROP ;;

:: PACK$ (b u a -- a) \ null fill
 pushs pushr
 2 ldi tmp tx stx
 tx pushs pushr rr8 stx
 xt popr
 FOR AFT (b a)
 B>
 tmp tx ldx
 IF ldx -1 ldi add stx
 ELSE 3 ldi stx
 1 ldi add
 THEN
 THEN NEXT
 BEGIN
 tx ldx $FFFFFF00 ldi and
 rr8 stx xt
 tmp tx ldx
 WHILE
 ldx -1 ldi add stx
 REPEAT
 pops pops popr
 ;;

 121

Multiply

UM* Multiply two unsigned integers and produce an unsigned double

integer product. “mul” conditionally adds the integer in S to T if bit
X(0) is set, and the T:X register pair is shift right by 1 bit. Two
multiplicands are placed in the S and X registers. Repeat “mul” 32
times and a 64-bit product is produced in the T:X register pair.

* Multiply two signed integers to produce a signed single integer
product.

M* Multiply two signed integers to produce a signed double integer
product.

*/MOD Multiply signed integers n1 and n2, and then divide the double
integer product by n3. Scale n1 by n2/n3. Returns both remainder
and quotient.

*/ Similar to */MOD except that it only returns quotient.

Bits and Bytes

>CHAR Filter non-printable character to a harmless ‘underscore’ character,

ASCII 95.

Memory Access

HERE Returns address of WORD buffer 1 cell above command dictionary.

Text interpreter parses out a string from Terminal Input Buffer and
packs it here. In case this string is the name of a new command, it is
already in the name field.

PAD Returns address of a buffer pad 80 cells above command dictionary.
It is a scratch pad area to store temporary text and data. It floats on top
of the dictionary as new commands are added to the dictionary. The
memory area below PAD is used for numeric conversion to build a
number string backwards as least significant digits are extracted from
an integer.

TIB Return address of Terminal Input Buffer.
@EXECUTE Jump to execution address stored in a memory location “a”.
CMOVE Copy “u” cells of memory from array “b1” to array “b2”.
FILL Fill “u” cells of memory array “b” with the same data, “c”.
PACK$ Copy “u” bytes in a byte array at “b” and pack them into a cell array

at “a”. A packed string starts with a length byte in the lowest 8 bits of
the first cell. PACK$ is designed to pack bytes into cells in a
cell-addressable machine. The packed string is null-filled to a word
boundary. Target address “a” is returned.

 122

:: 4/
 shr shr ret
:: UNPACK$ (a b -- b)
 DUP >R (save b)
 >B $1F LIT AND 4/
 FOR AFT
 >B DROP
 THEN NEXT
 2DROP R>
 ;;
:: UNPACK (a b -- b)
 DUP >R (save b)
 >B $FF LIT AND 4/
 FOR AFT
 >B DROP
 THEN NEXT
 2DROP R>
 ;;

CRR .(Numeric Output) CRR \ single precision
:: DIGIT (u -- c)
 9 LIT OVER < 7 LIT AND +
 (CHAR 0) 30 LIT + ;;
:: EXTRACT (n base -- n c)
 0 LIT SWAP UM/MOD SWAP DIGIT ;;
:: <# (--) PAD HLD ! ;;
:: HOLD (c --) HLD @ 1- DUP HLD ! ! ;;
:: # (u -- u) BASE @ EXTRACT HOLD ;;
:: #S (u -- 0) BEGIN # DUP WHILE REPEAT ;;
CRR
:: SIGN (n --) 0< IF (CHAR -) 2D LIT HOLD THEN ;;
:: #> (w -- b u) DROP HLD @ PAD OVER - ;;
:: str (n -- b u) DUP >R ABS <# #S R> SIGN #> ;;
:: HEX (--) 10 LIT BASE ! ;;
:: DECIMAL (--) 0A LIT BASE ! ;;

CRR .(Numeric Input) CRR \ single precision
:: DIGIT? (c base -- u t)
 >R (CHAR 0) 30 LIT - 9 LIT OVER <
 IF 7 LIT - DUP 0A LIT < OR THEN DUP R> U< ;;
:: NUMBER? (a -- n T | a F)
 BASE @ >R 0 LIT OVER COUNT (a 0 b n)
 OVER @ (CHAR $) 24 LIT =
 IF HEX SWAP 1+ SWAP 1- THEN (a 0 b' n')
 OVER @ (CHAR -) 2D LIT = >R (a 0 b n)
 SWAP R@ - SWAP R@ + (a 0 b" n") ?DUP
 IF 1- (a 0 b n)
 FOR DUP >R @ BASE @ DIGIT?
 WHILE SWAP BASE @ * + R> 1+
 NEXT DROP R@ (b ?sign) IF NEGATE THEN SWAP
 ELSE R> R> (b index) 2DROP (digit number) 2 DROP 0 LIT
 THEN DUP
 THEN R> (n ?sign) 2DROP R> BASE ! ;;

 123

4/ Divide top of stack by 4.
UNPACK$ Unpacks a packed string at “a” to a byte array at “b”. The first byte

in the packed string is a length byte. Unpack only up to 31 bytes.
Use >B to do unpacking.

UNPACK Identical to UNPACK$, except it unpacks strings up to 255 bytes.

Numeric Output

FORTH is interesting in its special capabilities in handling numbers across a
man-machine interface. It recognizes that machines and humans prefer very
different representations of numbers. Machines prefer binary representation, but
humans prefer decimal Arabic representation. However, depending on
circumstances, a human may want numbers to be represented in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine) versus external (human) number
representations by insisting that all numbers are represented in binary form in CPU
and memory. Only when numbers are imported or exported for human consumption
are they converted to external ASCII representation. The radix of the external
representation is stored in system variable BASE. The user can select any
reasonable radix in BASE, up to 72, limited by available printable characters in the
ASCII character set.

DIGIT Convert integer “u” to a digit “c”.
EXTRACT Extract least significant digit “c” from a number “n”. “n” is divided by

radix “base”.
HOLD Insert an ASCII character “c” in numeric output string.
"#" Extract one digit from integer “u”, according to radix in BASE, and

add it to output string.
"#S" Extract all digits to output string until “u” is 0.
SIGN Insert a “-” sign in numeric output string if “n” is negative.
#> Terminate numeric conversion and return address and length of output

string.
str Convert signed integer “n” to a numeric output string.
HEX Set numeric conversion radix to 16 for hexadecimal conversions.
DECIMAL Set numeric conversion radix to 10 for decimal conversions.

Numeric Output

DIGIT? Convert a digit “c” to its numeric value “u” according to current radix

“b”. If conversion is successful, push a true flag above “u”. If not
successful, return “c” and a false flag.

NUMBER? Convert a count string of digits at location “a” to an integer. If first
character is a $, convert in hexadecimal; otherwise, convert using
radix in BASE. If first character is a “-”, negate integer. If an illegal
character is encountered, address of string and a false flag are
returned. Successful conversion returns integer value and a true flag.

 124

CRR .(Basic I/O) CRR
:: SPACE (--) BL EMIT ;;
:: CHARS (+n c --)
 SWAP 0 LIT MAX
 FOR AFT DUP EMIT THEN NEXT DROP ;;
:: SPACES (+n --) BL CHARS ;;
:: TYPE (b u --)
 FOR AFT DUP @ >CHAR EMIT 1+
 THEN NEXT DROP ;;
:: CR (--) (=Cr)
 0A LIT 0D LIT EMIT EMIT ;;
:: do$ (-- a)
 R> R@ TEXT UNPACK
 R@ R> @ $FF LIT AND 4/ 1+ +
 >R SWAP >R ;;

CRR
:: $"| (-- a) do$;;
:: ."| (--) do$ COUNT TYPE ;;
:: .R (n +n --)
 >R str R> OVER - SPACES TYPE ;;
:: U.R (u +n --)
 >R <# #S #> R> OVER - SPACES TYPE ;;
:: U. (u --) <# #S #> SPACE TYPE ;;
:: . (n --)
 BASE @ 0A LIT XOR
 IF U. EXIT THEN str SPACE TYPE ;;
:: ? (a --) @ . ;;

CRR .(Parsing) CRR
:: (parse) (b u c -- b u delta ; <string>)
 tmp ! OVER >R DUP \ b u u
 IF 1- tmp @ BL =
 IF \ b u' \ 'skip'
 FOR BL OVER @ - 0< NOT
 WHILE 1+
 NEXT (b) R> DROP 0 LIT DUP EXIT \ all delim
 THEN R>
 THEN OVER SWAP \ b' b' u' \ 'scan'
 FOR tmp @ OVER @ - tmp @ BL =
 IF 0< THEN WHILE 1+
 NEXT DUP >R
 ELSE R> DROP DUP 1+ >R
 THEN OVER - R> R> - EXIT
 THEN (b u) OVER R> - ;;
:: PARSE (c -- b u ; <string>)
 >R TIB >IN @ +
 #TIB @ >IN @ -
 R> (parse) >IN +! ;;
:: TOKEN (-- a ;; <string>)
 BL PARSE 1F LIT MIN 2DUP
 DUP TEXT ! TEXT 1+ SWAP CMOVE
 HERE 1+ PACK$;;
:: WORD (c -- a ; <string>)
 PARSE HERE 1+ PACK$;;

 125

Basic I/O

SPACE Output a blank space character.
SPACES Output “n” blank space characters.
CHARS Output a string of “n” characters “c”.
CR Output a carriage-return and a line-feed.
TYPE Output “n” characters from a string in memory “b”.
do$ Unpack a packed string literal, pointed to by address on return stack.

The string is unpacked to TEXT buffer “a”. The return address on return
stack is incremented to skip over the string literal.

String literals are data structures compiled in compound commands, in-line with other
commands. A string literal must start with a string command, which knows how to
handle the following packed string at run time.

$"| Alias of "do$. Unpack following packed string in this string literal and

return address of unpacked string.
."| Unpack following packed string in this string literal and output string

characters.
.R Output a signed integer “n” right-justified in a field of “+n” characters.
U.R Output an unsigned integer “n” right-justified in a field of “+n”

characters.
U. Output an unsigned integer “u” in free format, followed by a space.
. Output a signed integer “n” in free format, followed by a space.
? Output a signed integer stored in memory “a”, in free format followed

by a space.

Parsing

FORTH source code consists of commands, which are ASCII strings separated by
spaces and other white space characters like tabs, carriage returns, and line feeds.
The text interpreter scans text in the Terminal Input Buffer, TIB, isolates strings and
interprets them in sequence. After a string is parsed out of the input stream, the text
interpreter “interprets” it—executes it if it is a command, compiles it if the text
interpreter is in compiling mode—and converts it to a number if the string is not a
valid command.

(parse) Parse out the first string delimited by character “c” from input buffer at

b1, length u1. Return address b2 and length u2 of the string just parsed
out, and the difference “n” between b1 and b2.

PARSE Parse a string delimited by character “c” in TIB, from character pointed
to by >IN. It returns address “b” and the length of parsed string “u”.

TOKEN Parse out next text string delimited by a space character in TIB. The text
string is assumed to be the name of a command, and its length is limited
to 31 characters. This string is packed into the WORD buffer one cell
above the dictionary; i.e., HERE+1.

WORD Parse out next text string delimited by character “c” in TIB. This string
is packed into the WORD buffer one word above the command
dictionary; i.e., HERE+1. Length of string is limited to 255 characters.

