Chapter 1 Introduction

1.1 History of the eP32

The eP32 microprocessor is a Minimal InstructionGamputer (MISC), vis-a-vis
Complicated Instruction Set Computer (CISC) andwRed Instruction Set Computer
(RISC). MISC was originally developed by Mr. Chudkore, and implemented in
his MuP21 chip. It happened that Chuck also inegtihe FORTH programming
language. For many years, Chuck sought to put FDIRT0 silicon, because he
thought FORTH was not only a programming languagéalso an excellent
computer architecture.

In the early 1990s, a group of engineers from ti@V6 multiple design chip service
program came to Silicon Valley and started Orbin&enductor Corp, offering
foundry services to the general public. Their serwas based on a 1.2 micron
CMOS processes on 5 inch wafer, with two metalraye The smallest design they
accepted was on a 2.4mmx2.4mm silicon die. Chigekdd that he could design a
20 bit CPU in that small area. It was named MuP2tause it was a multiprocessor
chip, with a 20 bit CPU core, a DRAM memory copissad, and a video coprocessor,
and all registers and stacks in the CPU core wergit wide, with an extra bit to
preserve the carry bit.

Because of very limited silicon area, the MuP21 &agry small set of instructions,
but they were sufficient to support a complete FEBIRperating system and very
demanding applications with real time NTSC videtpatt The chip was produced
and verified, but productions in plastic packageseanot successful because of poor
yield.

When FPGA chips became available, I tried to imgetORTH chips based on
MuP21 instruction set. The first experiments wanean XS40 Kit from Xess Corp.

It had a Xilinx VC4005XL FPGA on board with a 32 IFIRAM chip and an 8051
microcontroller. The purpose of this kit was tombmstrate how easy it was to use
an FPGA to replace all glue logic between RAM afi18 and to build a complete
working microprocessor system. | managed to squa€el6-bit microprocessor, P16,
into the VC4000XL chip and eliminated the 8051.

Over the years, Xilinx added more logic gates aAdliblocks to their FPGAs, and |
was able to put a 32-bit microprocessor, P32,aCX1000E chip (which had 16
kB of RAM) to host a FORTH system. This design \al® ported to FPGA chips
from Altera and Actel. P32 gradually evolved ief®32 with an eForth operating
system. eForth is a very simple FORTH operatirgjesy designed specifically for
embedded systems. However, FPGA chips were exergvelopment boards
were expensive, and development software tools esecially expensive. | talked
about eP32 implementations, but very few peopteémaudience had these
development tools to explore FPGA designs.

It was therefore very exciting to learn about tlatice XP2 Brevia Development Kit,
which was on sale for $49. Development software fsee to download. The Kit
has a LatticeXP2-5E-6TN144C FPGA chip, which hasugh logic cells to

1

implement eP32, and enough RAM memory to host Hugth system. Its RAM
memory is mirrored in flash memory on chip, and gounot need external memory
chips for programs and data. It is truly a sirgjl@ solution for microprocessor
system design.

Now, everybody can do his own designs on FPGA chipisis time to update my
documentation on eP32 and companion eForth to fgaaple the best way to design
their own CPUs and to explore their applications.

All FPGA manufacturers offer reference designs araprocessors in their
development software tools, to demonstrate thatA<€P¢an be used to do
microprocessor system designs, or in a fancier &ystem-On-a-Chip, SOC.
However, these microprocessors are complicatedtraidperformance is poor.

A microprocessor does not work without software oftBare reference designs from
these FPGA manufacturers are even poorer, as wleamestruggle with assemblers,
language compilers, and operating systems.

FORTH offers the best solution for FPGA users. TIRJ is simple, the
programming language is simple, the operating systesimple, and the application
programming is simple. It is possible for an agerangineer or scientist to
understand and to make use of this complete CPdilage-Operating
System-Application spectrum in a few weeks. Whatgiired is an open mind, and
a willingness to explore different ways to do tleng The very high cost barrier to
experiment with an FPGA is removed by the LatticB)@drevia Kit. The only
barrier left is you yourself.

This book contains two major sections, one on hardwlesign of the eP32 CPU core
and a few peripheral devices to form a completegapiocessor, and one on the
software design of eForth to run on the eP32. Ward design is centered on a set
of VHDL files, describing modules in the eP32 mpmacessor system. Software
design is centered on a set of FORTH files, whsch metacompiler constructing a
memory image to initialize a RAM memory moduleliwe £P32. Generally, | will
show source code on left hand pages, and commemahe opposing right hand
pages. My perspective is that source code is sugre Nothing is more important
than source code. If you understand the comptaiece code, you understand
everything.

Combining the hardware design of the eP32 and soétwesign of eForth, the result
is a FORTH microprocessor running on a LatticeXP&via Development Kit. You
can run this FORTH microprocessor from a HyperTaahconsole on your PC, and
write application programs. Mastering this boosuiyrave an understanding of one
microprocessor, in and out. This understandingadlibw you to develop your own
microprocessor to solve your own application proide

The eP32 has a 32-bit CPU core with two stackswaé intended to execute FORTH
instructions efficiently. The processor desigsimple to allow implementation on
custom silicon chips as well as on FPGAs. The efB3gloys only 27 instructions,
and instruction can be encoded in 5 bit fieldssTdesign is scalable in word sizes
ranging from 16 bits up to 64 bits. A program wogsh contain many instructions in
5 bit fields. With this scalable architecture, BWCdesigner is freed from the heavy

yoke of program word size, which is a primary caaist on a CPU design.
1.2 What isFORTH?

FORTH was invented by Chuck Moore in the 1960s piogramming language.
Chuck was not impressed by programming languagesating systems, and
microprocessor hardware of his time. He soughsiimplest and most efficient way
to control his computers. He used FORTH to progeamsry computer in his sight.
And then, he found that he could design better aderp, because FORTH is much
more than just a programming language; it is arelwat computer architecture.

So what is FORTH?

Many books and many papers had been written ablORITH. However, FORTH is
still elusive because it has many features andacheristics which are difficult to
describe. Now that it has erased the boundarydstkardware and software, it is
even more difficult to accurately put it into words

Let me try this way. Here it goes.

FORTH is a list processor.

FORTH has a set of commands, and an interprefanotzess lists of commands.
FORTH commands are records stored in a memorycatksl a dictionary.

Arecord of a FORTH command has three fields: lafield linking commands to
form a dictionary, a name field containing the nashthis command in an ASCII
string, and a code field containing executable attedata to perform a specific
function for this command. It may have an optiguaameter field, which contains
data needed by this command. The link field andenfield allow the interpreter to
look up a command in the dictionary, and the caeld provides executable code to
perform the function assigned to this command.

A FORTH command has two representations: an eXtezpeesentation in the form of
an ASCIl name; and an internal representationerféhm of a token, which invokes
executable code stored in code field. In many FERystems, the token is an
address. However, a token can take other formsraipg on implementation.

There are two types of FORTH commands: primitiveRFEl commands having
machine code in their code fields, and compound BOBommands having token
lists in their code fields.

A FORTH interpreter processes two types of lisst tists and token lists. A text
list contains a sequence of FORTH command namparaed by white spaces and
terminated by a carriage return. A token list eomg a sequence of tokens, which
are internal representations of FORTH commands.

FORTH has two interpreters: a text interpreterojater interpreter) and a token
interpreter (or inner interpreter).

The text interpreter processes lists of FORTH comusaepresented in text, which
consists of names of FORTH commands separated ltg sgaces and terminated by
a carriage return. The number of commands in @igxs not limited. A list may
be in one line of text, or in a huge text file.

The token interpreter processes lists of tokensanoed in compound commands.
It is also called the address interpreter, becausgany FORTH systems, tokens are
addresses pointing to code fields.

The text interpreter operates in two modes: ingtnpg mode and compiling mode.

In interpreting mode, a list of command namestisrpreted; i.e., commands are
parsed and executed. In compiling mode, a lisbaimand names is compiled; i.e.,
commands are parsed and corresponding tokens ragled into a token list. This
token list can be given a name to form a new comgamommand, by creating a new
command record in the dictionary.

A FORTH compiler is a FORTH text interpreter opergtin compiling mode. It
compiles new compound commands, converting a il FORTH commands into
an equivalent token list. It builds nested tokistslone on top of the other, until a
final solution is reached in the last token list.

This is the most powerful feature of FORTH, in thiati can compile new compound
commands, which replace lists of existing commahd#) primitive and compound.
The syntax of a new compound command is:

: <name> <list of existing commands> ;
A FORTH compiler converts a text list of existingnemands to a new token list.
Nested token lists are added until the final conmglocommand becomes the solution
to your problem. Lists are built and tested frdma bottom up. The solution space
can be explored wider and farther, and an optimszddtion can be found more
quickly.

Following are some minor deviations in the synthtk@RTH as a programming
language.

The text interpreter accepts numbers in lists. BNenms are ASCII strings with valid
numeric digits and an optional leading '-' sign.heText interpreter pushes an integer
number onto the data stack. The FORTH compilerglas an integer literal into

the token list. Later, when the token list is ipteted, the integer literal token
pushes the integer onto the data stack.

The text interpreter accepts strings in lists. trkg must follow a string command,
which consumes the string. A string is a sequenée&sCll characters terminated by
a terminating character specified by the precedirigg command. A string
command may compile a string literal into the toket In the token list, a string
literal consists of a string token followed by #teéng in compiled form. The string
token uses the compiled string, and passes cdottbe next token after the compiled
string.

Lists are normally processed in consecutive sequenklowever, branches and loops

are allowed, using control structure commands. t@bstructure commands
compile control structures into token lists. Latenen a token list is interpreted,
branching and looping occur within those contralictures.

String commands and control structure commandsgehaaquential flow in lists.
They are elements in the FORTH language that re@aditional grammatical rules
in their usage. Otherwise, all lists are simplegdr, sequential lists.

The preceding exposition describes what FORTH tenms of a programming
language and operating system. A complete spatitit of a FORTH system must
include a document on all commands; i.e., name®mwimands, their effects on data
and return stacks, and their functional descrigtion

The fundamental reason that FORTH lists can belsintipear sequences of
commands is that FORTH uses two stacks: a retaok $b stored nested return
addresses, and a data stack to pass parameterg agsted commands. Parameters
are passed implicitly on the data stack, and ddawe to be explicitly invoked.
Therefore, FORTH commands can be interpreted iimeal sequence, and tokens can
be stored in simple, linear lists. Language symayeatly simplified, internal
representation of tokens is greatly simplified, ardcution speed is greatly
increased.