 126

CRR .(Dictionary Search) CRR
:: NAME> (a -- xt)
 DUP @ $1F LIT AND
 4/ + 1+ ;;
:: SAME? (a1 a2 u -- a1 a2 f \ -0+)
 $1F LIT AND 4/
 FOR AFT OVER R@ + @
 OVER R@ + @ - ?DUP
 IF R> DROP EXIT THEN
 THEN NEXT
 0 LIT ;;
:: find (a va -- xt na | a F)
 SWAP \ va a
 DUP @ tmp ! \ va a \ get cell count
 DUP @ >R \ va a \ count
 1+ SWAP \ a' va
 BEGIN @ DUP \ a' na na
 IF DUP @ $FFFFFF3F LIT AND
 R@ XOR \ ignore lexicon bits
 IF 1+ -1 LIT
 ELSE 1+ tmp @ SAME?
 THEN
 ELSE R> DROP SWAP 1- SWAP EXIT \ a F
 THEN
 WHILE 1- 1- \ a' la
 REPEAT R> DROP SWAP DROP
 1- DUP NAME> SWAP ;;
:: NAME? (a -- xt na | a F)
 CONTEXT find ;;

CRR .(Terminal) CRR
:: ^H (bot eot cur -- bot eot cur) \ backspace
 >R OVER R> SWAP OVER XOR
 IF (=BkSp) 8 LIT EMIT
 1- BL EMIT \ distructive
 (=BkSp) 8 LIT EMIT \ backspace
 THEN ;;
:: TAP (bot eot cur c -- bot eot cur)
 DUP EMIT OVER ! 1+ ;;
:: kTAP (bot eot cur c -- bot eot cur)
 DUP (=Cr) 0D LIT XOR
 IF (=BkSp) 8 LIT XOR
 IF BL TAP ELSE ^H THEN
 EXIT
 THEN DROP SWAP DROP DUP ;;

CRR
:: accept (b u -- b u)
 OVER + OVER
 BEGIN 2DUP XOR
 WHILE KEY DUP BL - 5F LIT U<
 IF TAP ELSE kTAP THEN
 REPEAT DROP OVER - ;;
:: EXPECT (b u --) accept SPAN ! DROP ;;
:: QUERY (--)
 TIB 50 LIT accept #TIB !
 DROP 0 LIT >IN ! ;;

 127

Dictionary Search

In this FORTH system, records of commands are linked into a command dictionary.
A record contains three fields: a link field holding the name field address of the
previous record, a name field holding the name of this command as a packed string,
and a code field holding the executable code of this command. The command
dictionary is a linear list linked through link fields and the name fields of all records.

NAME> Return code field address “xt” from name field address “a” of a

command.
SAME? Compare two packed strings at “a1” and “a2” for “u” cells. If

string1>string2, returns a positive integer. If string1<string2, return a
negative integer. If strings are identical, return a 0.

find Look up a packed string at “a” in command dictionary. Search starts at
“va”. If a command is found, return code field address “xt” and name
field address “na”. If the string is not found, return address “a” and a
false flag.

NAME? Search dictionary from CONTEXT for a name at “a”. Return code field
address and name field address if a command is found. Otherwise,
return address “a” and a false flag.

Terminal

The text interpreter interprets source text received from an input device and stored in
the Terminal Input Buffer. To process characters in the Terminal Input Buffer, we
need special commands to deal with the special conditions of backspace character and
carriage return:

^H Process back-space. Erase last character and decrement “cur”. If

“cur”=”bot”, do nothing because you cannot backup beyond beginning
of input buffer.

TAP Output character “c” to terminal, store “c” in “cur”, and increment
“cur”, which points to the current character. “bot” and “eot” are the
beginning and end of the input buffer.

kTAP Processes character “c”. “bot” is the beginning of the input buffer, and
“eot” is the end. “cur” points to the current character in the input buffer.
“c” is normally stored at “cur”, which is incremented by 1. If “c” is a
carriage-return, echo a space and make “eot”=”cur”. If “c” is a
back-space, erase the last character and decrement “cur”.

accept Accept “u” characters into buffer at “b”, or until a carriage return. The
value of “u” returned is the actual count of characters received.

EXPECT Accept “u” characters into buffer at “b”, or until a carriage return. The
count of characters received is in SPAN.

QUERY Accept up to 80 characters from the input device to the Terminal Input
Buffer. This also prepares the Terminal Input Buffer for parsing by
setting #TIB to characters received and clearing >IN, pointing to the
beginning of the Terminal Input Buffer.

 128

CRR .(Error handling) CRR
:: ABORT (--) 'ABORT @EXECUTE ;;
:: abort" (f --)
 IF do$ COUNT TYPE ABORT THEN do$ DROP ;;

CRR .(Interpret) CRR
:: ERROR (a --)
 DROP SPACE TEXT COUNT TYPE
 $3F LIT EMIT CR ABORT
:: $INTERPRET (a --)
 NAME? ?DUP
 IF @ $40 LIT AND
 abort" $LIT compile only" EXECUTE EXIT
 THEN DROP TEXT NUMBER?
 IF EXIT THEN ERROR
:: [(--)
 forth_' $INTERPRET >body forth_@ LIT 'EVAL !
 ;; IMMEDIATE
:: .OK (--)
 forth_' $INTERPRET >body forth_@ LIT 'EVAL @ =
 IF ."| $LIT OK" CR
 THEN ;;
:: EVAL (--)
 BEGIN TOKEN DUP @
 WHILE 'EVAL @EXECUTE \ ?STACK
 REPEAT DROP .OK ;;

CRR .(Shell) CRR
:: QUIT (--)
 (=TIB) $80 LIT 'TIB !
 [BEGIN QUERY EVAL AGAIN

CRR .(Compiler Primitives) CRR
:: ' (-- xt)
 TOKEN NAME? IF EXIT THEN
 ERROR
:: ALLOT (n --) CP +! ;;
:: , (w --) HERE DUP 1+ CP ! ! ;;
:: [COMPILE] (-- ; <string>)
 ' 4000000 LIT + , ;; IMMEDIATE

CRR
:: COMPILE (--) R> DUP @ , 1+ >R ;;
:: LITERAL $A79E79E LIT , ,
 ;; IMMEDIATE
:: $," (--) (CHAR ")
 22 LIT WORD
 DUP @ $FF LIT AND
 4/ + 1+ CP ! anew ;;
:: (CALL) (a -- call) FFFFFF LIT AND 4000000 LIT OR ;;

 129

Interpreter

ABORT Execute the command whose address is in the system variable

'ABORT. This address normally points to QUIT.
abort" When the top item on stack is non-zero, output the following

packed string and execute ABORT; otherwise, skip over error
message. It is compiled before a packed error message.

ERROR Display error message in TEXT buffer and execute ABORT.
 [Activate interpreting mode by storing $INTERPRET into variable

'EVAL, which is executed in EVAL.
.OK Prints the OK prompt. OK is printed only when the text interpreter

is in interpreting mode. While compiling, the OK prompt is
suppressed.

EVAL Interpreter loop, which parses strings from the Terminal Input
Buffer, and the command in 'EVAL to process a string, either
executing it with $INTERPRET or compiling it with $COMPILE.

$INTERPRET Processes a string at “a”. If it is a valid command, execute it;
otherwise, convert it to a number. Failing that, execute ERROR and
return to QUIT.

Compiler Primitives

‘ Search dictionary for following name, and return its code field

address if a command is found; otherwise, print a warning message
with “?”.

ALLOT Allocate “n” cells of memory on top of dictionary.
, Compile an integer “w” to dictionary, and add the new item to the

growing command list of the current command under construction.
This is the primitive compiler.

[COMPILE] Compile the code field address of the next command. It compiles an
immediate command, even if it would otherwise be executed.

COMPILE Compile the code field address of the next command. It forces
compilation of a command at run time.

LITERAL Compile an integer literal. It first compiles doLIT, followed by an
integer vale from the stack. When doLIT is executed, it extracts the
integer in the next program word and pushes it on the stack.

$, Compile a packed string. String text is taken from the input stream
and terminated by a double quote. A token (such as . "| or $"|) must
be compiled before the string to form a sting literal.

(CALL) Compile or assemble a subroutine CALL instruction with the code
field address on the stack. Compound commands are compiled as
lists of subroutine calls.

 130

CRR .(Name Compiler) CRR
:: ?UNIQUE (a -- a)
 DUP NAME?
 IF TEXT COUNT TYPE ."| $LIT reDef "
 THEN DROP ;;
:: $,n (a --)
 DUP @
 IF ?UNIQUE
 (na) DUP NAME> CP !
 (na) DUP LAST ! \ for OVERT
 (na) 1-
 (la) CONTEXT @ SWAP ! EXIT
 THEN ERROR

CRR .(FORTH Compiler) CRR

:: $COMPILE (a --)
 NAME? ?DUP
 IF @ $80 LIT AND
 IF EXECUTE
 ELSE (CALL) , anew
 THEN EXIT
 THEN DROP TEXT NUMBER?
 IF LITERAL anew EXIT
 THEN ERROR
:: OVERT (--) LAST @ CONTEXT ! ;;
:: ; (--)
 $179E79E LIT , [OVERT ;; IMMEDIATE
::] (--)
 forth_' $COMPILE >body forth_@ LIT 'EVAL ! ;;
:: : (-- ; <string>)
 TOKEN $,n] ;;

CRR .(Tools) CRR
:: dm+ (b u -- b)
 OVER 6 LIT U.R SPACE
 FOR AFT DUP @ 9 LIT U.R 1+
 THEN NEXT ;;
:: DUMP (b u --)
 BASE @ >R HEX 8 LIT /
 FOR AFT CR 8 LIT dm+
 THEN NEXT DROP R> BASE ! ;;

CRR
:: >NAME (xt -- na | F)
 CONTEXT
 BEGIN @ DUP
 WHILE 2DUP NAME> XOR
 IF 1-
 ELSE SWAP DROP EXIT
 THEN
 REPEAT SWAP DROP ;;
:: .ID (a --)
 TEXT UNPACK$
 COUNT $01F LIT AND TYPE SPACE ;;

 131

Name Compiler

?UNIQUE Display a warning message to show that the name of a new command

is the same as a command already in the dictionary.
$,n Build a new header in the dictionary using the name string already

packed in the WORD buffer. Fill in the link field with the address in
LAST. The top of the dictionary is now the code field of a new
command, ready to accept commands and tokens.

$COMPILE Process a string at “a”, and compile a new token, a call instruction, in
the dictionary. This dictionary pointer in CP is incremented, and is
ready to compile the next token.

OVERT Link a new command to the dictionary and make it available for a
dictionary search. OVERT changes CONTEXT to point to the name
field of this new command, and extends the dictionary chain to
include a new command.

; Terminate a compound command. Compile a RET instruction to
terminate a token list. Link this command to the dictionary, and
change the text interpreter to interpreting mode.

] Activate compiling mode by writing the address of $COMPILE into
system variable 'EVAL.

: Create a new compound command. Take the next input string to build
a new header. Now, its code field is on top of the command
dictionary, and is ready to accept new tokens.

Tools

dm+ Display 8 words from address “b”. Return new address b+8 for the

next dm+.
DUMP Display “u” words from address “b”, with 8 words on a line. A line

begins with an address, followed by 8 words in hex.

Decompiler Tools

Since name fields are linked into a list in the command dictionary, it is fairly easy to
locate a command by searching its name in the command dictionary. However,
finding the name of a command from its code field address is more difficult, because
the name field has variable length, and we cannot scan the name field backwards very
easily.

>NAME Return a code field address, “xt”, of a command from its name field

address, “na”. If “xt” is not a valid code field address, return 0. It
follows the linked list of the command dictionary, and from every
name field address we can get a corresponding code field address. If
this address is not the same as “xt”, we go to the name field of the
next command. If “xt” is a valid code field address, we surely will
find it. If the entire dictionary is searched and “xt” is not found, it is
not a valid code field address.

.ID Display the name of a command, given its name field address “a”. It
replaces non-printable characters in a name by underscores.

 132

CRR
:: SEE (-- ; <string>)
 ' CR
 BEGIN
 20 LIT FOR
 DUP @ DUP 3F000000 LIT AND
 4000000 LIT XOR
 IF U. SPACE
 ELSE FFFFFF LIT AND >NAME
 ?DUP IF .ID THEN
 THEN 1+
 NEXT KEY 0D LIT = \ can't use ESC on terminal
 UNTIL DROP ;;
:: WORDS (--)
 CR CONTEXT
 BEGIN @ ?DUP
 WHILE DUP SPACE .ID 1-
 REPEAT ;;
CODE .S (dump all 33 stack items)
 PAD tx stxp
 stxp stxp stxp stxp
 stxp stxp stxp stxp
 stxp stxp stxp stxp
 stxp stxp stxp stxp
 stxp stxp stxp stxp
 stxp stxp stxp stxp
 stxp stxp stxp stxp
 stxp stxp stxp stxp
 PAD $21 LIT
 FOR DUP ? 1+ NEXT
 DROP PAD @ CR ;;

CRR .(file download and upload) CRR
:: READ PAD
 BEGIN KEY DUP 1A LIT XOR
 WHILE OVER ! 1+
 REPEAT DROP
 PAD - SPAN ! ;;
:: OK 'TIB @ >R #TIB @ >R >IN @ >R
 PAD 'TIB ! SPAN @ #TIB ! 0 LIT >IN !
 EVAL R> >IN ! R> #TIB ! R> 'TIB ! ;;
:: SEND (b u --)
 CR
 FOR AFT DUP @ <# # # # # # # # # #> TYPE 1+
 DUP 7 LIT AND IF SPACE ELSE CR THEN
 THEN NEXT
 DROP ;;
:: FORGET (--)
 TOKEN NAME? ?DUP
 IF 1- DUP CP !
 @ DUP CONTEXT ! LAST !
 DROP EXIT
 THEN ERROR

 133

SEE Search the next word in the input stream for a command, and decompile

the first 32 program words in its code field. Display an error message if
the next word is not a valid command. It scans the code field and looks
for CALL instructions. If it finds a CALL instruction, use the address in
the address field to find this command in the command dictionary, and
display its name. If a word in the code field is not a CALL instruction,
just display its value.

WORDS Display all names in the command dictionary. The display order of
commands is reversed from compiling order. The last defined command
is displayed first.

.S Display the contents of the data stack on screen in free format. The
bottom of the stack is shown on the right. The topitem is shown on the
left. The eP32 has a 33-level hardware data stack in the CPU, and it
wraps around like a circular buffer. .S displays all 32 stack levels and
the T register.

File Download and Upload

If the eForth system is connected to the serial port of a computer, the computer can
emulate a terminal to communicate with eForth. Most terminal emulation programs
can send large text files to the serial port. The user can now compose and edit large
applications as text files on the computer. The text file can then be downloaded to
eForth for interpreting or compiling.

PAD is a free memory area 80 words above the top of the command dictionary. It
can be used to store temporary data, and is an ideal place to download a text file.

READ Accept characters from terminal and store them in PAD buffer. A Ctrl-Z

character terminates the READ command. After a file is downloaded,
the length of the file is stored in variable SPAN.

OK Interpret text downloaded in PAD buffer. In QUIT, EVAL interprets text
in the Terminal Input Buffer. EVAL uses three system variables to
manage the Terminal Input Buffer: 'TIB points to the beginning of the
text buffer, #TIB contains the length of the text, and >IN points to a
character in the text buffer currently being interpreted. OK saves these
three variables, replaces them by PAD, SPAN, and a 0, and then calls
EVAL to interpret the text in the PAD buffer. After the text is interpreted
successfully, 'TIB, #TIB and >IN are restored and the text interpreter is
restored to its normal state.

SEND Upload contents of a memory area, “n” words starting at address “b”, to
the terminal. Each word is sent as 8 hex digits, followed by a space. A
carriage return-linefeed pair is sent every 8 words.

FORGET Search the next word in the input stream for a command. If it is a valid
command, delete it and all subsequent command records from the
dictionary.

 134

CRR .(Hardware reset) CRR
:: DIAGNOSE (-)
 $65 LIT
\ 'F' prove UM+ 0< \ carry, TRUE, FALSE
 0 LIT 0< -2 LIT 0< \ 0 FFFF
 UM+ DROP \ FFFF (-1)
 3 LIT UM+ UM+ DROP \ 3
 $43 LIT UM+ DROP \ 'F'
\ 'o' logic: XOR AND OR
 $4F LIT $6F LIT XOR \ 20h
 $F0 LIT AND
 $4F LIT OR
\ 'r' stack: DUP OVER SWAP DROP
 8 LIT 6 LIT SWAP
 OVER XOR 3 LIT AND AND
 $70 LIT UM+ DROP \ 'r'
\ 't'-- prove BRANCH ?BRANCH
 0 LIT IF $3F LIT THEN
 -1 LIT IF $74 LIT ELSE $21 LIT THEN
\ 'h' -- @ ! test memeory address
 $68 LIT $40 LIT !
 $40 LIT @
\ 'M' -- prove >R R> R@
 $4D LIT >R R@ R> AND
\ 'l' -- prove 'next' can run
 61 LIT $A LIT FOR 1 LIT UM+ DROP NEXT
\ 'S' -- prove ldp, stp
 $50 LIT $3 LIT
 $30 LIT tx stxp stxp
 $30 LIT tx ldxp ldxp
 xor
\ 'emi' -- prove mul, dupy, popy
 $656D LIT $1000000 LIT UM*
 SWAP rr8 rr8 rr8
\ ' C' -- prove div
 $2043 LIT 0 LIT $100 LIT UM/MOD
\ ;;

CRR
:: COLD (--)
 DIAGNOSE
 CR ."| $LIT eP32q v"
 DECIMAL
 CC LIT <# # # (CHAR .) 2E LIT HOLD # #> TYPE
 CR QUIT

 135

Hardware Reset

When eP32 is powered up, or when it is reset, it executes COLD to start the eForth
system running. The first thing COLD does is call a diagnostic routine, DIAGNOSE,
to run a series of tests, verifying that the eP32 core is working properly. It is
superfluous once the eP32 is fully debugged. However, in implementing the eP32
on a new FPGA or on a custom chip, DIAGNOSE is extremely helpful in hardware
simulation and in hardware verification. In about 1000 cycles, you can observe most
instructions executed, and verify that they execute correctly.

DIAGNOSE tests the following machine and primitive commands in the eP32:
LIT
0<
BZ
UM+
DROP
XOR
AND
OR
DUP
OVER
SWAP
BRA
@
!
>R
R@
R>
NEXT
TX
STXP
LDXP
RR8
UM*
UM/MOD

Cold Boot

COLD initializes the eP32 to start eForth. The eP32 is a real FORTH
microprocessor, and the hardware initializes itself. COLD does not have much to
do. It first executes DIAGNOSE to run a few tests on eP32 machine instructions,
displays a sign-on message, and then jumps to QUIT. COLD is the first compound
command executed after power up or after chip reset. Its address is placed in
memory location 0, which is the hardware reset vector.

 136

CRR .(Structures) CRR
:: BEGIN (-- a) anew HERE ;; IMMEDIATE
:: THEN (A --) BEGIN SWAP +! ;; IMMEDIATE
:: FOR (-- a) 1C79E79E LIT , BEGIN ;; IMMEDIATE
CRR
:: NEXT (a --) 5000000 LIT OR , anew ;; IMMEDIAT E
:: UNTIL (a --) 2000000 LIT OR , anew ;; IMMEDIAT E
:: AGAIN (a --) 0000000 LIT OR , anew ;; IMMEDIAT E
:: IF (-- A) BEGIN 2000000 LIT , ;; IMMEDIATE
CRR
:: AHEAD (-- A) BEGIN 0000000 LIT , ;; IMMEDIATE
:: REPEAT (A a --) AGAIN THEN ;; IMMEDIATE
:: AFT (a -- a A) DROP AHEAD BEGIN SWAP ;; IMMEDI ATE
:: ELSE (A -- A) AHEAD SWAP THEN ;; IMMEDIATE
:: WHEN (a A -- a A a) IF OVER ;; IMMEDIATE
:: WHILE (a -- A a) IF SWAP ;; IMMEDIATE

CRR
:: ABORT" (-- ; <string>)
 forth_' abort" >body forth_@ LIT (CALL) HERE !
 $," ;; IMMEDIATE
:: $" (-- ; <string>)
 forth_' $"| >body forth_@ LIT (CALL) HERE !
 $," ;; IMMEDIATE
:: ." (-- ; <string>)
 forth_' ."| >body forth_@ LIT (CALL) HERE !
 $," ;; IMMEDIATE

CRR
': doVAR popr ret
:: CODE (-- ; <string>) TOKEN $,n OVERT align ;;
:: CREATE (-- ; <string>) CODE
 forth_' doVAR >body forth_@ LIT (CALL) , ;;
:: VARIABLE (-- ; <string>) CREATE 0 LIT , ;;
:: CONSTANT CODE $A040000 LIT , , ;;
:: DOES (--) R> (CALL) LAST @ NAME> ! ;;

 137

Structures

BEGIN Begin a loop structure. Leave address “a” of the current program word

on the stack.
THEN Resolve address field in a transfer instruction at “a”.
FOR Assemble a PUSH instruction and leave the address of the next word

“a” on the stack.
NEXT Assemble a NEXT instruction using target address “a”.
UNTIL Assemble a BZ instruction using target address “a”.
AGAIN Assemble a BRA instruction using target address “a”.
IF Assemble a BZ instruction whose address, “a”, is left on the stack.
AHEAD Assemble a BRA instruction whose address, “a”, is left on the stack.
REPEAT Assemble a BRA instruction using target address “a”. Use the address

of the next program word to resolve the address field of the branch
instruction at “a”..

AFT Assemble a BZ instruction and leave its address as “a”,. Replace the
address “a” left by FOR with the address of the next program word.

ELSE Assemble a BRA instruction, and use the address of the next program
word to resolve the address field of the BZ instruction in “a”.. Replace
“a”with the address of its BRA instruction.

WHILE Assemble a BZ instruction and leave its address, “a”, on the stack.
Address “a” is swapped to the top of the data stack.

String Commands

ABORT" Compile an error message. This error message is displayed when the top

of the stack is non-zero.
." Compile a string literal, which will be displayed at run time.
$" Compile a string literal. When it is executed, only the address of the

string is left on the data stack for the next commands to access this
string.

Defining Commands

Defining commands are molds to create many commands that share the same run time
execution behavior.

CODE Create a new primitive command that is intended to contain

machine instructions.
: Create a new compound command to compile a tokens list. The text

interpreter is switched to compiling mode, which handles integer
literals and control structures more gracefully.

CREATE Create a new data array without allocating memory.
VARIABLE Create a new variable, initialized to 0.
CONSTANT Create an integer constant.
DOES Define the run time execution routine for a new class of commands.

This execution routine follows the DOES command. It is similar
to the DOES> command that we used in the assembler.

 138

CRR
(makehead) .((--) 29 LIT PARSE TYPE ;; IMMEDIATE
(makehead) \ (--) #TIB @ >IN ! ;; IMMEDIATE
(makehead) (29 LIT PARSE 2DROP ;; IMMEDIATE
(makehead) IMMEDIATE $80 LIT LAST +! ;;

CRR
(makehead) EXIT popr pops ret
(makehead) EXECUTE pushr ret
(makehead) ! tx stx ret
(makehead) @ tx ldx ret
(makehead) R> popr tx popr xt pushr ret
(makehead) R@ popr tx popr pushs pushr xt pushr ret
(makehead) >R popr tx pushr xt pushr ret
(makehead) SWAP
 pushr tx popr xt ret
(makehead) OVER
 pushr pushs tx popr
 xt ret
(makehead) 2DROP
 pops pops ret

(makehead) + add ret
(makehead) NOT com ret
(makehead) NEGATE
 com 1 ldi add ret
(makehead) 1-
 -1 ldi add ret
(makehead) 1+
 1 ldi add ret

 139

Makehead Commands

(makeHead) compiles only a header in the target dictionary and such commands are
invisible to the metacompiler. In contrast, the “::” command compiles a header in
the target dictionary and a header in the metacompiler, and the command thus defined
will compile itself to the target dictionary when subsequently invoked. After
(makehead) commands are defined in the target dictionary, they can still be used in
the metacompiler as usual.

.(Display the following string, delimited by).
\ Start a comment. Ignore all characters until end of line.
 (Start a comment. Ignore the following string, delimited by).
IMMEDIATE Set the immediate bit in the name field of the last defined command.

Such a command will be executed, not compiled, in compiling
mode.

Redefine Macro Commands

A set of macro commands were defined in eP32 assembler to produce optimized code
in the eForth system. These commands are also needed in the target system. Here
they are re-defined as primitive commands for the eP32 target system. In the eForth
target, they will be compiled as a subroutine call without optimization. To produce
optimized code for the target, we need an optimizing assembler for the target. It was
so implemented in one of our earlier eP32 systems, and was fairly complicated. We
decide to leave it out for this XP2 FPGA implementation.