A FORTH CPU thus needs two stacks, efficient me¢ansaverse nested token lists,
and an instruction set to support primitive comnsandThis is what eP32 is designed
to provide. It has two stacks. It has a smalrutdion set, which is sufficient to
code all primitive commands in eForth. It has veificient single cycle subroutine
call and return instructions. When we use the Quiiite Threading Model (where a
compound command consists of a list of subroutateirstructions) and represent
tokens by subroutine call instructions, the eP3R @Belf becomes the FORTH inner
interpreter. Nested token lists, as nested suin®lists, are traversed naturally with
very little overhead in execution speed.

The eP32 is the best list processor.

Chapter 2. Design of the eP32

2.1 Overview

The eP32 is a 32-bit CPU. Instructions are encadéebit fields, and up to 5
instructions are packed into a single 32-bit progweord. 27 instructions are
defined to facilitate accessing words in memorymaltiplication and division of
integers, for real time interrupts and to supparious 10 devices. Areturn stack is
included in the CPU for nested subroutine callsratarns. A parameter stack is
also included to pass parameters among nesteduig® The simple instruction
set and dual stack design make it possible to égedlinstructions in a single clock
cycle from a single phase master clock. This desgiimizes code density,
processing speed, silicon area and power consumjatial is most suitable to serve
as CPU cores in System-On-a-Chip integrated cscuit

As this design was developed and tested on a FPgA device, the LatticeXP2
from Lattice Semiconductor Corp, a complete micogpssor system, including CPU,
memory and a number of 1/O devices, is built omgle FPGA chip.

In this design, the CPU latches all data into appate registers and stacks on the
rising edge of a single phase master clock. Swgymehronous design ensures that
all instructions are executed quickly and reliably single clock cycle. When the
master clock is held steady, the microprocessameall data in registers, stacks and
memory, consuming very little power. It is thusgible to further reduce its power
consumption by reducing the clock rate, or stoppinggclock completely.

The eP32 has this set of registers:

Name | Register Function

I Instruction latch Holding up to 5 instructionske executed

P Program counter Pointing to next program wonsh@mory

R Top of return stack| Holding return address oploounts

S Second item of dataSupplying optional second argument to ALU

stack

Top of data stack Accumulator for ALU

x| =

Address register Supplying address for memorg eead write

The eP32 has two stacks to support fast subroaditieg and returning, and to
optimize execution speed:

Name Stack Function
s stack | Data stack Passing arguments among nestenlisnes
r_stack | Return stack Saving return addresses t#ahesbroutines

The | and P registers are 32 bits wide to addr€swdrds of memory. T, R, S, X
and stacks are all 33 bits wide. The most siganfidit in T, T(32) is a carry
produced by a 32-bit adder. This carry bit is presd when T is transferred to other
registers and to stacks. Preservation of carrgrietly simplifies extended
precision arithmetic operations in the ALU, anaat subroutines and interrupts to
be serviced without having to save a carry bit mstore it on return.

Registers and stacks and their relationship areshesvn in Figure 1:

INTERRUPTS ADDRESS BUS DATA BUS RESET CLOCK

t l i

ADDRESS MUX I COUNTER
L X | T | — = DECODER

s
L—
RETURN STACK el R [P T L S |l DATA STACK
—-

ALU

Figurel. eP32Architecture

The T register is the center of the eP32. It Sepgine argument to the ALU, which
takes an optional second argument from the S e¥gasid routes results back to the T
register. Contents in T can be moved to the Xstegipushed on data stack S, or
pushed on return stack R.

The T register connects data stack and return staiekgiant shift register. Data can
be shifted towards the return stack by a PUSHuc#btn, and shifted towards the
data stack by a POP instruction.

Register X holds a memory address, which is usedad data from memory into the
T register, or write data from the T register tomogy. The address in X can be auto
incremented, so that the eP32 can convenientlysaataa arrays in memory.

P is a program counter and holds the address afakieprogram word to be fetched
from memory. After a program word is fetched, Ruso incremented and ready to
read the next word. When a CALL instruction is@xed, the address in P is
pushed onto the return stack. When a RET retwgtnuation is executed, the
previously saved address on the return stack ipgmbpack into P. The execution
sequence interrupted by CALL can then be resumed.

The depth of both stacks is 32 levels, which alleeryy deep nesting of subroutine
calls. Stacks are implemented as circular buffe@verflow and underflow

overwrite data previously pushed onto the stacle@@ls before. No effort is made
in detecting and handling overflow and underflomditions, because stack
overflow/underflow is not really a very seriousarcondition, although it is dreaded
by programmers using conventional languages. Cordmmay consume stack
items, and may push data onto a stack. It is isiptesfor an operating system to
determine whether the stack effects of a commaadiae to errors or due to the
programmer’s intention. Therefore, it is best tefthe programmer to make sure
that stacks behave correctly.

The 6-bit code field supports up to 64 instructionkive 6-bit instructions are
packed into one 32-bit word, and are executed cunisely after a program word is
fetched from memory. It can be viewed as a 5 ugsion cache, which provides an
optimal balance between a slow RAM memory and a@&34J. For example, if
32-bit words can be fetched from RAM at a rate@MHz, the 5 instructions can be
executed at a rate of 100 MHz.

The design and functions of the eP32 are best mesén functional blocks. The
eP32 can be divided into the following 4 functiohklcks, in four quadrants of the
above diagram:

Program Execution Unit in Quadrant 1

Memory Address Multiplexer in Quadrant 2

Return Address Processing Unit in Quadrant3

Data Processing Unit in Quadrant 4

These blocks will be discussed in the following ¢mg
2.2 Program Execution Unit

A synchronous Program Execution Unit is a finitgestmachine, controlling
execution of instructions in the eP32. It has dJBIDER register driven by external
“reset” and “clock” signals. When “reset” is agsef COUNTER is cleared to O,
which is output to “slot”. When “reset” is relea@sexternal clock signal “clock”
drives COUNTER, which is incremented on the risidge of “clock”. “slot” is
incremented from 0 to 5, and back to 0. When "slateP32 reads the next
program word from the Data Bus, and latches it th&ol register on the rising edge
of “clock”.

As “slot” is incremented between 1 and 5, it seddéam the | register one 6-bit
instruction “code” through instruction multiplexélUX. “code” drives

DECODER, which produces all control signals to timeP32. These control
signals select appropriate data through multipkexand present them to registers and
stacks. On the rising edge of “clock”, selectethaae latched into appropriate
registers and stacks, and thus starts anotheuatisin cycle.

When executing transfer instructions like CALL, BRBZ, BC, NEXT, RET and
NOP, the “slot0” signal is set. It clears COUNTERI forces next cycle back to
slotO, fetching a new program word from the Dats.Bu

The rising edge of the “clock” signal thus paces&R32 to execute instructions read
from external memory through the Data Bus. The2eBa& synchronous CPU.

Registers and stacks are changed only on the rsigg of “clock”. Otherwise, all
registers and stacks are static, and hold thetects indefinitely.

I(29,24)
I(23.18)

Data Bus . I(17.12 E |code W pEcODER

Lill.6) »
L5 .0 »

cloclk

EEEE—

reseat COUNTER slaot
slotl

EE—

Figure 2. Program Execution Unit
2.3 Memory Address Multiplexer

The Memory Address Multiplexer supplies a 32-bidras$s on the Address Bus to
external devices. When executing the next progrtand, the AMUX multiplexer
routes the address stored in the P register tAddeess Bus. When accessing data
in memory, the XMUX multiplexer routes the addre&wed in the X register to the
Address Bus. This symmetrical arrangement of Parehisters and address
multiplexers AMUX/XMUX allows all memory operatiorie be completed in a
single machine cycle. This is the simplest mernmapnagement system of a von
Neumann machine. It is entirely unnecessary tovasgcomplicated memory
modes to access memory, as in CISC computer designs

Depending on the current instruction being exequPddUX selects one of 4 inputs to
the P register: the next program address (P+&ygettaddress in the address field of
the current program word in the | register, theme@ddress in the R register, and an
interrupt vector. The selected new address isdatento the P register on the rising
edge of master clock.

Depending on the current instruction being executddUX selects one of 5 inputs
to the X register: the T register, the next datadnaxldress (X+1), the left-shifted
(T+S):X register pair in a divide step instructitime right-shifted T:X register pair in
multiply step instruction, and the (T+S):S regigiair in a multiply step instruction.
Selected new data is latched into the X registaherrising edge of the master clock.

—
X=1 I
(T X2

(T.X)/2 I
(T X2 o

Address Bus
—.,

'

\ X N 5591 /

P+l)
(P.I)
—

R

Ints-:mJEt)

,

Figure3. AddressUnit
2.4 Data Processing Unit

The Data Processing Unit contains a data staclaa#d.U. The top item of data
stack is implemented as the T register, whichkis §in accumulator in conventional
CPU designs. The top element of data stack igdated as the S register. The
ALU takes T and S registers as its input and geesr@set of logic and arithmetic
signals. TMUX selects one of these results antesot to the T register. A
specific machine instruction will select the resutteeds and latch it into the T
register on the rising edge of the master clockhis Strategy—Compute Everything
and Select the One You Need—allows all ALU operetito be complete in a single
machine cycle.

All ALU instructions select the results they wamtdugh TMUX. You can
recognize these instructions by the signals intfadTMUX.

The PUSH instruction selects the S register to tbadr register. The POP

instruction selects the R register to load T. XHAenstruction selects X to load T.
Memory read instructions select the Data Bus td [ba

10

T
T XOR §

T AND 5
T —» >
T+5 |
(T+5)2 |
Ti2 |
(C.T)2

(T+5).X)"2 >

g ——p (T.X)*2 »
T2 I
T RRS
-

nw

Data Stack

!
,

Data Bus

— ™

Figure4. Data Processing Unit
2.5 Return Address Processing Unit

The Return Address Processing Unit allows subred@lALL and RET instructions to
be executed in a single machine cycle. It contaireturn stack, whose top item is
implemented as the R register. A CALL instructpushes the address of the next
program word in the P register onto the returnkstamough RMUX. A RET
instruction pops the return stack and latchesehem address in R back into the P
register.

Subroutine call and return instructions generalg/the most complicated machine
instructions in a CISC computer design. Theyaletmany clock cycles to
complete, because many tasks are required in gestith un-nesting a subroutine call.
Here in the eP32, subroutine call and return atle temluced to a single clock cycle.
As all compounderogramming languages rely heavily on subroutiris ead returns,
reducing overhead in subroutine calls and retuiiisignificantly improve
performance of programs produced by these langcageilers.