Command Function
EXIT Return from subroutine
EXECUTE Jump to address
! Store integer to address
@ Fetch integer from address
R> Pop from return stack
R@ Copy top of return stack
>R Push on return stack
SWAP Exchange top two integers on stack
OVER Duplicate second integer on stack
2DROP Discard two integers off stack
+ Add top two integers on stack
NOT Complement top of stack
NEGATE Negate top of stack
1- Add -1 to top of stack
1+ Add 1 to top of stack

 140

(makehead) BL
 20 ldi ret
(makehead) +!
 tx ldx add stx
 ret
(makehead) -
 com add 1 ldi add
 ret
(makehead) OR
 com pushr com
 popr and com ret
(makehead) ROT
 pushr pushr tx popr
 popr xt ret
(makehead) 2DUP
 pushs pushr pushr
 pushs tx popr xt popr
 ret
(makehead) 2!
 tx pushr stxp
 popr stx ret
(makehead) 2@
 tx ldxp ldx ret
(makehead) COUNT
 tx ldxp pushr xt
 popr ret

(makehead) DUP pushs ret
(makehead) DROP pops ret
(makehead) AND and ret
(makehead) XOR xor ret
(makehead) COM com ret

h forth_@

0 org
forth_' COLD >body forth_@ #,
0 #, 0 #, 0 #,

$24 org
$80 #,
0A #,
lasth forth_@ #,
 #,
lasth forth_@ #,
forth_' $INTERPRET >body forth_@ #,
forth_' QUIT >body forth_@ #,
0 #,
0 #,
lasth forth_@ #,

 141

BL Return $20
+! Add second integer to address on top of stack
- Subtract top of stack from second integer
OR OR top two integers on stack
ROT Rotate third integer to top of stack
2DUP Duplicate top two integers on stack
2! Store second and third integers as a double integer to the address on

top of stack
2@ Fetch double integer from address on top of stack
COUNT Read contents from address on top of stack; increment address
DUP Duplicate top of stack
DROP Discard top of stack
AND AND top two integers on stack
XOR XOR top two integers on stack
COM 1’s Complement of top of stack

Initialize System Variables

When the eP32 powers up, the P register is cleared to 0, so we have to have some
valid machine instruction at address 0 to boot up the eP32. The eForth boot up
routine is the command COLD. Therefore, in memory location 0, we assemble a
JMP COLD instruction.

Memory locations 1-$1F contain an interrupt vector table for interrupt services.
However, no interrupt is expected in this eP32 system, and this area is cleared to 0.
System variables are in the area between $20 and $2F. They contain vital
information for the eP32 eForth system to work properly. Only the following system
variables have to be initialized:

System
Variable

Address Initial
Value

Function

'TIB $24 $80 Pointer to Terminal Input Buffer.
BASE $25 $0A Number base for numeric conversions.
CONTEXT $26 $7C1 Pointer to name field of last command in

dictionary.
CP $27 $7C3 Pointer to top of dictionary, first free memory

location to add new commands. It is saved by "h
forth_@" on top of the source code page.

LAST $28 $7C1 Pointer to name field of last command.
'EVAL $29 $4A0 Execution vector of text interpreter, initialized to

point to $INTERPRET. It may be changed to
point to $COMPILE in compiling mode.

'ABORT $2A $4D2 Pointer to QUIT command to handle error
conditions.

tmp $2B $0 Scratch pad.
cpi $2C $0 Instruction slot counter for assembler.
cpw $2D $7C3 Pointer to top of dictionary, first free memory

location to assemble machine instructions.

 142

6.6 eP32 Simulator

An accurate and fast logic simulator is extremely valuable in designing and testing a
new CPU. It is also very useful in separating hardware and software development,
so that hardware and software can be developed simultaneously. This eP32
simulator served me well in the process of developing the eP32 CPU and its
associated eForth system simultaneously.

Figure 37. eP32 Simulator

This eP32 simulator faithfully replicates the logic behavior of the eP32 CPU on a
cycle-by- cycle basis. The eP32 CPU is composed of a set of registers and two
stacks. The registers and stacks latch input signals on the rising edge of the master
clock. It is very simple to simulate this behavior logically in software.

The adder in the eP32 produces a 32-bit sum and a carry bit. To allow maximal

 143

programming flexibility, the carry bit must be preserved in all registers and on stacks.
Each register and all stack elements are represented by two 32-bit words. The first
word contains the current value of the register, and the second word contains the carry
bit associated with this value.

A large array, REGISTER, is opened to host these 64-bit double integers. It is
divided in two banks: a FROM bank and a TO bank. The FROM bank contains
current values of all registers and all stack elements. A machine instruction takes
data in the FROM bank, modifies them, and writes updated data into the TO bank.
The rising edge of the master clock copies the TO to the FROM bank, and thus
simulates a machine instruction. Multiplexers in the eP32 are replaced by FORTH
words that perform logic functions and update values from the FROM bank to the TO
bank.

The Slot Machine, which fetches a program word from memory, and executes 5
machine instructions in this word, is simulated by a 32-bit counter. The least
significant 3 bits in this counter steps through slots 0 to 5 in 6 clock cycles. Then
this 3-bit field is cleared to zero and the upper 29-bit field is incremented. Therefore,
the upper 29-bit field in this counter gives an accurate program word count.

The most interesting feature of this eP32 simulator is that it vectors KEY and EMIT
commands to equivalent Windows functions “get” and “put”, so that the simulator can
actually run eP32 eForth interactively on a Windows computer, and produces identical
outputs as actual an eP32 microprocessor would do on a terminal. The simulator
was proven to run identically to an actual eP32 microprocessor. This simulator can
be used for software development, in place of a real eP32 microprocessor.

The source code of this simulator is in SIM32q.F. It is loaded at the end of
META32q.F, which builds an eP32 eForth system in memory array “ram”. The
simulator reads program words from this array and executes instructions contained in
these program words.

The KEY and EMIT commands in the target eP32 system are patched so that eForth
accepts characters from a PC keyboard and sends characters to the weFORTH console
window on the PC screen. We add two machine instructions in the simulator:
Instruction “get” (code $3E) receives a character from the PC and instruction “put”
(code $3F) sends a character to the PC. Program word $3E11E79E contains these
machine instructions: get/ret/nop/nop/nop, and is patched into the code field of KEY.
Program word $3F11E79E contains these machine instructions: put/ret/nop/nop/nop,
and is patched into code field of EMIT.

Once the KEY and EMIT commands are patched to do equivalent Windows functions,
this simulator can actually run the eP32 eForth interactively, and it produces identical
output as actual eP32 microprocessor would do on a terminal.

“forth_forget h” truncates the eForth dictionary back to where “h” was defined. It
thus deletes words defined in the metacompiler, assembler, kernel, and target eP32.
eForth is cleaned to a pristine state to host a new application, which is the eP32
simulator.

 144

To manipulate double integers representing a value in registers and stacks, we need a
set of ALU commands operating on double integers:

Command Function
D+ Add top two double integers.
D- Subtract top double integer from second double integer.
DNEGATE Negate top double integer. 2’s complement.
D2/ Shift double integer to right by 1 bit.
D2* Shift double integer to the left by 1 bit.
LIMIT Limit stacks depths are 256 levels.
RANGE Limit program size to 32kB, the size of the ‘RAM’ array
CLOCK A variable that has a 29-bit program word count field and a 3-bit

SLOT field. The SLOT field sequences program word fetch and
execution of up to 5 instructions in the program word.

BREAK A variable holding breakpoint address.
(REGISTER) A variable pointing either to the FROM bank or to the TO bank.
FROM Switch register array to the FROM bank.
TO Switch register array to the TO bank.
REGISTER Base address of registers and stack arrays.

The eP32 CPU is paced by a single master clock. Registers, stacks, and memory
contents are latched on the rising edge of the master clock. This latching action must
be simulated accurately. The eP32 Simulator uses two register arrays, a FROM bank
and a TO bank. Logic circuitry takes data from the FROM array and operates on
them according to the current machine instruction, and stores results in the TO array.
The rising edge of the master clock is simulated by copying the contents of the TO
array to the FROM array, and then the system is ready for actions in the next clock
cycle.

Registers and stacks are defined as pointers pointing into the REGISTER array:

Register Function
P Program counter
T Accumulator, top item on data stack
S Second item on data stack
R Top of return stack
X Address register
I Instruction latch
I1 Machine instruction in slot1
I2 Machine instruction in slot2
I3 Machine instruction in slot3
I4 Machine instruction in slot4
I5 Machine instruction in slot5
RP Return stack pointer
SP Data stack pointer
RSTACK0 Origin of return stack
SSTACK0 Origin of data stack
RSTACK Address of top of return stack
SSTACK Address of top of data stack

 145

HEX
3E11E79E forth_' KEY >body forth_@ ram!
3F11E79E forth_' EMIT >body forth_@ ram!
forth_forget h
DECIMAL
: D+ ROT + >R UM+ R> + ;
: DNEGATE NEGATE >R NEGATE DUP IF -1 ELSE 0 THEN R> + ;
: D- DNEGATE D+ ;
: D2/ DUP 2/ >R 1 AND IF 2/ $80000000 OR ELSE 2/ $7 FFFFFFF AND THEN
R> ;
: D2* 2* >R DUP $80000000 AND IF 2* R> 1 OR ELSE 2* R> THEN ;

$1F CONSTANT LIMIT (stack depth)
$1FFF CONSTANT RANGE (program memory size in words)
VARIABLE CLOCK (slot is in the last 3 bits)
VARIABLE (REGISTER) (where registers and stacks ar e)
VARIABLE BREAK

: REGISTER (REGISTER) @ ;
: FROM PAD (REGISTER) ! ;
: TO PAD $600 + (REGISTER) ! ;

: P REGISTER ;
: I REGISTER 4 + ;
: I1 REGISTER 8 + ;
: I2 REGISTER 9 + ;
: I3 REGISTER 10 + ;
: I4 REGISTER 11 + ;
: I5 REGISTER 12 + ;
: RP REGISTER 13 + ;
: SP REGISTER 14 + ;
: T REGISTER 16 + ;
: R REGISTER 24 + ;
: X REGISTER 32 + ;
: S REGISTER 56 + ;
: RSTACK RP C@ LIMIT AND 8 * REGISTER + $100 + ;
: SSTACK SP C@ LIMIT AND 8 * REGISTER + $200 + ;

: CYCLE TO P FROM P $600 CMOVE 1 CLOCK +! ;

: JUMP CLOCK @ 7 OR CLOCK ! ;

: RPUSH (d -- , push d on return stack)
 FROM R 2@ RP C@ 1 + LIMIT AND TO RP C! RSTA CK 2! R 2! ;

: RPOPP (-- d , pop d from return stack)
 FROM R 2@ RSTACK 2@ RP C@ 1 - LIMIT AND TO RP C! R 2! ;

: SPUSH (d -- , push d on data stack)
 FROM S 2@ SP C@ 1 + LIMIT AND TO SP C! SSTA CK 2!
 FROM T 2@ TO S 2!
 TO T 2! ;

: SPOPP (-- d , pop d from data stack)
 FROM T 2@
 FROM S 2@ TO T 2!
 FROM SSTACK 2@ SP C@ 1 - LIMIT AND TO SP C! S 2! ;

 146

The Slot Machine paces the simulator through eP32 instructions stored in ‘RAM’
memory, just like the real eP32 CPU would do. Instead of using a single phase clock
as master clock, we use a CLOCK variable as source of a multiple phase clock. The
lowest three bits in CLOCK, Slot Counter, runs the slots in the slot machine. Its
value indicates which slot is currently running. If it is 0, Slot0 is executed. If it is 1,
Slot1 is executed. Etc. On the rising edge of the master clock, this slot counter is
incremented. When slot count is 5, Slot5 is executed and the slot counter is reset to
0, so that next time Slot0 is executed.

JUMP also clears the Slot Counter to 0. JUMP is used by all transfer instructions to
force the slot machine to enter slot0 on the rising edge of the next clock.

Command Function
CYCLE Simulate rising edge of master clock by incrementing CLOCK.
JUMP Fetch next program word by forcing a 7 into Slot Counter in CLOCK. On

the rising edge of the master clock, CLOCK is incremented and clears
Slot Counter to 0. The upper 29-bit field in CLOCK is incremented,
indicating that a new word is fetched from memory. Thus the upper 29
bits in CLOCK keeps an accurate count of eP32 words that have been
executed.

RPUSH Push double integer d on return stack.
RPOPP Pop return stack and leave double integer on system stack.
SPUSH Push double integer d on data stack.
SPOPP Pop data stack and leave double integer on system stack.

“continue” simulates functions performed in slot0 in the Slot Machine, which fetches
the next program word from memory and stores it in instruction register I. Machine
instructions in slot1 to slot5 are extracted to operate a decoder, which generates
control signals for all components in the eP32.

“continue” also increments the P register, and copies machine instructions in slot1 to
slot5 to instruction registers I1-I5.

To execute a machine instruction, the simulator takes current values in registers and
stacks in the FROM bank, computes desired new values, and deposits them back in
registers and stacks in the TO bank. On the rising edge of the master clock, which is
simulated by command CYCLE, the contents of the TO bank are copied to the FROM
bank. Machine instructions are defined as commands in this simulator, and they read
values in the FROM bank, make necessary changes, and store new values in the TO
bank.

As registers and stacks are represented in double integers, math operations are
performed using double integer math commands defined at the beginning of the
simulator. They are D+, D-, DNEGATE, D2*, and D2/.

 147

: continue
 FROM P @ DUP 1+ TO RANGE AND P !
 ram@ DUP I !
 64 /MOD SWAP I5 C!
 64 /MOD SWAP I4 C!
 64 /MOD SWAP I3 C!
 64 /MOD SWAP I2 C!
 63 AND I1 C!
 ;

: nop JUMP ;
: ei ;
: di ;
: bra I @ TO RANGE AND P ! JUMP ;
: ret RPOPP DROP TO RANGE AND P !
 JUMP ;
: bn SPOPP DROP 0< (branch on sign)
 IF bra ELSE JUMP THEN ;
: bc SPOPP SWAP DROP (branch on carry)
 IF bra ELSE JUMP THEN ;
: bz SPOPP DROP (branch on zero)
 IF JUMP ELSE bra THEN ;
: call FROM P @ 0 RPUSH bra ;
: next FROM R 2@ DROP
 IF ELSE RPOPP 2DROP JUMP EXIT THEN (exit l oop)
 FROM R 2@ DROP 1- 0 TO R 2! (decrement R)
 FROM bra ;
: times FROM R 2@ DROP
 IF ELSE JUMP EXIT THEN (exit loop)
 R 2@ 1 0 D- TO R 2! (decrement R)
 FROM -1 P +! TO -1 P +! ;
: pushr SPOPP RPUSH ;
: dupr FROM R 2@ SPUSH ;
: popr RPOPP SPUSH ;
: andd SPOPP DROP TO T 2@ DROP AND 0 T 2! ;
: xorr SPOPP DROP TO T 2@ DROP XOR 0 T 2! ;
: com FROM T 2@ DROP -1 XOR 0 TO T 2! ;
: add SPOPP DROP 0 TO T 2@ DROP 0 D+ TO 1 AND T 2 ! ;
: mul FROM X 2@ DROP 1 AND
 IF S 2@ T 2@ D+
 ELSE T 2@ THEN 1 AND
 2DUP D2/ TO T 2!
 DROP 1 AND >R
 FROM X 2@ DROP 2/ $7FFFFFFF AND R> IF $8000 0000 OR THEN TO 0
X 2! ;
: div FROM S 2@ DROP 0 T 2@ DROP 0 D+
 1 AND DUP >R DUP
 IF ELSE 2DROP T 2@ THEN
 D2* (diff) 1 AND X 2@ DROP $80000000 AND I F 1 0 D+ THEN TO T
2!
 FROM X 2@ DROP 2* R> IF 1+ THEN TO 0 X 2! ;
: shr FROM T 2@ DROP 2/ 1 TO T 2! ;
: shl FROM T 2@ D2* 1 AND TO T 2! ;
: rr8 FROM T 2@ DROP DUP 7 FOR D2/ NEXT DROP 0 TO T 2! ;
: ldi FROM P @ 1+ TO RANGE AND P !
 FROM P @ RANGE AND ram@ 0 SPUSH ;

 148

nop No operation.
ei Enable interrupt.
di Disable interrupt.
bra Jump to address contained in current instruction.
ret Return from a subroutine to main program. Pop return address from

return stack and store it in P.
bn If T<0 is set, jump to address contained in current instruction; else

continue.
bc If Carry is set, jump to address contained in current instruction; else

continue.
bz If T=0, jump to address contained in current instruction; else continue.
call Push address in P on R stack, and jump to address contained in current

instruction; else continue.
next If R is not 0, jump to address contained in current instruction, and

decrement R by 1; else pop R stack and continue.
times Micro loop. Similar to “next”, except repeating instructions in current

program word.
pushr Push T onto R stack. Pop S stack to T.
dupr Push T onto S stack. Dup R to T.
popr Push T onto S stack. Pop R stack to T.
andd Pop S stack and AND it to T.
xorr Pop S stack and XOR it to T.
com Complement T (1’s complement).
addd Pop S stack and add it to T.
mul Multiplication step. If X(0)=1, add S to T, otherwise T is not changed.

Shift T:X pair right by 1 bit.
div Division step. If T+S produces a carry, add S to T, otherwise T is not

changed. Shift T:X pair left by 1 bit. Shift carry into X(0).
shr Shift T right by 1 bit.
shl Shift T left by 1 bit.
rr8 Rotate T right by 8 bits.
ldi Push T on S stack, read memory word pointed by P into T. Increment P

by 1.
pushs Push T on S stack.
xt Push T on S stack. Copy X to T.
pops Pop S stack to T.
overr Push T on S stack. Copy original contents of S to T.
tx Copy T to X. Pop S stack to T.
ldx Push T on S stack, read memory word pointed by X into T.
ldxp Push T on S stack, read memory word pointed by X into T. Increment

X by 1.
ldrp Push T on S stack, read memory word pointed by R into T. Increment

R by 1.
stx Store T into memory pointed by X. Pop S stack to T.
stxp Store T into memory pointed by X. Increment X by 1. Pop S stack to T.
strp Store T into memory pointed by R. Increment R by 1. Pop S stack to T.

 149

We want the simulator to run the eP32 eForth system. The real eP32 microprocessor
talks to a host computer through a UART serial port. Normally we use
HyperTerminal in Windows to interact with the eP32. To simulate interaction
between the eP32 and HyperTerminal, we have to hijack the output of EMIT and send
it to the weFORTH console window, and intercept keyboard strokes from the
computer keyboard and feed them to KEY in eForth. These two functions are
implemented in the simulator by creating two special machine instructions, “get” and
“put”, which use machine codes $3E and $3F, respectively.

“get” and “put” are patched into the code fields of KEY and EMIT in the memory
array “ram” so that when the simulator executes EMIT, a character is displayed on the
weFORTH console, and when KEY is executed, an ASCII character is accepted from
the keyboard. With “get” and “put”, the simulator runs the eP32 eForth system
identically like the eP32-HyperTerminal system.

get Force simulator to get a character from keyboard under Windows.
put Force simulator to send a character to weFORTH console window.

“execute” is a giant case statement that gets “code” from the top of the stack and
selects the proper commands to simulate a machine instruction in this emulator.
Since weForth did not bother to define case structure and associated control
commands, we just use lots of IF-THEN structures to emulate a case structure.
“code” is duplicated on the stack and compared with consecutive machine code. If a
match is found, the corresponding command is executed to simulate that machine
instruction. After that, EXIT is executed, and “execute” is terminated. Further
comparisons are not necessary.

If “code” does not match a valid machine code, we have a very serious problem.
Either the eForth program has a bug, or the eP32 simulator has a bug. This simulator
is aborted. The offending “code” is displayed with an error message. The eForth
system returns to its default text interpreter, and you can type in eForth commands to
find and correct this bug.

 150

: pushs FROM T 2@ SPUSH ;
: xt FROM X 2@ SPUSH ;
: pops SPOPP 2DROP ;
: overr FROM S 2@ SPUSH ;
: tx SPOPP TO X 2! ;
: ldx FROM X 2@ DROP RANGE AND ram@ 0 SPUSH ;
: ldxp ldx
 FROM X 2@ 1 0 D+ 1 AND TO X 2! ;
: ldrp FROM R 2@ DROP RANGE AND ram@ 0 SPUSH
 FROM R 2@ 1 0 D+ 1 AND TO R 2! ;
: stx SPOPP DROP FROM X 2@ DROP RANGE AND ram! ;
: stxp stx
 FROM X 2@ 1 0 D+ 1 AND TO X 2! ;
: strp SPOPP DROP FROM R 2@ DROP RANGE AND ram!
 FROM R 2@ 1 0 D+ 1 AND TO R 2! ;
: get KEY DUP $1B = ABORT" done"
 0 SPUSH ret ;
: put SPOPP DROP $7F AND EMIT ret ;

HEX
: execute (code --)
 DUP 00 = IF DROP bra EXIT THEN
 DUP 01 = IF DROP ret EXIT THEN
 DUP 02 = IF DROP bz EXIT THEN
 DUP 03 = IF DROP bc EXIT THEN
 DUP 04 = IF DROP call EXIT THEN
 DUP 05 = IF DROP next EXIT THEN
 DUP 06 = IF DROP times EXIT THEN
\ DUP 07 = IF DROP di EXIT THEN
 DUP 08 = IF DROP ldrp EXIT THEN
 DUP 09 = IF DROP ldxp EXIT THEN

 DUP 0A = IF DROP ldi EXIT THEN
 DUP 0B = IF DROP ldx EXIT THEN
 DUP 0C = IF DROP strp EXIT THEN
 DUP 0D = IF DROP stxp EXIT THEN
 DUP 0E = IF DROP rr8 EXIT THEN
 DUP 0F = IF DROP stx EXIT THEN
 DUP 10 = IF DROP com EXIT THEN
 DUP 11 = IF DROP shl EXIT THEN
 DUP 12 = IF DROP shr EXIT THEN
 DUP 13 = IF DROP mul EXIT THEN
 DUP 14 = IF DROP xorr EXIT THEN
 DUP 15 = IF DROP andd EXIT THEN
 DUP 16 = IF DROP div EXIT THEN
 DUP 17 = IF DROP add EXIT THEN
 DUP 18 = IF DROP popr EXIT THEN
 DUP 19 = IF DROP xt EXIT THEN
 DUP 1A = IF DROP pushs EXIT THEN
 DUP 1B = IF DROP overr EXIT THEN
 DUP 1C = IF DROP pushr EXIT THEN
 DUP 1D = IF DROP tx EXIT THEN
 DUP 1E = IF DROP nop EXIT THEN
 DUP 1F = IF DROP pops EXIT THEN
 DUP 3E = IF DROP get EXIT THEN
 DUP 3F = IF DROP put EXIT THEN
 . ABORT" :Illegel instruction" ;

 151

Here are the commands that run Slot Machine, and show the contents of pertinent
registers and stacks. Originally, I thought of implementing a set of break points to
allow user the freedom to break execution at a number of different memory locations.
Eventually, I realized that only one break point is necessary and a simple ‘GO’
command is sufficient. This is the G command show below.

Command Function
.stack Display the contents of a stack.
.sstack Display the contents of data stack.
.rstack Display the contents of return stack.
.registers Display the contents of all the relevant registers.
S Show all the registers and stacks at this cycle.
sync Execute the current machine instruction using CLOCK to determine

which slot is being executed. CLOCK points to one of the routines in
SYNC-TABLE, which contains the following entries:
CONTINUE, fetch next program word
SYNC1, execute instruction in I1
SYNC2, execute instruction in I2
SYNC2, execute instruction in I2
SYNC3, execute instruction in I3
SYNC4, execute instruction in I4
SYNC5, execute instruction in I5

C Run one clock cycle and display all registers and stacks.
reset Clear the REGISTER array, simulating hardware reset.

“C” is the single stepper in simulator. It runs the Slot Machine for one cycle, and
displays all registers and stacks. This is the most useful command to debug the eP32
in the early development stage. You can see all data in all registers and stacks. In
the eP32 eForth system, the first command executed is COLD, which executes a
diagnostic word, DIAGNOSE. DIAGNOSE runs simple tests on most machine
instructions. By single stepping through DIAGNOSE, you can validate most
machine instructions. If all tests in DIAGNOSE run successfully, it is very likely the
eP32 will run correctly in the FPGA.