The eP32 is also optimized to process loops. [QUdaoping, the R register is used
to hold a loop count. The NEXT instruction lookghas count. If R is not zero,
NEXT decrements it and branches to the beginningefoop. If R is zero, NEXT
terminates the loop. To decrement R, R-1 is seteloy RMUX to latch back into R
on the rising edge of the master clock.

11

— L[|—P- Return Stack

Eeturn Stacl

.
Tl
-~

Figure5. Return Sack Unit
2.6 Timing of Instruction Execution

This simple yet efficient design of the eP32 all@llsnstructions to be executed in a
single clock cycle. Each machine clock cycle iéedsa “slot”. However, program
words must be read into the CPU before instructioitiem can be executed. In the
current implementation, | allocate an extra cyoledad in a program word. This
extra cycle is called “slot0”. After a program wlas read in “slot0”, as many slots
are used to execute as many machine instructioheeiprogram word as necessary.
For short instructions, 1 to 5 more slots are useskecute 1 to 5 instructions. For
long instructions, only “slotl” is used to execatsingle long instruction in a
program word.

The following diagram shows timing in executing ghostructions and long
instructions.

Execution Cvcles of Short Instructions

oL L

slot0 slotl slof? slof3 slotd slots slotl slotl slof2 slot3 slotd slots
Read Execu Execu Execu Execu Execu Read Execu Execu Execu Execu Execu

| FRead and execute 5 short instructions | Fead and execute 5 short instructions |

Execution Cvcles of Long Instructions

vy

slotl slotl slot2 slot3 slotd slots
slot0 slotl slotD slotl slot? slot3
Read Execu Execu Execu Execu Execu Read Fxecu Read Fxecu Fxecu Fxecu

Read and
execute 1 long
instructions

| Read and execute 5 short instructions Read and execute 5 short instructions

Figure6. Instruction Exection Timing
NOP and RET instructions can be in any of the &sfoa program word. When

these two instructions are executed, “slot0” wdlthe next slot, and the next program
word will be fetched from memory and then executeBxtra NOP instructions filled

12

in a program word by a compiler do not waste eglivak cycles.

Under most circumstances, fetching the next programna can be overlapped with
other machine instructions, and “slot0” can be éditio save execution time.
However, an explicit “slot0” to fetch the next pragh word allows servicing real
time interrupts with very little extra hardware ovead. In “slotQ”, interrupt pins
are examined. If not all interrupt pins are O andrrupts are enabled, the non-zero
5-bit pattern presented by the interrupt pins akem as the address of a subroutine
call, and execution is transferred to one of tlorations between 1 and 31. In
memory, Location O contains the reset vector, andtlons 1-31 contain 31 interrupt
vectors.

Interrupt is a big issue in microprocessor desigriyou are familiar with early
microprocessors, you might remember that the 80&9rupt controller in the 8080
microprocessor family was as complicated as th® 838Ilf. Here | provide a very
simple solution. Itis not a “be all, do all” stilen for interrupts, but it gives you
something to start with.

13

Chapter 3 eP32 Instructions

3.1 Instruction Classes

The eP32 executes a small but comprehensive seadiine instructions. There are
two types of machine instructions. A long instrothas the following format, with
a 6-bit instruction field and a 24-bit addressdiel

| 00| cccccc | amaaaa| aamaaa aaadpa aadaaa

When executing a long instruction, the lower 24-bitthe P register are replaced by
the contents of the address field so that the pdgram word will be fetched from a
new address. Long instructions have 24-bit addrelsts, which allow branching
inside a 16M-word memory page. If you have to juman address outside of the
current memory page and in the full 32-bit addregspace of 4G words, you must
first load a 32-bit address into the T registestpit on return stack, and then execute
a RET instruction. This method allows you to juto@ny memory location.

The short instructions are 6-bit in width, and Bhsinstructions can be packed into
one program word as shown in the following format:

| 00| ccccec | ceccec | ceccec| cecced cececk

The top two bits in a 32-bit program word are ne¢di Experienced CPU designers
will find these bits useful in extending the instiion set of the eP32 CPU.

As an instruction code of the eP32 has 6 bitsgtban be 64 instructions. We have
defined only 27 instructions in the eP32, leavitenty of room for sophisticated
designers to add custom instructions for specpjaliaations.

The complete instruction set is shown in AppendioRyour reference.

eP32 instructions can be divided into five classes:

Instruction Class Instructions

Transfer Instructions BC, BRA, BZ, CALL, NEXT, RET

Memory Access InstructionsLDI, LDX, LDXP, STX, STXP

ALU Instructions ADD, AND, COM, DIV, MUL, RR8, SHLSHR,
XOR

Register/Stack Instructions| DROP, DUP, NOP, OVEBPPPUSH, SWAP, TX,
XT

Miscellaneous Instructions El

Transfer instructions BC, BRA, BZ, CALL and NEXTedbng instructions with a
24-bit address field. These instructions allowa@gpam to branch to a new location
inside the current page of memory. A page is 16dids in size. The current page
is where the current program word resides.

14

Names, binary code and function of these instraetare listed below, sorted by
instruction code.

—J

Instruction |Code Function

BRA 000000 Branch to address contained in addield.

RET 000001 Return from a subroutine to calpnggram. Pop retury
address from return stack and deposit it in P.

BZ 000010 If T=0, branch to address in address field; elsginae.

BC 000011 If Carry is 1, branch to addressdidress field; else
continue.

CALL 000100 Push address in P on R stack, aaddh to address in
address field.

NEXT 000101 If R is not O, branch to addresaddress field, and
decrement R by 1; else pop R stack and continue.

El 000110 Enable interrupts.

LDXP 001001 Push T on S stack; read data wondt@d to by X into
T. Increment X by 1.

LDI 001010 Push T on S stack; read data wordted toby P into T
Increment P by 1.

LDX 001011 Push T on S stack; read data womdted to by X into
T.

STXP 001101 Store T into word pointed to byintrement X by 1.
Pop S stack to T.

RR8 001110 Rotate T right by 8 bits.

STX 001111 Store T into word pointed to by XpFS stack to T.

COM 010000 Complement T (1's complement).

SHL 010001 Shift T left by 1 bit.

SHR 010010 Shift T right by 1 bit.

MUL 010011 Multiplication step. If X(0)=1, adsito T. Shift T:X
pair right by 1 bit.

XOR 010100 Pop S stack and XOR itto T.

AND 010101 Pop S stack and AND it to T.

DIV 010100 Division step. If T+S produces argashift (T+S):X
pair left by 1 bit and set X(0); else shift T:Xtidfy 1 bit.

ADD 010111 Pop S stack and add Sto T.

POP 011000 Push T onto S stack. Pop R statk to

XT 011001 Push T onto S stack. Copy X to T.

DUP 011010 Push T onto S stack. T remains urgdth

OVER 011011 Push T onto S stack. Copy origioatents of S to T.

PUSH 011100 Push T onto R stack. Pop S statk to

TX 011101 Copy T to X. Pop S stack to T.

NOP 011110 No operation.

DROP 011111 Pop S stack to T.

15

All other instructions are short 6-bit instructiondJp to 5 short instructions can be
packed in to a single 32-bit program word. Howewdren the RET instruction is
executed, execution is transferred to the addises=dson the return stack, and
subsequent short instructions in the same progrard are ignored. NOP behaves
similarly so that extra NOP instructions filledbg the compiler are ignored.

In many instances, a program word cannot be fikgd useful short instructions,
because the next instruction is a long instructzmg the rest of the current program
word must be filled with NOP instructions. Instezdvasting time to execute these
NOP instructions, the instruction sequencer in eRiiZzabandon the current program
word, immediately fetch the next program word axelceite it when it encounters the
first NOP instruction. However, the user doeshete to worry about this, because
the compiler automatically packs as many shortuiesibns into a program word as
possible. Only when the compiler must start a lwagsfer instruction does it fill
the current program word with NOPs.

3.2 Transfer Instructions

Instruction | Code Function

BC 000011 If Carry is 1, branch to addressdidress field; else
continue.

BRA 000000 Branch to address in address field.

BZ 000010 If T=0, branch to address in addfiedd; else
continue.

CALL 000100 Push the address in P on R staukjbsaanch to address
in address field; else continue.

NEXT 000101 If R is not 0, branch to addresaddress field, and
decrement R by 1; else pop R stack and continue.

RET 000001 Return from a subroutine to calpnggram. Pop return
address from return stack and deposit it in P.

BRA is an unconditional branch instruction. Itfches to a location in the current
memory page of 16M words. BZ is the branch on mestruction. It branches to a
new location when the lower 32 bits in T are all @therwise it is a NOP. It is used
extensively in FORTH to construct IF-ELSE-THEN brhrstructures, and
BEGIN-UNTIL and BEGIN-WHILE-REPEAT loop structures.

BC is the branch on carry instruction. It brancteea new location if the carry bit
produced by adder in the ALU is set. Otherwise & NOP. This instruction is not
used in compound commands, but is used to implemany primitive commands
where extended precision integer arithmetic openatrequire a carry bit.

CALL and RET are used to do subroutine nestinguamtesting. The eForth
software system uses a Subroutine Threading Modl.compound commands are
defined as subroutines.

The NEXT instruction reduces a looping operatioa gingle cycle instruction. In
eForth, one enters a FOR-NEXT loop structure byhjmgsa loop count into the R

register. By adding auto-decrement and zero-détections to the R register, it is
possible to implement NEXT in hardware as a siegtde machine instruction, and

16

thus optimize counted looping operations in eForth.

3.3 Memory Access | nstructions

Instruction | Code Function

LDI 001010 Push T on S stack, read data wondt@d by P into T.
Increment P by 4.

LDX 001011 Push T on S stack, read data word pointed by XTintc

LDXP 001001 Push T on S stack, read data woitgd by X into T.
Increment X by 1.

STX 001111 Store T into memory pointed by XpFostack to T.

STXP 001101 Store T into memory pointed byn¢rément X by 1.
Pop S stack to T.

The P-series microprocessor addresses memory msvedmhatever the width is of
program and data words. The eP32 instructionssetraes 32-bit addresses and
32-bit program and data words. It does not addrgss in memory.

The LDI instruction reads the next word in prognam@mory and pushes it on the data
stack. The word address is in the P register. Fhegister is auto-incremented to
skip the data word. LDI allows literal integershi® stored in programs and read into
the CPU at run time. Literal integers are veryam@nt constituents of programs,
and LDI instructions optimize their storage andggsa

The LDX instruction loads a 32-bit word from memadoythe T register. STX stores
the 32-bit word that is in the T register to a whodation in memory. The memory
address is in the X register.