“reset” clears the REGISTER array, and initializes the simulator to run at memory
location 0.

This simulator has a very simple text-based user interface. The most used
commands are:

Command Stack

Effects
Function

G -- Run and stop at address given on FORTH stack. This is a
very efficient way to set breakpoints and then run till a
breakpoint is triggered. It allows the user to execute a
large portion of the program and stop only at a specified
location.

PUSH n -- Push a new integer into the T register and data stack.

 152

POP -- Discard contents in T and pop data stack back into T.
D -- Display memory starting at address in P.
M a -- Dump 128 words in memory using “show” command.
RUN -- Continue stepping with any key, terminated by ESC.
P a -- Start simulating at the address on stack.

This simulator is most effective in debugging short sequences of program words to
verify that the sequences are executed correctly. After eP32 machine instructions are
verified, use the G command to execute a long stretch of program and break only at a
specified location. This allows large segments of programs to be tested. If the
simulator runs forever and cannot reach the break point you specified, you can stop
the G command by hitting a key on the keyboard to terminate it.

When weForth runs the metacompiler to compile an eForth system for the eP32, it
displays names and code field addresses of all commands compiled into the target
image. The display is a symbol table. You can look up a command and find its
code field address. The code field addresses are the best place to set your break
point. To debug a command, find its code field address and enter it with the G
command. The simulator will break at the beginning of this command, and you can
use the C command to single step through it.

Typing lots of “C” commands is tedious. The RUN command lessens your typing
chore. After executing RUN, the simulator displays registers and stacks and pauses.
Pressing any key will single step Slot Machine for one cycle. You can run many
steps easily this way. When you want to stop RUN, press the ESC key.

To examine memory, type an address followed by the “M” command. It will display
128 words of memory starting from that address. The “D” command displays 8
program words starting at this address.

If you want to start debugging at a particular address, type the address followed by the
“P” command. This address is stored in the program counter register, P, and “C” or
“RUN” commands will single step words starting at this memory address.

If you want to change the data stack to run simulation with the data you want on the
stack, use “PUSH” and “POP” commands. Type a number followed by “PUSH”,
and this number is pushed on the data stack in the simulator. You can enter as many
numbers on stack as you like in this way. If you want to pop a number off the data
stack, type “POP”.

The above commands allow you to set up the eP32 in the simulator exactly the way
you want before running simulation.

The HELP command displays a help screen to remind you of simulation commands
and arguments they need on the data stack.

 153

: .stack (add #) FOR AFT DUP 2@ DROP U. 8 - THEN NEXT DROP CR ;
: .sstack ." S:" T 2@ IF ." C" THEN U.
 S 2@ DROP U. SSTACK SP C@ .stack ;
: .rstack ." R:" R 2@ DROP U. RSTACK RP C@ .stack ;
: .xstack ." X:" X 2@ DROP U. ;
: .registers ." P=" P @ . ." I=" I @ U.
 ." I1=" I1 C@ . ." I2=" I2 C@ .
 ." I3=" I3 C@ . ." I4=" I4 C@ .
 ." I5=" I5 C@ . CR ;
: S CR ." CLOCK=" CLOCK @ . .registers
 .sstack .rstack .xstack ;

: sync CLOCK @ 7 AND
 DUP 0 = IF continue DROP EXIT THEN
 DUP 1 = IF I1 C@ execute DROP EXIT THEN
 DUP 2 = IF I2 C@ execute DROP EXIT THEN
 DUP 3 = IF I3 C@ execute DROP EXIT THEN
 DUP 4 = IF I4 C@ execute DROP EXIT THEN
 DUP 5 = IF I5 C@ execute THEN
 DROP JUMP ;
: C sync CYCLE S ;
: reset FROM P $C00 0 FILL 0 CLOCK ! ;
reset

: G (addr --)
 CR ." Press any key to stop." CR
 BREAK !
 BEGIN sync P @ BREAK @ =
 IF CYCLE C EXIT
 ELSE CYCLE
 THEN
 ?KEY
 UNTIL ;
: PUSH (n) pushs TO 0 T 2! ;
: POP pops ;

: D P @ 1- four four ;
: M show ;
: RUN CR ." Press ESC to stop." CR
 BEGIN C KEY 1B = UNTIL ;
: P DUP FROM RANGE AND P ! TO RANGE AND P ! ;

: HELP CR ." eP32 Simulator, copyright eForth Grou p, 2000"
 CR ." C: execute next cycle"
 CR ." S: show all registers"
 CR ." D: display next 8 words"
 CR ." addr M: display 128 words from addr"
 CR ." addr P: start execution at addr"
 CR ." addr G: run and stop at addr"
 CR ." RUN: execute, one key per cycle"
 CR ;

 154

Conclusion

In early 1990's, when I worked with Chuck Moore on the MuP21 chip, he was
daydreaming one afternoon, and said something like this: "I wish that I had a machine
like a microwave oven on my kitchen table. I would put in a piece of silicon and
turn on the power switch. After half a hour, I would open the door, and there is my
chip."

With LatticeXP2-5E FPGA chip on Brevia Kit, I am practising Chuck's dream now,
on my desk.

You can practise Chuck's dream also. You can design and produce your own
microprocessor. You can write your own programming language and operating
system. All you have to do is to sit back, think hard, and find a good application that
you can sell a million chips.

In the FORTH programming language and in the designs of FORTH microprocessors,
Chuck Moore reduced computer software and computer hardware to their simplest
forms, which can be understood, reproduced, and improved by ordinary people like us.
You do not have to be Intel or Microsoft to make computers and to solve application
problems.

“Yes, we can! Yes, we can! Yes, we can!”

 155

Appendix A: eP32 Instruction Set

Here I will present formal definitions of all eP32 instructions. They begin with the
assembly mnemonics and a name, followed by their code, usage, stack effects, and
effects on the carry bit. These attributes are presented in a table. Then there is a
detailed description of the instruction’s function followed by some coding examples.
Usage rows show how an instruction appears in a 32-bit program word, using
following notations:

Notation Representation
00 Highest two bits, not used
iiiiii Current instruction code in binary
cccccc 6 bit instruction code
nnnnnn 6 bit data
aaaaaa 6 bit address
xxxxxx 6 don’t care bits

The stack effect row shows how this instruction affects the data stack, return stack,
and sometimes the X register. Stack effects are shown in the following style:
 Items before execution – items after execution
Items are identified using the following notation:

Notation Representation
n a general 32-bit integer
a a 32-bit address
f a logic flag, true=-1, false=0

If an instruction changes the return stack and the X register, these effects are added to
the data stack effects separated by colons:
 n1 n2 – n3 n4 ; R: -- n ; X: -- n

The carry row shows how the carry bit is changed by the instruction.

Coding examples are often taken from the kernel of the eForth system in the files
KERN32q.F and EF32q.F. Code fragments are generally shown in machine code
format. Complete definitions of code commands are shown in eForth assembly
format and FORTH compound commands are shown in FORTH format. You are
encouraged to read these files and examine these examples in their original context.

 156

ADD Addition

Code: 23
Usage Short Instruction
Stack Effects (n1 n2 -- n1+n2)
Carry Change according to n1+n2

Function:

Pop S from the data stack and add it to the T register.

Coding Example:

The primitive addition word in eForth is thus defined:
CODE UM+ (n n - n carry)
 add pushs
 ifnc pushs pushs xor ret
 then
 1 ldi ret
: NEGATE (n -- -n) com 1 ldi add ;
: 1- (a -- a) -1 ldi add ;
: 1+ (a -- a) 1 ldi add ;
: +! (n a --) tx ldx add stx ;
: - (w w -- w) com add 1 ldi add ;

AND Bitwise AND

Code: 21
Usage Short Instruction
Stack Effects (n1 n2 -- n3)
Carry AND of bits n1(32) and n2(32)

Function:

Pop S from the data stack and bitwise AND it to the T register. All 33 bits in T are
affected.

Coding Example:

To generate a 0 in the T register:
 DUP DUP COM AND
To convert a numeric digit to its corresponding ASCII code:
:: DIGIT (u -- c)
 9 LIT OVER < 7 LIT AND +
 (CHAR 0) 30 LIT +
;;

 157

BC Branch on Carry

Code: 3
Usage 00 000011 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects (n --)
Carry Restored from data stack

Function:

Conditionally branch to the 24-bit address in the bit field 23-0 in the current 16M
word page of memory, if the Carry flag (Bit 32 of T) is set. It must be in slot1 of a
program word. The current value in the T register is destroyed and the data stack is
popped back to T. This instruction is different from BRA, which does not change
the data stack or T.

Coding Example:

The negative flag T(31) is shifted into carry T(32). BC compiled by IFNC tests this.

CODE ABS (n -- +n)
 pushs shl
 ifnc ret then
 negate ret

 158

BRA Branch Always

Code: 0
Usage 00 000000 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects None
Carry No change

Function:
Branch to the 24-bit address in bit field 23-0 in the current 16M word page of memory.
It must be in slot1 of a program word. BRA is compiled by ELSE, REPEAT and
AGAIN to construct branch and loop structures.

Restriction:

This instruction allows the program to be redirected to any location within a 16M
word page of memory. It does not cross page boundaries. To jump to locations
outside of a memory page, one has to push a target address onto the return stack and
execute the RET instruction to cause a long jump. This restriction also applies to
CALL, BZ, BC, and NEXT. See also RET.

Coding Example:

To delay 50 or 100 micro seconds:
CODE 50us
2 ldi skip
CODE 100us
1 ldi
then
sta -138 ldi
begin lda add
-until
drop
ret
SKIP compiles an unconditional branch, BRA, to THEN, to let the routine ‘50us’
share a delay loop with the routine ‘100us’.

 159

BZ Branch on Zero

Code: 2
Usage 00 000010 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects (n --)
Carry Restored from data stack

Function:

Conditionally branch to the 24-bit address in the bit field 23-0 in the current 16M
word page of memory, if the T register contains a 0. It must be in slot1 of a program
word.

The T register is destroyed and the data stack is popped back to T. This instruction is
different from BRA, which does not change the data stack or T. BZ is compiled by
IF, WHILE and UNTIL to construct branch and loop structures.

Coding Example:

CODE ?DUP (w -- w w | 0)
 pushs
 if pushs ret then
 ret

 160

CALL Call Subroutine

Code: 4
Usage 00 000100 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects (-- ; R: -- a)
Carry No change

Function:

Call a subroutine whose address is in bit field 23-0 in the current 16M word page of
memory. It must be in slot1 of a program word.

The address of the next program word is pushed onto the return stack. When a
return instruction in a subroutine is encountered, this address is popped off of the
return stack back to the program counter and the next program word is executed to
resume the execution sequence interrupted by the subroutine call.

Restriction:

This instruction allows the program to call any subroutine within the current 16M
word page of memory. It does not cross page boundaries.

Coding Example:

All compound FORTH commands are compiled as subroutine calls. This is the most
efficient way to build program lists in FORTH.
:: HERE (-- a) CP @ ;;
:: PAD (-- a) CP @ 100 LIT + ;;
:: TIB (-- a) 'TIB @ ;;

 161

COM Bitwise Complement

Code: 16
Usage Short Instruction
Stack Effects (n – 1-n)
Carry Reset to 0Complement of T(32)

Function:

Complement all 33 bits in the T register. It is a one’s complement operation.

Coding Example:

To generate a 0 in the T register:
 DUP DUP COM AND
To generate a -1 in the T register:
 DUP DUP COM XOR
The first step is to make two copies of T. The topmost copy is complemented and
then ANDed or XORed into second copy of T. All bits are cleared or set, and the
result is a 0 or a -1 in T.

: NOT (w -- w) com ;
: NEGATE (n -- -n) com 1 ldi add ;

 162

 DIV Divide Step

Code: 22
Usage Short Instruction
Stack Effects (n1 n2 -- n1 n3)
Carry Bit T(31) or Bit 31 from adder

Function:

Conditionally add the S register onto the data stack to the T register if the carry bit
from addition is 1. If carry is 0, the T register is not modified. The T-X register
pair is then shifted to the left by one bit. Carry is shifted into X(0).