LDXP and STXP are like LDX and STX, respectivelycept that after memory
access, the X register is auto-incremented. Auwtceimenting the X register allows
consecutive memory locations to be read or writtéh minimal overhead.

3.4 ALU Instructions

Instruction | Code Function

ADD 010111 Pop S stack and add it to T.

AND 010101 Pop S stack and AND it to T.

COM 010000 Complement T (1's complement).

DIV 010100 Division step. If T+S produces argashift the
(T+S):X pair left by 1 bit and set X(0); else shifiX
left by 1 bit.

MUL 010011 Multiplication step. If X(0)=1, adsito T. Shift the T:X
pair right by 1 bit.

RR8 001110 Rotate T right by 8 bits.

SHL 010001 Shift T left by 1 bit.

SHR 010010 Shift T right by 1 bit.

XOR 010100 Pop S stack and XOR itto T.

In the original MuP21 design, only COM, SHL, SHR\NB, XOR, and ADD

17

instructions were defined. Other logic and arithmeperations were implemented
in terms of these basic instructions. In the eR82L, DIV and RR8 are added.

COM, SHL, SHR, and RR8 are unary operations ol tregister alone.

COM does one’s complement on T register. SHL sliife T register 1 bit to the left.
SHR shifts T register 1 bit to the right.

RRS8 rotates the contents of the T register toitjle by 8 bits. This instruction is
very useful in a word-addressing CPU like the eP3Rallows individual bytes in
memory to be accessed with minimal effort.

ADD, AND and XOR are binary operations on the T &wkgisters. They pop the
data stack and discard the data in the S register.

ADD adds StoT. ANDandsStoT. XOR exclusive 8to T.

OR is not implemented as a machine instruction.s ithplemented in software
using De Morgan’s theorem. In many cases, XORbeansed to perform OR
functions.

MUL and DIV are ternary operators, involving theSTand X registers. MUL is a
muliply step instruction and DIV is a divide steystruction.

Multiplication and division are important arithmebperations frequently used in
computation-intensive applications. It is possiblénplement a full

multiplier-adder for DSP applications. Howevefast multiplier-adder requires a
large number of gates and significantly increaseggp consumption. In the eP32, a
multiplication step instruction, MUL, and a divisigtep instruction, DIV, are
implemented. They make use of the 32-bit addershifter already existing in the
ALU. \Very little hardware is added, and very étthdditional power is needed.

In the MUL instruction, the T and X registers aomsidered a 65-bit right-shift
register. Initially, a partial sum is loaded ireth register, a multiplier in the X
register, and a multiplicand in the S register. th# least significant bitin X is 1, S is
added to T, and the resulting T-X pair is shifteght by 1 bit. If the least significant
bit in X is 0, T is not changed, and the T-X paishifted right by 1 bit. This MUL
instruction is repeated 32 times, after which th¢ fegister pair will contain a
double-word product of X*S +T. The MUL instructiamshown in the following
diagram:

18

X0=1, right shift (T+5):%
X0=0, right shift T:X

— T or (T+5) —= b4 =0
T32
Carry
3

Figure7. Mulitlication Step

In the DIV instruction, the T and X registers aomsidered a 65-bit left-shift register.
A double integer dividend is in the T-X registeirpand a negated divisor is in the S
register. Inthe ALU, the sum of S and T is alwegmputed by an adder. If the
carry bit in the adder is 1, S is added to T, d&edrésulting T-X pair is shifted left by

1 bit.

shifted left by 1 bit.
in the X register.

If the carry bit in the adder is O, T istmhanged, and the T-X register pair is
In either case, the cartyi® shifted into the least significant bit
After repeating the DIV insttion 32 times, the X register

contains quotient, and the T register containsfZk@remainder of the division.
The DIV instruction is shown in the following diagn:

Carry=1 left shift (T+50K
Carty=0, left shift T:XX

el T or (T+3) — X
T32
Carry
3]

Figure8. Division Sep
3.5 Register/Sack Instructions
Instruction | Code Function
DUP 011010 Push T on the S stack. T remainkamged.
DROP 011111 Pop S stack to T.
NOP 011110 No operation.
OVER 011011 Push T onto S stack. Copy origioatents of S to T.
POP 011000 Push T onto S stack. Pop R statk to
PUSH 011100 Push T onto R stack. Pop S statk to
X 011101 Copy T to X. Pop S stack to T.
XT 011001 Push T onto S stack. Copy X to T.

DUP, DROP, SWAP and OVER are the 4 classic staekatipns.

DUP pushes the T register on the data stack.

19

DBPB the data stack back into T.

SWAP exchanges T and S, the top two elements ocotieeptual data stack.
OVER duplicates S, and pushes itinto T.

Both SWAP and OVER copy the second item-dh®stack to the top of the stack.
The difference is that OVER preserves the secam ih S while SWAP destroys it.
We chose to implement OVER in hardware, and leAMABto software.

POP pops the top item on the return stack and gutsbato the data stack. PUSH
pops T from the data stack and pushes it ontoefuerr stack. These operations are
best viewed by considering return stack/R/T/S/dtdak as a giant shift register array,
with the three-register R/T/S window at center,asqa to the ALU. The POP
instruction shifts this shift register array to tight, and the PUSH instruction shifts it
to the left.

The TX and XT instructions are used to manage thegister. The X register is
used to read data from memory and write data toongm It usually holds a
memory address. However, it can be used as abgratl register to save and
restore the T register. TX pops the data stackcapies T to X. XT pushes T onto
the data stack and copies the contents in X to T.

3.6 Miscelaneous | nstructions

Instruction | Code Function

El 111110 Enable interrupts.

The eP32 provides the simplest mechanism to supgalrtime interrupts. Five
input pins on the eP32 package are allocated &ttirae interrupts. If interrupts are
enabled, and at least one of 5 interrupt pins izam, a subroutine call to one of 31
locations in memory address 1 to 31 is forced @nGRU in the slotO clock cycle.
The address is selected by reading the signalseoh interrupt pins, and
zero-extending it to form an address pointing tbeamory location between 1 and 31.
By filling proper branch instructions in memory &iions 1 to 31 as an interrupt
vector table, this microprocessor system can respmexternal interrupt requests in
real time.

This simple scheme allows 5 external devices &rinpt the CPU directly. If
additional decoding logic were added, it could smrinterrupts from 31 external
devices. With only 5 interrupt devices, the eP&R espond to simultaneous
interrupts from multiple devices, by constructihg interrupt vector table properly,
and inserting the El instruction properly in intgat service routines. It is assumed
that after booting, the microprocessor system gomés itself so that page 0 of
memory is in RAM memory, and software can changertkerrupt table dynamically.

When servicing an interrupt, further interrupts disabled and an interrupt
acknowledge signal is asserted. Interrupting desvghould remove their interrupt
requests when seeing interrupt acknowledge. Adterrupt service is completed,
the interrupting service routine, or the main pemgmust execute an El instruction to
enable future interrupts. It is a trivial matteraddd a complement instruction DI to
disable interrupts, but it seems to be superflaube moment.

20

Chapter 4. Implementing eP32 on the Brevia Kit

4.1 TheBrevia2 Development Kit

| had opportunities to use FPGAs from Xilinx, Aleand Actel before. |
implemented various versions of the eP32 on aheim. | was not particularly
impressed with these companies and their FPGA ptedu FPGA chips were
generally expensive, development boards were marensive, and development
software systems were even more expensive, bultyianally slow.

When Lattice Semiconductor Corp announced its Br®avelopment Kit at $49, |
got excited. A friend Masa Kasahara loaned méihis | bought 2 more when
Lattice had a special sale for $29. | downloadedrée development software
iISpLEVEL and started porting the eP32 to the LaXie2-5E-6TN144C FPGA chip.
Working intensely for three weeks, | succeededkeitigg the eP32 to work. The
XP2-5E has enough logic cells to implement the eBBPR core, a UART, and a
general purpose I/O port. It also has enough RA&Mary to host the eForth
operating system. The nicest thing is that its RékImory is mirrored in on-chip
flash memory, and the entire eP32 system is cagdldima single XP2-5E chip. All
other FPGAs required external components to hashglete microprocessor system.
The XP2 is my dreamed SOC chip.

My only complaint is that its software developmsystem, ispLEVER, is too bulky.

It required me to free up 5 GB of disk space tdalh#, with accompanying
Synplicity synthesis tools and Aldec ActiveHDL silation tools. One other thing is
that the Brevia Kit requires a COM port and a gdatgrinter port on my PC for
communication and for a JTAG interface. It is adiig deal for me, because | have
this old desktop computer, which has these ports.

Recently Lattice replaced the Brevia Kit with Bra®iKit, and upgraded ispLEVEL to
Diamond IDE. Two cables connecting to the COM pndter ports were replaced
by a single USB cable.. The eP16r implementasaested and verified on the
Brevia2 Kit, with Diamond 1.4 IDE system. | haduble installing the USB drivers
on on of my PC, but that's another story.

Here is a laundry list of components included im Brevia Kit:
LatticeXP2 FPGA: LFXP2-5E-6TN144C

2 Mbit SPI Flash Memory

1 Mbit SRAM

A single USB cable for programming and communicatio
2x20 and 2x5 Expansion Headers

Push buttons for General Purpose I/O and Reset

4-bit DIP Switch for user-defined inputs

8 Status LEDs for user-defined outputs

Since the XP2-5E has 166K bits of embedded blockMRIAdo not need the external
SPI flash memory and SRAM. The USB interface dbtumplemented two
devices: an UART port for communication, and a fpelrport to program the FPGA.
The LEDs, push buttons, and switches are very ugafdemonstrations. This kit

21

has everything | need to demonstrate my eP32 miacegsor design and the eForth
operating system.

Here | will show you steps to get the eP32 impletegion my Brevia2 Kit and to get
the eForth system to run, talking to HyperTermorala PC.

You have to download the Diamond IDE suite from wiatticsemi.com to
implement the eP32. You need the Diamond SysteM/indows, the Synplify
Synthesis Module, and the Aldec Active-HDL LattiMeb Edition Module. They
take up a huge amount of disk space. Then you toeapply for a license from
Lattice. Lattice also provides many examples fmx fo evaluate. You may want
to look at their Demo Application, which containkatticeMico8 Reference Design.
LatticeMico8 is an 8-bit microprocessor. Only afgeu studied LatticeMico8 will
you appreciate that the eP32, a 32-bit micropraresan be simpler than an 8-bit
microprocessor with conventional architecture.