This DIV instruction is useful as a divide step to implement a fast software division
routine. Repeating this instruction 33 times will divide the T-X pair by S. The
quotient is in X and the remainder is in T.

Coding Example:

Divide a 64-bit positive integer by a positive 31-bit divisor. A negated divisor is in S.
The 64-bit dividend is in the T-X register pair.

CODE /MOD (n n -- r q)
 com 1 ldi add pushr
 tx popr 0 ldi
 then
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div div div div
 div 1 ldi xor shr
 pushr pops popr xt
 ret

 163

DROP Discard T Register

Code: 31
Usage Short Instruction
Stack Effects (n --)
Carry Restore from data stack

Function:

Pop S from the data stack and store it in the T register. The original contents in the T
register are lost. In assembler, DROP has an alias, ‘pops’.

Coding Example:

: DROP (w w --) pops ;
: 2DROP (w w --) pops pops ;

DUP Duplicate T Register

Code: 26
Usage Short Instruction
Stack Effects (n -- n n)
Carry No change

Function:

Duplicate the T register and push it onto the data stack. In assembler, DUP has an
alias, ‘pushs’.

Coding Example:

Create 0 in T DUP DUP XOR AND
Create -1 in T DUP DUP XOR COM
Decrement T DUP DUP XOR COM ADD
CODE 0< (n - f)
 shl ifnc pushs pushs xor ret
 then
 -1 ldi ret

 164

EI Enable Interrupts

Code: 6
Usage Short Instruction
Stack Effects None
Carry No change

Function:

Enable external interrupts through the INTERRUPT(0-4) pins. When the eP32 is
powered up, external interrupts are disabled. After EI is executed, the CPU will
respond to external interrupts. Interrupt pins are sampled in slot0. If any of the 5
interrupt pins is pulled high, the CPU will force a subroutine call to an address
between 1 and 31 according to the bit pattern sampled in INTERRUPT(0-4). Further
interrupts are disabled, until another EI is executed.

Before executing EI, the system must write valid addresses of interrupt service
routines into the interrupt vectors from locations 1 to 31, so that the system can
respond correctly to simultaneous real time interrupts from 5 external devices.

LDI Load Immediate

Code: 10
Usage Short Instruction followed by a 32-bit literal value
Stack Effects (-- n)
Carry Reset to 0

Function:

Fetch the contents of the next program word and push that number onto the data stack.
The program counter, PC, is incremented, passing the next program word. This
instruction allows a program to enter numbers (literals) onto the data stack at run time.
It also resets the carry flag (Bit 32) in the T register.

Coding Example:

Push 1 2 3 4 on data stack:
 LDI LDI LDI LDI
 1
 2
 3
 4
CODE = (w w -- t)
 xor
 if pushs pushs xor ret then
 -1 ldi ret

 165

LDX Load from X Register

Code: 11
Usage Short Instruction
Stack Effects (-- n)
Carry Reset to 0

Function:

Fetch the contents of a memory location whose 32-bit address is in the X register and
push that number onto the data stack. The address in the X register is not modified.

This fetch instruction is different from the @ instruction in FORTH, which uses the
address on top of the data stack.

This instruction also resets the carry flag (Bit 32) in the T register.

Coding Example:

: @ (a - n) tx ldx ;
: 2@ (a -- d) tx ldxp ldx ;

LDXP Load from X Register, Auto-Incrementing

Code: 9
Usage Short Instruction
Stack Effects (-- n ; X: a – a+1)
Carry reset to 0

Function:

Fetch the contents of a memory location whose 32-bit address is in the X register and
push that number onto the data stack. The address in the X register is then
incremented to facilitate accessing the next memory location. It is most useful in
reading values from an array in memory.

This fetch instruction is different from the @ instruction in FORTH, which uses the
address on top of the data stack.

This instruction also resets the carry flag (Bit 32) in the T register.

Coding Example:

: 2@ (a -- d) tx ldxp ldx ;

 166

MUL Multiply Step

Code: 19
Usage Short Instruction
Stack Effects (n1 n2 – lo hi)
Carry Reset to 0Change to T(31) or sum(31)

Function:

Conditionally add the S register on the data stack to the T register if the lowest bit in
the X register, X(0), is 1. If X(0) is 0, the T register is not modified. The T-X
register pair is then shifted to the right by one bit.

This MUL instruction is useful as a multiply step in implementing a fast software
multiplication routine. Repeating this instruction 32 times will multiply X and S and
produces a 64-bit product in the T-X register pair. If the T register is not initialized
to 0, its contents are added to the product.

Coding Example:

Multiply two 32-bit unsigned integers. Multiplicand is in X. Multiplier is in S.

CODE UM* (u u -- ud)
 tx 0 ldi
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 mul mul mul mul
 pushr pops xt popr
 ret
The 32-bit product is in the T-X register pair. The multiplicand in S is preserved.

 167

NEXT Loop Back

Code: 5
Usage 00 000101 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects (-- ; R: n – n-1 if n is not 0, n – if n=0)
Carry No change

Function:

If the top of the return stack, R, is not zero, loop to the 24-bit address in bit field 23-0
in the current 16M word page of memory. R is decremented by 1. If R is 0, pop
the return stack, terminate the loop, and continue executing the next program word.
It must be in slot1 of a program word. NEXT is re-defined in assembler to terminate
a loop structure by assembling a NEXT instruction.

Coding Example:

:: CMOVE (b b u --)
 FOR AFT
 over c@ over c!
 >R 1+ R> 1+
 THEN NEXT 2DROP ;;
:: FILL (b u c --)
 SWAP FOR SWAP AFT
 2DUP c! 1+
 THEN NEXT 2DROP ;;

NOP No Operation

Code: 30
Usage Short Instruction
Stack Effects (--)
Carry No change

Function:

No operation. This instruction forces the execution sequencer to state slot0, and
causes the next program word to be fetched and executed. All instructions in the
current program word following NOP are ignored. In assembler, NOP is
automatically padded into a program word to fill unused slots.

 168

OVER Duplicate S Register

Code: 27
Usage Short Instruction
Stack Effects (n1 n2 – n1 n2 n1)
Carry Restore from S register

Function:

Push the T register onto the data stack. Copy the original contents of S to T.

Coding Example:

:: 2DUP OVER OVER ;;

POP Pop Return Stack

Code: 24
Usage Short Instruction
Stack Effects (-- n ; R: n --)
Carry Restore from return stack

Function:

Pop the R register on the return stack to the T register. The original contents in T are
pushed onto the data stack.

Coding Example:

Exchanging X and T STA PUSH LDA POP
Exchanging X and R STA POP LDA PUSH
Increment T by 4 STA LDP DROP LDA
Decrement T by 4 DUP DUP XOR COM ADD
:: CMOVE (b b u --)
 FOR AFT over c@ over c!
 >R 1+ R> 1+
 THEN NEXT 2DROP ;;

 169

PUSH Push Return Stack

Code: 28
Usage Short Instruction
Stack Effects (n -- ; R: -- n)
Carry Restore from data stack

Function:

Pop S from the data stack and store it to the T register. The original contents in the T
register are pushed onto the return stack.

Coding Example:

: 2DUP (w1 w2 -- w1 w2 w1 w2)
 over over
 ;
: ROT (w1 w2 w3 -- w2 w3 w1)
 pushr pushr tx popr
 popr xt ;

RET Return from Subroutine

Code: 1
Usage Short Instruction
Stack Effects (-- ; R: a --)
Carry No change

Function:

Pop the top of the return stack into the program counter, P, and thus resume the
execution sequence interrupted by the last CALL instruction. Besides terminating a
subroutine, this instruction may be used to execute a long jump to a location outside
of the current memory page. This instruction can be placed in any slot of a word.
Instructions before RET are executed. Instructions following RET are ignored.

Coding Example:

In the Subroutine Threading Model, RET is used to terminal all code commands and
colon commands. The word “;” simply compiles a RET to terminate a FORTH
word.

CODE 0< (n - f)
 shl ifnc pushs pushs xor ret
 then -1 ldi ret
CODE UM+ (n n - n carry)
 add pushs
 ifnc pushs pushs xor ret
 then 1 ldi ret

 170

RR8 Rotate Right by 8 Bits

Code: 14
Usage Short Instruction
Stack Effects (n1 - n2)
Carry No change

Function:

Rotate T to the right by 8 bits. The lowest 8 bits are moved to the highest 8 bits.
This instruction is very useful in extracting bytes from a 32-bit integer in the T
register, and to pack bytes into T.

Coding Example:

:: wupper (w -- w') \ convert 4 bytes to uppercas e
 3 LIT FOR
 DUP FF LIT AND 61 LIT 7B LIT WITHIN
 IF FFFFFF5F LIT AND THEN
 RR8
 NEXT
 ;;

SHL Shift Left

Code: 17
Usage Short Instruction
Stack Effects (n -- 2n)
Carry Change to T(31)

Function:

Shift all lower 32 bits in the T register to left by 1 bit. The lowest Bit, T(0), is set
to 0.

Coding Example:

Multiply T by 3: DUP SHL NOP NOP ADD
Multiply by 5: DUP SHL SHL DOP ADD
Multiply by 6: SHL DUP SHL NOP ADD

SHL allows the negative bit, T(31), to be tested as the carry bit T(32):
CODE CELL* SHL SHL RET
CODE 0< (n - f)
SHL
-IF -1 LDI RET
THEN
DUP XOR (0 LDI)
RET

 171

SHR Shift Right

Code: 18
Usage Short Instruction
Stack Effects (n -- n/2)
Carry Reset to 0

Function:

Shift the lower 32 bits in the T register right by one bit. Bit T(0) is lost. The sign
bit, T(31), is preserved. The carry bit, T(32), is cleared.

Coding Example:

CODE 4/ SHR SHR RET

STX Store with X Register

Code: 15
Usage Short Instruction
Stack Effects (n --)
Carry Restore from data stack

Function:

Store T into the memory location whose 32-bit address is in the X register. Pop the
data stack. The address in the X register is not modified.

This store instruction is different from the “!” instruction in FORTH, which uses an
address on top of the data stack.

Coding Example:

: ! (n a --) tx stx ;
: 2! (d a --) tx pushr stxp popr stx ;

 172

STXP Store with X Register, Auto-Incrementing

Code: 13
Usage Short Instruction
Stack Effects (n -- ; X: a – a+1)
Carry Restore from data stack

Function:

Store T into the memory location whose 32-bit address is in the X register. Pop the
data stack. The address in the X register is then incremented by 1 to facilitate the
next memory access. It is most useful in storing values to an array in memory.

Coding Example:

See the copying program shown in LDXP.

: 2! (d a --) tx pushr stxp popr stx ;

TX Pop T to X Register

Code: 29
Usage Short Instruction
Stack Effects (a --)
Carry Restore from data stack

Function:

Store T in the X register. Pop the data stack. The original contents in the T register
are copied into the X register. This instruction initializes the X register so that it can
be used to fetch data from memory or store data into memory.

Coding Example:

: +! (n a --) tx ldx add stx ;
: 2! (d a --) tx pushr stxp popr stx ;
: 2@ (a -- d) tx ldxp ldx ;

 173

XOR Bitwise Exclusive OR

Code: 20
Usage Short Instruction
Stack Effects (n1 n2 -- n3)
Carry Exclusive OR n1(32) and n2(32)

Function:

Pop S from the data stack and bitwise exclusive-OR it to the T register. All 33 bits
in T are affected.

Coding Example:

To clear T to zero:
 DUP XOR cccccc cccccc
To generate a zero in T register:
 DUP DUP XOR cccccc cccccc
To generate -1 in T::
 DUP DUP XOR COM

:: < (n n -- t)
 2DUP XOR 0<
 IF DROP 0< EXIT THEN
 - 0< ;;

XT Push X Register to T

Code: 25
Usage Short Instruction
Stack Effects (-- a)
Carry Restore from X

Function:

Copy the contents of the X register to the T register. The original contents in the T
register are pushed onto the data stack. With the XT and TX instructions, the X
register can serve as a scratch pad to save and restore the contents of the T register.