4.2 Synthesizethe eP32

You have to install Diamond first. When Diamondigsand running, open a new
project. Name this project eP32, if you do notéhabetter name. A New Project
Wizard will help you set up this project. You haweselect LatticeXP2-5E as your
target device and VHDL as your programming languag¢ow, import the following
files into the above project.

File Module

ep32_chip.vhd Top level microprocessor system
ep32.vhd eP32 CPU module
ram_memory.vhd RAM memory module

uart.vhd Serial UART module

gpio.vhd General purpose parallel 10 module
ep32q_tb.vhd Test bench for the eP32 system|

In the Diamond Project panel, select the File tabt You will see that all the above
files are imported as shown in Figure 9.

Click the Process tab in the Project panel, andwiiisee the modules arranged in a
hierarchy as in Figure 10:

22

File Edit View Project Design Process
P-E-HIE w
ZESESEGREE
File List =

b

Tools

C=re

Window Help

| B E R A S !
B usRS

| B stertPage 1 |

“ @ ep3Z_xp2 5
Wl LFXP2-5E-5TM144C
4 | Strategies
EE‘ Area
B 1O Assistant
r;)}' Quick
B Timing
Strategyl
- EE ep32_xp2
4 |, Input Files
M ep32_xp2/source/gpio.vhd [w
Wi =p32_xp2/source/ram_memo
M ep32_xp2/sourcefuartahd [w
¥ ep32_xp2/source/ep3Zvhd [w
ﬁ ep32_xp2/sourcefep32_chipw
Svnthesis CcmstraintI Files

4] 3

|+

m

4

Fl

4

4

| Process ‘ File L-|st;. ‘

Output

Design Summary

ep32_xp2

7 Project
B Project .
7 Process Rep..,
v ¥ Synplify..
B Map
i ’&l Place &....
“E Signal/P..
» &) JEDEC
0 Analysis Re...
b ’E] Map Tra...
?;:E] Place & ...
[’5 /O Timi...
7 Tool Reports
[vosso..

m

[™ Generat.. ~

Mpdule Name: ep32 xp2 5 |Synthesis: SynplifyPro

Implementation | ep32_wp2 Strategy Name: |Strategyl 1

Name:

Last Process: State: |

Target Device: | LFEP2-5E- Device Family: |LatticeXP2
SIN144C

Device Type: LFXEF2-5E Package Type: TQFP144

Performance 5 Operating COM

grade: conditions:

Logic ep32_xp2.1lpf

preference

file: =

Starting: "prj_project ocpen

"C:/flacec/diamond/ep32q_xpZ S5/ep32_xp2_ 5.1df"™"

|TdCansoIe | Qutput | Error I Warning

Ready

Mem Usage: 38,040 K

Figure9. Diamond IDE, FileList

File Edit View Project Design Process Tools Window Help

==

N-E-Hd g 2w
CECBLE%TE

Process

BEBR{AQL

(5]
>

« Synthesize Design
L Synplify Pro

% Translate Design
4 2 Map Design
2 Map Trace
[& Verilog Simulation File
[¥] $& VHDL Simulation File
Place & Route Design
]
[& VO Timing Analysis
Export Files
! [¥] & IBIS Model
[#] & Verilog Simulation File
[¥] ¥ VHDL Simulation File

':‘., Place 8 Route Trace

<

Py

+ JEDEC File

Process | File List

Output

=S
x| | € startPage [
ep32_xp2
Dresign Surnmary
4 [Project
. @ Project... Module Name: ep32 xpZ 5 |Synthesis: SynplifyPro
4 [Process Rep.. s
i g Synplify. Implementation |ep32 xp2 Strategy Name: |Strategyl
. Name:
v B Map
’?‘:‘ Place 8... |E Last Process; State: L
] Signal/P.. Target Device: | LFXP2Z-SE- Device Family: |LatticeXE2
B JEDEC SIN144C
4 BB AnalysicRe.. Device Type: |LFXP2-5E Package Type: |IQFP144
?E] Map Tra..,
BT Place & Performance 5 Operating oM
g = 10 T\mi::: 4 |grade: conditions:
a [0 Tool Reports Logic ep32_xpl.lpl
D 0SSO ... preference
Files
™ Generat.. ~ 7

Starting: "prj_project open

C:/lscc/diamond/ep32q xp2 5/ep32_xp2 S5.1df""

|Td Console | Qutput | Error l Warning

Ready

Mem Usage: 37,860 K IJ

Figure 10. Diamond IDE, Process View

As | ported the eP32 design from a project usingltara FPGA, ep32.vhd, uart.vhd,
and gpio.vhd all remain unchanged and Syplicity pit@s them correctly.
ram_memory.vhd was changed to use the RAM_DQ maquloladed in the Diamond

system.

If you change the eForth system and getetarget image in mem.mif,

you have to generate a new ram_memory.vhd filthaothe new eForth target image

23

can be included in ram_memory.vhd.

To change ram_memory.vhd, click Tools>IPexpresavoke IPexpress. Select
RAM_DQ module. Fillin a file name of ram_memonydaselect VHDL as module
output, and you get a screen like Figure 11.:

« Lattice Diamond—IP_ ﬁ - C=

File Edit View Project Design Process Tools Window Help
Pr-BrHd S e dhh aERASA S E Ao EEE-g
ZELBRLRGCHEGR=USsRa Y BEEEE @
Process g X | i3 StartPage [| Reports [| BS rexpress [| &[]
a ¥ Ey_nthesiz.e Design @ 9 % ,-3 3‘5 251
%% Synplify Pro
I »
%L Translate Design Name RAM_DQ 7.1 -
4 Map Design 4 2 Mermory_Modules ,
@ : Wi Tt 4 3 Distributed_RAM Macro Type: Module Versiom: 7.1
w2 Verilog Sirmulation File @: Distributed_DPRE Module Name: RAM_DQ
[@ 2 VHDL Simulation File b Distributed_ROM) S
4 2 Place & Route Design E Distributed_SPRA Project Path: C:/lscc/diamond/ep32g_xp2_5 Browse =
[#] & Place & Route Trace 4 %% EBR_Components File Name: ram_memory
&2 imi i RAM_DP
. - Lj"O Timing Analysis @: L Module Output; |VHDL
4 2 Export Files ink RAM_DP_TRUE
@] 2 BI5 Model { RAM_DQ Device Family: LatticeXp2 4
m—_——) 3 e ROM = —
[i_\ : Verilog Simulation File E | Part Mame: LF¥P2-5E-5TN144C
[@ 2 VHDL Simulation File It FIFO |
[& JEDECFile &4 FIFo_DC 7 Synthesis: Synplifyero i
g RAM_Based_Shlft_1 FFO.DC | = S
) — -
Process | File List | Ml b || %Conﬁgurahon |;@Ablt|
Output 8 x
Starting: "prj_project cpen "C:/lscc/diamond/ep32q xp2 S5/ep32 xp2 5.1d4f""
|Td Console | Output | Error l Warning
Ready Mem Usage: 42112 K
L E—=

Figure1ll. RAM _DQin IExpress

Click the Customize button, and you get a RAM_DQ@figuration panel, like that
shown in Figure 12. Make the following selections:

Memory depth: 4096
Memory width: 32 bits

No output latch

Memory type: synchronous
Optimization: time
Initializing file: mem.mif
File type: Hex-address

Click the Generate button and a new mem_memorsodyzed. There is a
ram_memory_templ.vhd file containing the VHDL canfration code you can copy
and paste into ep32_chip.vhd.

In the Project panel, click Process tab and seléthe process boxes, as shown in
Figure 13.

24

f = = —
HE Lattice FPGA Module —- RAM_DQ - o)

Configuration |Generate Log |

RAM_DQ Canfiguration \ Advanced \

— Clock Specify the size of the Bak_D0O

— ClockEn) PR— P—
Addrezs Depth | 4036 [2-131072) Data Width |32 [1-25E6]

& [Evisbie Oiitpik Reg

Q[0 nable Output Register
—>WE I Provide Byte Enables BusSize [3 2wl
! Address11:0] Reset Mode Azunc & Sync

Dptirnization T Area * Speed

| [1ata[31:0 | -

atal31:0] temary File |mem. mif ‘“_]

Memory File Format: € Binary © Hex & Addressed Hex

E stimated Resource Usage:
EBR: 8 [Emable ECC [not supported for Data Width > 64)

w6 Stages for @ and ERROR Dutputs]U— ﬁ

[Import IPX to Diamond project Generate Close 1 Help

Figure12. RAM_DQ Module Configuration

+ Lattice Diamond - REW-T ﬁ = PP

File Edit View Project Design Process Tools Window Help

A-B-HIBraydh eERAAAAR

ZEGECREYS T HEJG Jols T @
Process & X | [} StartPage [
g Synthesize Design ep32_%p2
2 Synplify Pra Faan®
2 Translate Design ESIQT MO g
4 T Map Design 4 [Project ‘
-
& ;.', Map Trace s ;a PmJT;'t Mpdule Name: ep32_xpZ_ 5 |Synthesis: SynplifvPro |
2 Verilog Simulation File 4 [T Process Rep... =
b p : lementation |ep32 up2 Strategy Name: |Strategyl ‘
[@ 2 VHDL Simulation File E) Synpliy... ;‘;’fr’e: i L a¥
4 2 Place & Route Design %Map e o
[#] & Place & Route Trace —| Place &... |5 ittt i .
2 /0 Timing Analysis ;El Signal/P.. Target Dewvice: | LFXP2-5E- Device Family: |LatticeXP2
4 7 ExportFiles & JEDEC STN144C
@] & IBIS Model 4 B %a')’”s Re.. Device Type: |LFXP2-SE Package Type: |TQFP144
@ 2 Verilog Simulation Fil =1 Map Tra...
F} : - 3 M a. o . i —'E Place &... Performance 5 Operating COoM
E‘ : VHDL Sirmulation File ,5' 0 Timin, — grade: conditions:
W JEDEL File =] imi...
[- 4 0 Tool Reports Logic ep32_xp2.1pf
D /0 S50... Exfifemnc:e
= file: =
Process | File List [™ Generat
Output 8 x

Starting: "prj_project cpen "C:/lscc/diamond/ep32q xp2 S5/ep32 xp2 5.1d4f""

|Td Console | Output | Error l Warning
Ready Mem Usage: 45408 K

Figure13. Select Synthesis Process

Pull down the Process Menu and select the Rerubuatbn. It invokes Synplicity
Synthesis tools to analyze and to synthesize #aggd. Synplicity will analyze all

25

VHDL files and synthesize this design accordinglifter each process step, a green
check mark is places after each selection boxdiwate that this step is completed
successfully.

If you are to change this design, this is probdbéy/place you will spend lots of time
editing and adding to your VHDL files and then ®&ynplicity Synthesizer. The
synthesizer is very generous in sending you waraimjerror messages. Look up
each error message and try to fix the problem ur WHDL files.

4.3 Simulatethe eP32

Lattice bundles Active-HDL simulation tools fromdhdc in the Diamond system.
Active-HDL itself is a very complicated system, ayali need to spend considerable
time learning it.

In the older ispLEVEL IDE, you need a test benchDIHile to simulate your design.
It can generate a template of a test bench foMdiyL module in your design, to
help you build the test bench. In Diamond, you specify simulation functions to
input signals directly, and a test bench file is meeded.

Pull down the Tools Menu and select the SimulatMrard button. The
Active-HDL simulator starts and shows you a seoiesindows. One window asks
you for a project name. Another asks you to comfyjour RTL simulation level.
Just click the Next> button until the simulatoaidually loaded. Then you get a
screen like Figure 14.

PR Active-HDL 83 (simul 5, simul_5) - untitled.awe - _am ey ElETE
File Edit Search View Workspace Design Simulation Waveform Tools Window Help o o=
BrEld znE @ oSy O 22 28 e o ow 100024 »
e O ek ALAARAR « v MM A A ARD"
FE ep32_chip (behavioral) LJ Signal name I‘ufalue | ' ' . o . : g0 . Cng
OjUnsorted =

Workspace "simul_5": 1 des
- simul_5 I
L& Add New File

1 fEa) %Jgpio.\.rhd

2 i+ Bl ram_memory.vhd

3 =& uartvhd

4 =&/ epa2vhd

5 @B ep32_chipvhd
#% Add New Library
[r‘ simul_5 library

il work library

Cursor 1

a4

4 m 2 b I I . + 1.« O. W
: - O No database connected. INO_SIM

[Files /BFStuc... @Reso.../ |l fibraries s untedawe e

| [EcunsuE

NUM [INS

Figure14. HDL Simulator

On the Design Browser panel to the left, click 8teucture tab at the bottom, then

26

select the eP32_chip(Behavioral) model button,yandget a list of signals as shown
in Figure 15.

. ammmc

File Edit Search View Waorkspace Design Simulation Waveform Tools Window Help fhow o=
BrE2H sz @O ngy O%R|(O L2 e roe 00 8
(HO W QA RABR « v MM 43 AARE"
|E ep32_chip (behavioral) j Signal name | Walus | i : : 400 : E i s00]] : ng
R 1T ep32._chip (behavioral) JENIES| =
—[@ stdstandard (m
—[& std.TEXTIO
B iceestd looic 1164 [T
4] |
MName |Value £
= aclk Unavailable £
B arst Unavailable
& interrupt_i Unavailable
B yart_i Unavailable
® yart_o Unavailable
® acknowledge o Unavailable '
= joport Unavailable - - I
o om_rst Unavailable Gt} " I I e g I‘“I °|'_;.
< 1 | 3 |
[Files ;3% Struc.. /iReso../ fl libraries & untitled awc

r’g__,unbul'e i

[Inum Ns

M=

m’%h& simul 5, simul_3) - unti

E — . —— J— [= - R
File Edit Search View Workspace Design Simulation Waveform Tools Window Help o o=
|'|b"‘ﬂ|ﬁ BE B BONSR T O D L B8 e e s B
HO S LS AR AL« Ml e ABE
I.E ep32_chip (behavioral) Signal name |VahJe | Coe D0+ e voE00 ¢ toq200 ¢ 800 0 0 fg
w-4F ep32_chip (behavioral) ~ ~ nihock | Y])
'l|| - stastandard (o o | 2
u otd: 0 o uert o u
|] ot [nr memer... OO
—idl ieee.ctd looic 1164 T T
S armemor.. | CUUBUUY
El T ¥ s I |
_ : uuy
! =1 oo |
I Marme |\|’a}ue £, | uuuuuy |
B aclke U H
i B arst u
"l ® = interrupt_i uu —
B yart_i u
]
|| ©uarte u
fl ® acknowledge o U
|| ® = joport uuuy
| o — u Cursor 1
= = 4
W i | r 4
(2 Files ¥ Struc../CReso../ || @ lbraries . untitled awe
I‘E_L,UITST}TE i
| UM NS |

-— .

Figure16. Select Simulation Signals.

27

Now, pull down the Simulation Menu and select thiéidlize Simulation button. It
will change the values of all the signals in th@2Rchip design from “Unavailable”
to “U” and “X”. Select the signals you like to simate. | reccomand that you
select the following signals:

Aclk

Arst

Uart o
Memory_data o
Memory_data i
Memory_addr
System_addr
System_data_o

Right chick on the selected signals and select “tadd/aveform” option and you will
see the screen as shown in Figure 16.

Before running the simulation, you have to spetify input signals aclk and arst.
Right click the aclk under “Signal Name” and selihe “Simulators...” option in the
pop-up menu. The Simulators window pops up. $&@&ock” in the “Type”
panel, and you get the screen shown in Figure 17.

- -]
[l Stimulators 7 25
Signals | Hotkeys | Predefined |
Signals: Type:
Mame Type Forces a clock pulse of a specific frequency and
Glack Clock S e
Llack {0k : 100ns :
: :
Jo s
: NA0E
Farmula @ E :
010 Frequency: [10MHz
110
Walue
[Display paths Save Strength: O—_lven'ide -

L o

Figurel7. Simulate Master Clock

Click the Apply button and then the Close buttocaafirm that you apply a 10 MHz
clock signal to aclk input.

Right click the arst signal under “Signal Name” aedlect the “Simulators...” option
in the pop-up menu. The Simulators window pops Upelect “Formula” in the
“Type” panel, and specify that the reset signattstat “0” level for 1000 ns and then

28

changes to “1”. Now you get the the screen shawfigure 18.

Click the Apply button and then the Close buttoraafirm that you apply the proper
reset signal to arst input.

i« N

[l Stimulators ? P

Signals | Hotkeys | Predefined |

Signals: Type:
Mame Type @ Forces a waveforr defined by a textual formula.
¥ aclk Clock
P | ., e D ine ofset [0
o

— walue: |1 tirne offzet: | 1000 nz
f(t) wvalue: time offset;

Formula
repeat above sequence eveny:

o010 Enter farmula: Accept
110 [00ns, 11000 ns [~ Active-CAD
Yalue format.

[Display paths Save Strength: lm

L ~

Figure18. Simulate Master Reset

Now, pull down the Simulation Menu and select tmRIntil button. Enter “1 ms”
in the data box to let the simulator run for 1 ms:

[Run Until) |

E nter time vou want to run simulation uakil,
Drefault time unit iz picogecond.

[] |'I ms

k. | Cancel

b

Figure19. Select Simulation Time

Click the OK button and the simulator produceswha&eforms as shown in Figure
20.

29

Ve ﬁ% o i et vee T — = = =g
% Active-HDL 8.3 {simul_5 simul_5) - untitled.awc | =R
: S . — - — - - s TR S
File Edit 5earch View Workspace Design Simulation Waveform Tools Window Help g o» ox
Br-red zaE @00 na@y Q% @ 528 | rr e wnHe n < ==
BesignBroveel G RO S AT SRR« o D et e B g
Fﬁ ep32_chip (behavioral) _‘J Signal name l\«’alue ! Cov o200 v+ 400 v B0+ o0+ i
w-{F ep32_chip (behavioral) ~ retoesd 1ia8 Tims 2!
i—ﬂ std.standard]|
@ sta.TEXTIO suo | 0 — 1T 1 —1 11l |
| = [ar memor... ... T4FOSE
—M@ iceestd lonic 1164 -
i | o T [or memaor... | |
[nr memar... oD
I arsystem.. | 00000009
Mame IVaIue [# ar system.... .. T4FOSE
e aclk 0
f o arst 1
[+ & interrupt_i uu =
! B uart_i u
® yart_o 0
® acknowledge.o 0
= joport 7777 -
& " 0 Cursor 1 fm~
B R z < | b [l o[
4| 1 | b T T
2 = AL |waveasdb
[=) Files ;% Struc../CReso.../ || libraries s untitled.awc
\ o rECunsuETT i
| [cap [NUM NS
8 == =

Figure20. Simulation Waveforms

Look at the signal uart_o. Itis showing that Eg82ds out a Carriage Return
(ASCII 0xD) and a Line Feed (ASCII OxA) characteiY¥ou are now assured that the
eP32 is coded correctly.

Click the Zoom In button (A magnifier glass witiaign) 12 times, and drag the
waveforms to the beginning to the left, you wileglis screen in Figure 21.

 —— e
% Active-HDL 8.3 {simul 4 simul_4] - untitled.awc e T
File Edit 5earch View Workspace Design Simulation Waveform Tools Window Help 9 o» ox
B zxuE @y IONSR@TOR D LS8k r e e o (=
r— — T [SR S G T
Desion Browee | O e LD A e o B et e AR TR
Fﬁ ep32_chip (behavioral) Signal name !Value ! tooT0800 ¢ 2000 v 2000 ¢ B v 13RO ¢ 480 g
T ep32_chip (behavioral) = & lack o O e s e Pt
@ std.standard (] T
| & uat_o a u
|_ std.TEXTIO [ar memory_data_o | oA 1002000158 DO000EED GO000000 DAOO0EAT Y A0O055E W OAZIETAE
Ml iceestd lonic 1164 T =
‘l T I [nr memaory_data_i |
nr memory_addr 158 [T [650 3 B0 I
i I .:J [ar system_sddr | 00000158 00000000 Go00G0aT TOOO0RE0 Y UOUOOGEE Y OOUOUEA0 Y DOUOE
Name IVaIue - M arsystem dsta o | ..0A to 02000158 (] GOAG0000 GAO00640 TI000532 TAZIETIE
o om_clk 1
o memory_data_o 02000156 :|
[+ & memory_data_i 00000000 -
& memory_addr 158
o gystem_addr 00000158
i # roeystermn_data_o 02000156
o osystemn_read 0
Fo— - 0 Cursor 1
systerm_write L
4 J I
O] I | » i
i |2l Files ;% Struc.. /taReso../ || ff librafes i untitled awc
o rECunsuETT
[[NUM NS
LS A

Figure2l. Expanded View of the Waveforms

30

The signals memory_addr and system_addr make lbgfiog sequence of changes:
000->001->68D->68E->640->641

which show that eP32 starts at address 0 on fjasgts to COLD, which calls

DIAGNOSE. These are the correct sequence of ictsbns after eP32 starts. You

are now completely assured that the eP32 is rurcongctly.