Coding Example:

: SWAP (n1 n2 - n2 n1)
 pushr tx popr xt ;
: ROT (w1 w2 w3 -- w2 w3 w1)
 pushr pushr tx popr
 popr xt ;

 174

Appendix B: eP32 eForth Commands

' <name> -- xa Find <name> and leave its execution address, xa.
- w1 w2 --

w3
Subtract w2 from w1. w1-w2=w3.

! w a -- Store w at a.
u1 – u2 Extract least significant digit from u1 and leave quotient, u2.
#> w -- a u Discard w, and leave address and length of number held in string

buffer.
#S u -- 0 Convert u to a number string below PAD buffer.
$" <string>” -- a Compile a string literal delimited by “. At run time, leave its

address on stack.
$"| -- a Run time command of a string literal. Leave string address, a, on

stack.
$," <char> -- Compile a character literal.
$,n a -- Compile a name field in header with string at a.
$COMPILE a -- Compile a word whose name string is at a.
$INTERPRET a -- Interpret a word whose name string is at a.
(<string>) -- Ignore the comment string delimited by).
(CALL) a -- Compile a subroutine call to address a.
(parse) b u c -- b u

delta
Parse next string delimited by c in buffer b, length u. Length of
parsed string is delta.

* n1 n2 -- n3 Multiply. n3=n1*n2.
*/ n1 n2 n3 --

nq
Leave quotient of (n1*n2)/n3.

*/MOD n1 n2 n3 --
nr nq

Leave remainder, nr, and quotient, nq, of (n1*n2)/n3.

, w -- Add w to parameter field of the most recently defined command.
. n -- Display signed number with a trailing blank.
." <text>" -- Compile a string literal <text>. At run-time display <text>.
."| -- Run time command of . ".
.(<text>) -- Display a string <text>.
.ID xa -- Display name of a command at xa.
.OK -- Display system OK message.
.R n u -- Display number n right justified in a field of length u.
.S -- Display the contents of data stack.
/ n1 n2 – nq Division. Leave signed quotient of n1/n2.
/MOD n1 n2 – nr

nq
Division. Leave signed remainder, nr, and quotient, nq, of n1/n2.

: <name> -- Begin a colon command of <name>.
; -- Terminate a colon command.
? a -- Display contents of memory at a.
?DUP w -- w w |

w
Duplicate w if it is not 0. Else no operation.

?KEY -- c true |
false

Return a false flag if no character is entered from keyboard. Else
leave valid character and true.

?UNIQUE a – a If string at a is a valid command, display “redef” message.
@ a -- x Replace address a by its contents.
@EXECUTE a -- Execute word whose execution address is in address a.
[-- Switch from compilation to interpretation.
[COMPILE]
<name>

-- Compile command <name> in input stream. It compiles an
immediate command.

\ <text> -- Ignore <text> until end of line.
] -- Switch from interpretation to compilation.
^H a1 a2 a3 – Process backspace. Decrement current character pointer, a3, if it

 175

a1 a2 a4 is greater than buffer address a1.
+ n1 n2 -- n3 Add n1 and n2.
+! w a -- Add w to number at address a.
< n1 n2 --

flag
True if n1 less than n2. Signed comparison.

<# -- Start number conversion process.
= n1 n2 --

flag
True if n1 equals n2.

>B a b -- a+1
b+4 count

Unpack word string at a to byte string at b. Return a+1, b+4 and a
count to unpack next word.

>CHAR c – n Convert character c to a valid character code.
>NAME xa -- na | 0 Convert execution address, xa, of a command to its name field

address. na. If failed, return 0.
>R w -- Push top item to return stack for temporary storage.
0< n -- flag Return true if n is negative.
1- n – n-1 Decrement.
1+ n – n+1 Increment.
2! d a -- Store a double integer to address a.
2@ a – d Fetch a double integer from address a.
2DROP d -- Drop a double integer.
2DUP d – d d Duplicate a double integer.
4/ n – n/4 Divide by 4.
ABORT -- Return to terminal interpreter, no error message.
ABORT" -- Compile an error message. Execute abort" at run time.
abort" <string>“ flag -- If flag is true, abort and display an error message.
ABS n -- u Convert n to its absolute value, u.
accept a u1 -- a

u2
Accept text from keyboard into buffer at a, length u1. Return with
a and actual length of text, u2.

AFT a1 – a2 Start compiling an AFT-THEN structure in a FOR-NEXT loop.
AGAIN a -- Terminate a BEGIN-AGAIN loop by compiling a branch to

address a.
AHEAD -- a Compile a branch instruction. Leave its address on stack to be

resolved later by THEN.
ALLOT u -- Extend u bytes to parameter field of the most recent command.
AND w1 w2 --

w3
Logical bit-wise AND.

B> b a -- b+1
a

Pack a byte at b into least significant byte in a. Increment b.

BEGIN -- Start an indefinite loop like BEGIN-AGAIN, BEGIN-UNTIL or
BEGIN-WHILE-REPEAT.

BL -- 32 Get ASCII code of a blank or space.
CHARS c u -- Display character c u times on terminal.
CMOVE a1 a2 u -- Move u bytes starting from address a1 to memory starting at a2.
CODE <name> -- Define a new primitive comand.
COLD -- First command executed after CPU powers up.
COM -- Assemble a COM machine instruction.
COMPILE -- Compile following command to parameter field of currently

compiled word.
CONSTANT
<name>

w -- Define a constant. At run-time, w is left on the stack.

COUNT a -- a+1 c Get one byte c from address a and increment a.
CR -- Display a new line.
CREATE
<name>

-- Create a new data array with <name>. No parameter field space is
reserved.

DECIMAL -- Set number base to decimal.

 176

DIAGNOSE -- 12 chars Produce a string of “eForthMlSemi” to verify primitive
commands.

DIGIT u -- c Convert number u to corresponding ASCII code.
DIGIT? c base -- u

flag
Convert ASCII code c to its corresponding number, u. If
successful, return u and true. If unsuccessful, return c and false.

dm+ a u – a+u Dump u bytes of memory starting at address a.
DNEGATE d -- -d Negate a double integer.
do$ -- a Run time routine of $. Leave address of the following string

literal.
DOES -- Start compiling an interpreter for a new class of defining

commands.
DOVAR -- Run time routine for variables.
DROP w -- Discard top of stack.
DUMP a u -- Dump u bytes of memory starting at address a.
DUP w – w w Duplicate top of stack.
ELSE -- Terminate a <true> clause, and start a <false> clause in

IF-ELSE-THEN branch structure.
EMIT c -- Display character c on terminal.
ERROR a -- Display an error message at address a and abort.
EVAL -- Evaluate (interpret or compile) input stream accepted into

terminal input buffer.
EXECUTE a -- Execute a command whose execution address is a.
EXIT -- Terminate execution of a colon command.
EXPECT a u -- Accept input stream into buffer at address a, length u.
EXTRACT u1 base –

u2 c
Extract least significant digit in u1, with radix base. Return
quotient u2 and extracted character c.

FILL a u c -- Fill an array at address a, length u, with byte c.
find a va -- xa

na | a 0
Search vocabulary beginning at va for a word whose name is at
address a. If success, return execution address, xa, and name field
address of command found. Else return a and false flag.

FOR -- Start a FOR-NEXT loop.
FORGET
<name>

-- Search dictionary for <name> and delete it and all subsequent
commands from dictionary.

HERE -- a Get address of next available dictionary location.
HEX -- Set number base to hexadecimal.
HOLD c -- Add character c to number conversion buffer.
IF -- Start an IF-ELSE-THEN branch structure. At run time, branch to

ELSE or THEN if top of stack is 0.
IMMEDIATE -- Add immediate bit to name of the command currently under

compilation. An immediate command is executed by compiler.
KEY -- c Wait for an ASCII character c from the keyboard. KEY does not

echo the character.
kTAP bot eot cur

c -- bot eot
cur

Add a character, c, received from keyboard to string in terminal
input buffer. bot is bottom of buffer, eot is end of buffer, and cur
is pointer to current character in buffer. Process backspace.

LITERAL w -- Compile number w as an in-line literal. At run-time, w is pushed
onto stack.

M* n1 n2 – d Double precision multiply, d=n1*n2.
M/MOD d n -- nr

nq
Floored division. Return both remainder, nr, and quotient, nq.

MAX n1 n2 -- n3 Return n3, the larger of n1 and n2.
MIN n1 n2 -- n3 Return n3, the smaller of n1 and n2.
MOD n1 n2 -- nr Modulus, signed remainder of n1/n2.
NAME? a -- xa na |

a 0
Search dictionary for a command at address a. If successful,
return its execution address, xa, and name field address, na. Else
return a with a false flag.

 177

NAME> a – xa Convert name field address, a, to execution address, xa.
NEGATE -- Assembler machine instructions to negate top of stack.
NEXT -- Terminate a FOR-NEXT loop. At run time, decrement index and

repeat loop until index is 0.
NOT w1 -- w2 Bit-wise one’s complement.
NUMBER? a -- n 1 | a

0
Convert a number string at address a to its value. If successful,
return value n and true; else return a and false.

OK -- Compile source text downloaded from terminal to file buffer,
READBUF.

OR -- Assembler OR machine instruction.
OVER -- Assembler OVER machine instruction.
OVERT -- Make the command last defined visible to interpreter and

compiler.
PACK$ a1 u a2 –

a2
Pack a counted string in address a1, length u to byte buffer a2.

PAD -- a Get address of a scratch pad area above dictionary of at least 84
bytes.

PARSE c -- a u Parse out the next string in terminal input buffer, delimited by
character c. Return address a and length of parsed string u.

QUERY -- Wait for a line of text from keyboard and place it in input
terminal buffer. A line is terminated by carriage return or up to 80
characters.

QUIT -- Return to terminal interpreter, no stack change, no message.
R@ -- n Duplicate R register to top.
R> n -- Pop return stack to top.
READ -- Read text file from terminal into file buffer, READBUF.
REPEAT -- Terminate a BEGIN-WHILE-REPEAT loop.
ROT w1 w2 w3

-- w2 w3
w1

Rotate third item to top.

SAME? a1 a2 u –
a1 a2 f
(-0+)

Compare two name strings at a1 and a2. Return 0 if identical.
Return positive value if string1>string2. Return negative value if
string1<string2.

SEE <name> -- Decompile the command <name>.
SEND a n -- Upload memory array at address a, length u, to host in Intel Hex

format.
SIGN n -- If n is negative, add minus sign to number conversion buffer.
SPACE -- Display a space.
SPACES u -- Display u spaces.
str n – a u Convert number n to a number string at address a, length u.
SWAP -- Assembler machine instruction to swap top of stack.
TAP bot eot cur

c -- bot eot
cur

Add a character c received from keyboard to string in terminal
input buffer. botis bottom of buffer, eot is end of buffer, and cur is
pointer to current character in buffer.

THEN -- Terminate IF-ELSE-THEN branch structure.
TIB -- a Get address of terminal input buffer.
TOKEN -- a Get the address of next string parsed out of terminal input buffer.
TYPE a u -- Display a string of u characters starting at address a.
U. u -- Display unsigned number u with a trailing blank.
U.R n1 u2 -- Display unsigned number u1 in a field of u2 characters.
U< u1 u2 – f Unsigned compare. Return true if u1<u2.
UM* u1 u2 – ud Unsigned double precision multiply. ud=u1*u2
UM/MOD ud u -- ur

uq
Unsigned double precision divide. Leave both remainder, ur, and
quotient, uq.

UM+ u1 u2 – u3
carry

Double precision add. u3=u1+u2. Return carry also.

 178

UNPACK a b -- b Unpack a packed string at a to b. String length is up to 255
characters.

UNPACK$ a b -- b Unpack a packed string at a to b. String length is up to 31
characters.

UNTIL -- Terminate a BEGIN-UNTIL loop structure.
VARIABLE
<name>

-- Define a new variable. At run-time, variable <name> leaves its
address on stack.

WHILE -- Start a true clause in BEGIN-WHILE-REPEAT loop structure. At
run time, repeat true clause while top of stack is non-zero.

WITHIN u ul uh –
flag

Leave true if ul <= u < uh. Else leave false.

WORD c -- a Get a string delimited by character c from the input stream and
leave it as a counted string at address a.

WORDS -- Display all words in dictionary.
XOR -- Assembler XOR machine instruction.