4.4 Layout the eP32

After logic design of the eP32 is verified by sy#gls and simulation, you have to
assign input and output signals to proper pinshendP2-5E-5TN144C chip
according to the board layout of the Brevia Kittlsat you can actually run the eP32
on the BreviaZ2 Kit.

Pull down Tools Menu, and select Package View. Pduokage View, you see a
Package panel on the right in Figure 22.

Lattice Diamond - Packagm T __i_“_ 1 L@I@Iﬂ
File Edit View Project Design Process Tools Window Help
A-R-HIB pa gD &
ZEGBEORE S T HE E
Process 1B
« ¥ Synthesize Design
%L Synplify Pro
% Translate Design -f-"',l P P T e s a2 e e
- - [B
4 % Map Design [i =
o Q E: f
7] %= Map Trace B B
B :— Veritog Simulation File i :E E:
[@ %€ VHDL Simulation File S 5 H:
4 2 Place & Route Design I B H
= - 1 °H H-
!j\ : Place.&.RouteTraFe - B
[C] & O Timing Analysis - B H:
a3 Export Files - B :
. - 3
] 2 18IS Model 31 g :
I____; 'E Verilog Simulation File m EE B-
"] % VHDL Simulation File “H B
[C] & JEDECFile (B=nk] b i
Port - 5
B
DQs g
Process | File List | ¥
Output 8 x
Finish loading logical preference file
Loading logical design information
I Finish loading logical design information |
Loading device for application GENERIC from file 'mgSa2éx29.nph' in environment: C:/lscc/diamond/l.4/ispfpga. j'
|Td Console | Output | Error | Warning™
Ready Mem Usage: 74,900 K
L

Figure22. Package View of XP2 Chip

Pull down the View Menu and select Preference lBrewou get to see the contents
of the preference file eP32.pdf. It looks liketthmmFigure 23.

31

+ Lattice Diamond - Preference p‘mir q" D

File Edit View Project Design Process Tools Window Help
A-E-HFE] @y RAAQAAEE O/ EEED
PECEBLESCEEGRA=USoRSY BEEER: G

Y FL‘ RE =

Process 8 x | ‘gﬁ Start Page |'_- - | Reports ‘-_I | Package View I':'I | E‘E Preference Preview @ | 5! x|
¥ Synthesize Design COMMERCIAL 5
L Synplify Pro RVL_ALIAS "ack” "cpul/dk™; F
% Translate Design BLOCK RESETPATHS ;
@ ; BLOCK ASYNCPATHS ;
4. N Map Besign, LOCATE COMP “arst” SITE "19";
il : Map Trace LOCATE COMP "uart_i" SITE "110;
S| - = c . g LOCATE COMP “uart_o" SITE 109" ; -
E <= Veniag Sifutation Bilc LOCATE COMP “interrupt_i_0" STTE "307; 3
[%L VHDL Simulation File LOCATE COMP “interrupt_i_1" SITE "31";
4 2 Place & Route Design LOCATE COMP ‘interrupt_j_2" SITE "327;
il 2 &R T LOCATE COMP “interrupt_i_3" SITE 357 ;
B e Bl 8 Resiitelrace LOCATE COMP “interrupt_i_4" SITE "367;
[] & VO Timing Analysis LOCATE COMP Sioport_7° SITE "37°; =0

LOCATE COMP “ioport_8" SITE "50° ;

4 Export Fil
+ Export Files LOCATE COMP “oport_9" SITE "52°;

i .
L] % IBIS Model LOCATE COMP “ioport_0" SITE "46" ;
[[] & Verilog Simulation File LOCATE COMP "ioport_1" SITE "45°;
- . x - LOCATE COMP oport_2" SITE "44”;
E\ : VHDL SI.I’TILI|EtICII'1 File LOCATE COMP “ioport_3" SITE "43" ;
7] & IEDEC File LOCATE COMP “oport_4" SITE "40°;
LOCATE COMP oport_5" SITE "33";
LOCATE COMP “joport_&" SITE "38";
LOCATE COMP “iopart_10" SITE "53°; Al
Process | File List | LOCATE FOME: ®acdle® STTE "4
Output 8 x
Finish loading logical preference file -

Loading logical design information
Finish loading logical design information [T
Loading device for application GENERIC from file 'mgSa26x29.nph' in environment: C:/lscc/diamond/l.4/ispfpga.

|Td Console | Qutput | Error | Warning™
Ready Mem Usage: 76,188 K

Figure23. Pin Assignments of eP32

Signals on the eP32 chip and their corresponding @n the XP2-5E-5TN144C chip
package are listed in the following table:

Signal Pin Number

aclk 21

arst 19

interrupt_i[0] 58

interrupt_i[1] 57

interrupt_i[2] 56

interrupt_i[3] 55

interrupt_i[4] 54

ioport[7] 37
ioport[8] 53

ioport[9] 52
ioport[0] 46

ioport[1] 45
ioport[2] 44
ioport[3] 43
ioport[4] 40
ioport[5] 39
ioport[6] 38
ioport[10] 50
iloport[11]
ioport[12]
ioport[13]

TIN|F-

32

ioport[14] 6
ioport[15] 7
uart_i 110
uart_ o 109

You have to get the signals assigned to correst pitherwise, the eP32 will not work
on the Brevia2 Kit. Other minor things like clotkquency and signal delays do not
affect the implementation, except that you will ¢ of warning messages
complaining that physical layout does not meetrgrand delay requirements.

4.5 Programming eP32

The Brevia2 Kit includes a USB cable to connead C. Connect Brevia2 Kit to
your PC. If you have done the systhesis and simunlaf eP32 correctly, you can
now program eP32 to Brevia2 and test eP32.

Bring up Diamond, and open the eP32 project. &uln Tools Menu and select
Programmer. A Programmer window opens up like shatvn in Figure24.

[— - —
+ Lattice Diamond - Programmer - ep32 xp2axcf

File Edit View Project Design Process Tools Window Help
A-E-HIB eu O QERAE
PESGECESTHEEG@ =W

Process 5 X | 'f--|}| Start Page |

g Synthesize Design
2 Synplify Pro
< Translate Design
4 2 Map Design 1@
& ': Map Trace
[& Verilog Simulation File
[¥] & VHDL Simulation File
4 2 Place & Route Design
& :." Place 8 Route Trace
[/0 Timing Analysis
a3 Export Files
[¥] & IBIS Model
AR Verilog Simulation File
[¥] ¥ VHDL Simulation File
[¥] & JEDEC File

P

Enable Status Device Family Device Operation File

i LatticeXP2 LFXP2-5E FLASH Erase,Program, Verify ..p2_5/ep32_xp2fep3

| Cable and [}O Settings |

process | Flelist |

Output

Elapsed time: 00 min : 13 sec -

Operation: successful.

|Td Console Qutput | Error | Warning™

Ready Mem Usage: 29,924 K

Figure24. Diamond Programmer

From the File Name section, click the Browse buttofhe File Name window
appears. Browse to the eP16 project folder, sdtecep32_xp2.jed file, and click
the Open button. From the Operation list, chodashErase, Program, Verify, and
click the OK button.

The last button to the right on the top of the Paagmer Panel is the Program button.
Click it and Diamond reprograms the XP2 chip onBhevia2 Kit.

33

If the UART cable is connected to a COM port onBt& and HyperTerminal is
already opened and configured to 115,200 baudritst, 8 data bits, 1 stop bit, no
parity, and no flow control, you should see that ¢#32 boots up and displays a
sign-on message, “eP32q v2.05”, as shown in Figbre

“g 115200 - B FnatE
BEE REE R0 0 #Ed SHeAH

0K P
0K

eP32q v2.05

Figure25. eP32 Sign-on Message

You can now type in FORTH commands and interadt wie eForth system that runs
on the eP32 microprocessor you just downloadeldedtevia Board.

Type these commands:
: TEST1 CR ." HELLO, WORLD!" ;
TEST1

You will see that eForth produces the results asvahn Figure 26:
To demonstrate that you have full control overBinevia Board, let us do some

exercises on the GPIO port. First, here are thisters in the GPIO module, which
we can access by reading and writing to memortimea OXEO000000-0xE0000002:

Address Register Function

0xE000000Q gpio_out When written, send data to gpio port
0xEO0000001 gpio_dir_reg Select port pin direction: O-inputotput
0xEO0000002 gpio_in Read gpio port

34

“g 115200 - B FagtE
HRE REE WRID F0 @0 RE
D & & 058

4] 4 ~
0K

eP32q v2.05
: TEST1 CR ." HELLO, WORLD!" ; OK
OF
QK
TEST1
HELLO, ¥WORLD! OK
1] 4

0K

Figure26. TheUniversal Greeting

Type the following commands to configure the loBdvits in the GPIO port as
outputs and the next upper 8 bits as inputs:

HEX
FF EO000001 !

Now, you will see that all 8 LED's on the Brevia @amrned on. To turn them off,

type:
FF EO000000 !

To turn on only one LED, type:
FE EO00000 !

To read the push button switches on the Brevia dddgpe:
EO0000002 ?

FFFE is the result displayed. The lower 8 bits)(§ftow that only one LED was
turned on. The upper 8 bits (FF) show that alhpmstton switches are off. Push
down switch SW5 and type:

EO0000002 ?

The returned results change to FDFE, as closing S\I§ down bit 9 of the GPIO
port.

The above exercises leave this display on Hyperifiaiimas shown in Figure 27:

35

“g 115200 - B natE
#BEER BEE WR S0 #EO S
0O = & DB B

0K
0K

eP32q v2.05

: TEST1 CR ." HELLO, WORLD!" ; OK
1] 4

(1] 4

TEST1

HELLO, ¥WORLD! OK
1] 4

0K

HEX 0K

FF E0000001 ! OK
0K

0 E0000000 ! OK

(1] 4

FE E0000000 ! OK
0K

E0000002 7 FFFE OK
(1] 4

E8200002 7 FDFE 0K

0K

JEER 00:05:24 | YTL00 115200 8-N-1 CAPS

Figure27. 10 Exerciseson Brevia2 Kit

These exercises should be very convincing thatywme a nice interactive operating

system hosted on the top of a very versatile aneepiol 32-bit microprocessor.
these things on a $49 FPGA development kit!

36

Chapter 5. TheeP32 Design in VHDL

Here | will describe a complete 32-bit microproagstesigned in VHDL. It
includes a CPU core, a RAM memory module, a UAR a general purpose GPIO
port. Together with the eForth operating systeadpced by a metacompiler, | build
a complete running Forth system, ready for appboatievelopment. Itis a
complete hardware and software development sysiesrglore SOC applications.
The FPGA chip LatticeXP2-5E can host this compheteroprocessor system, and it
is implemented on the LatticeXP2-5E Brevia DeveleptiKit, using the ispLEVER
FPGA Development Software System..

In the following sections, | will present VHDL codethe following files
implementing various modules of the eP21 micropscesystem:

File Module

ep32_chip.vhd Top level microprocessor system
ep32.vhd eP32 CPU module
ram_memory.vhd RAM memory module

uart.vhd Serial UART module

gpio.vhd General purpose parallel IO module

Following is a block diagram of the eP32 chip, shngamodules in it and signals and
busses connecting these modules:

Feset

—— ™

Clock I —b R;‘E'JNI_Q

AU | el eP32CPU (—]

Interrupt

Acknowledge Tratsmit

-4 -

— UART Receive

-

Download Cutput

Cahle

P JTAG — GPID Input
o, E—

LatticeXFP2-5E-TH144C FPGA

Figure28. Componentsin eP32 Chip

37

5.1 Top Level eP32 Chip
VHDL code in ep32_chip.vhd instantiates all modufethe eP32 system.

Here are port signals defined for the top level2&dp. Since RAM is
implemented as an internal module, it is not nessgs® bring out address and data
signals from the CPU core to the chip package. réfbes, only aclk, arst,
interrupt_i, acknowledge_o, uart_i, uart_o and wiséP10 pins are necessary to
implement a chip that runs the eForth system fogam development. This eP32
system can be hosted in a very small package with @ins.

I/O pins of this eP32 chip and their functions aseollows:

Port Signal Function

aclk External clock input

arst External reset input
interrupt_i External interrupt input
acknowledge o | Interrupt acknowledge
uart_i UART receiver input
uart_o UART transmitter output
ioport General purpose 1/O port

In component declarations, the following modules@eclared:

Component Module Function

ep32 eP32 CPU core module
ram_memory RAM memory module

uart Serial UART module

gpio General purpose parallel I/O module

These modules are later instantiated and all gaeis are connected to signals
defined in the top level system module.

eP32 Module

The eP32 module is a complete CPU core. Its ioptplt signals are as follows:

clk Input master clock

clr Input master reset

interrupt Input external interrupt

data i Input data bus

intack Output interrupt acknowledge
read Output memory/io read enable
write Output memory/io write enable
addr Output address bus

data_o Output data bus

38

*kk

--* (C) Copyright 2002, eForth Technology
- ALL RIGHTS RESERVED

* _— -

-- * Project: FG in PROASIC
-- * File: ep32_chip.vhd

-- * Author: Chien-Chia Wu

-- * Description: Top level block

*

-- * Hierarchy:parent:
- * child :

*

-- * Revision History:

--*Date By Who Modification

--*09/19/02 Chien-Chia Wu Branch from epl6a
--*(01/02/03 Chien-Chia Wu Add SDI.
--*01/29/03 Chien-Chia Wu Add Boot.
--*02/24/03 Chien-Chia Wu Modify the module
- * version.

--*02/27/03 Chien-Chia Wu Modify SDRAM as b
--*03/02/03 Chien-Chia Wu Add internal SRAM
--*06/29/06 Chen-Hanson Ting Add HMPP/Shifter
--*11/18/10 Chen-Hanson Ting Port to LatticeX

kkk

library ieee;

use ieee.std logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_misc.all;

use ieee.std_logic_unsigned.all;

entity ep32_chip is
port(
-- input port
aclk: in std_logic;
arst: in std_logic;
interrupt_i: in std_logic_vector(4 d
-- input port
uart_i: in std_logic;
-- output port
uart_o: out std_logic;
-- GPIO Interface
ioport: inout std_logic_vector(15 do
);
end entity ep32_chip;

*kkkkkkkkkkkk

Inc. *

as 32-bits *

*

yte-assecable. *
module. *
[Controller. *
P2 Brevia Kit *

*kkkkkkkkkkkk

ownto 0);

wnto 0)

39

UART module

The UART module conforms to standard RS232 UARTEjsations, although we
only use two I/O pins, rxd_i and txd_o. No handshar flow control signals are
used. Input/output signals in the UART moduleasdollows:

rst i Input reset

ce | Input chip enable

read i Input read enable

write_i Input write enable

addr_i Input address bus

data i Input data bus

data_o Output data bus

rx_empty o Output receiver empty flag
rx_irg_o Output receiver interrupt request
tx_irg_o Output transmitter interrupt request
rxd_i Input receiver data

txd_o Output transmitter data

cts_i Input clear to send

rs o Output ready to send

RAM Module

The RAM_MEMORY module is configured to use the RAQImemory of embedded
block memory EBR in the LatticeXP2-5E FPGA chipnput/output signals are as
follows:

Clock Input master clock
ClockEn Input clock enable
Reset Input master reset
WE Input write enable
Address Input address bus
Data Input data bus

Q Output data bus
GPIO Module

Input/output signals are as follows:

clr Input master reset
clk Input master clock
write Input write enable
read Input read enable
ce Input chip enable
addr Input address bus
data_in Input data bus
gpio_in Input GPIO data
data_out Output data bus
gpio_out Output GPIO data
gpio_dir OutPut GPIO direction

40

architecture behavioral of ep32_chip is

-- component declaration

component ep32 is

port(

-- input port

clk: in std_logic;

clr: in std_logic;

interrupt: in std_logic_vector(4 downto
data i: in std_logic_vector(31 downt
intack: out std_logic;

read: out std_logic;

write: out std_logic;

addr: out std_logic_vector(31 downt
data_o: out std logic_vector(31 downto
)i

end component;

component uart is

port(

-- input

clk_i: in std_logic;

rst i in std_logic;

ce_i in std_logic;

read i in std_logic;

write_i: in std_logic;

addr_i: in std_logic_vector(1 downt
data_i: in std_logic_vector(31 down
-- output

data_o: out std_logic_vector(31 down

rx_empty_o: out std_logic;
rx_irg_o: out std_logic;
tx_irg_o:out std_logic;

-- external interface

rxd_i: in std_logic;
txd_o: out std_logic;
cts i in std_logic;
rts_o: out std_logic
)i

end component;

component ram_memory
port (Clock: in std_logic; ClockEn: in std_lo
Reset: in std_logic; WE: in std_logic;
Address: in std_logic_vector(11 downto 0);
Data: in std_logic_vector(31 downto 0);
Q: out std_logic_vector(31 downto 0));
end component;

0 0);

0 0);

0 0);
to 0);

to 0);

gic;

41

Top Level Global Signals

Here are global signals defined in the top levélZ€hip. Their principal purposes
are connecting port signals of instantiated modulé$owever, many signals are
defined in terms of logical equations constructednfother signals. These logical
equations are then presented with relevant modules.

The following are Global signals in the eP32 chip:

Signal Function

m_rst Inverted master reset

m_clk Inverted master clock

memory data_o Memory data output bus
memory data | Memory data input bus
memory_addr Memory address bus
system_addr System address bus
system_data_o System data output bus
system_read System read enable
system_write System write enable
system_ack system interrupt acknowledge
cpu_data i CPU data input bus

cpu_addr o CPU address bus

cpu_data o CPU data output but
cpu_m_read CPU memory read enable
Ccpu_m_write CPU memory write enable
cpu_intack CPU interrupt acknowledge
cpu_ready i CPU ready input

cpu_ack o CPU interrupt acknowledge output
uart_ce UART chip enable

uart_addr UART address bus
uart_data_i UART data input bus
uart_data_o UART data output bus
uart_rx_empty UART receiver empty flag
uart_rx_irq UART receiver interrupt request flag
uart_tx_irq UART transmitter interrupt reugest flag
uart_rxd UART receiver data

uart_txd UART transmitter data
uart_cts UART clear to send

uart_rts UART ready to send

gpio_ce GPIO chip enable

gpio_addr GPIO address bus
gpio_data_i GPIO data input bus

gpio_in GPIO input pins

gpio_data_o GPIO data output bus
gpio_out GPIO output pins

gpio_dir GPIO input/output direction

42

component gpio

port(

-- input port

clr: in std_logic;
clk: in std_logic;

write: in - std_logic;
read: in std_logic;

ce:in std_logic;
addr: in std_logic_vector(1 downto 0)
data_in: in std_logic_vector(31 downto 0

gpio_in:in std_logic_vector(15 downto

-- output port

data_out: out std_logic_vector(31 downto O
gpio_out: out std_logic_vector(15 downto
gpio_dir: out std_logic_vector(15 downto

’

end component;

-- interal globle signal

signal m_rst: std_logic;
signal m_clk: std_logic;
signal memory_data_o: std_logic_vector(31
signal memory_data_i: std_logic_vector(31

signal memory_addr: std_logic_vector(11

-- internal signal for system bus
signal system_addr: std_logic_vector(31
signal system_data_o: std_logic_vector(31

signal system_read: std_logic;
signal system_write: std_logic;
signal system_ack: std_logic;

-- internal signal for cpu

signal cpu_data_i:
signal cpu_addr_o:
signal cpu_data_o:
signal cpu_m_read:
signal cpu_m_write:

signal cpu_intack:

signal cpu_ready _i:
signal cpu_ack_o:

std_logic_vector(31
std_logic_vector(31
std_logic_vector(31
std_logic;
std_logic;

std_logic;
std_logic;

std_logic;

-- internal signal for uart

signal uart_ce:
signal uart_addr:

signal uart_data_i:
signal uart_data_o:

std_logic;
std_logic_vector(1
std_logic_vector(31
std_logic_vector(31

signal uart_rx_empty: std_logic;

signal uart_rx_irq:
signal uart_tx_irg:
signal uart_rxd:
signal uart_txd:
signal uart_cts:
signal uart_rts:

std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

downto 0);
downto 0);
downto 0);

downto 0);
downto 0);

downto 0);
downto 0);
downto 0);

downto 0);
downto 0);
downto 0);

43

CPU Component Binding

cpul is the eP32 CPU module instantiated in th& eRp.

Its port map specifies

how internal signals in cpul are connected to dlsigmals in the chip system.

m_rst is inverted from the external master regst, a The external master reset, arst,

is connected to a RESET pushbutton on the Brevaad@nd is normally pulled up

to VCC. When RESET is pressed down, arst is pultesn to ground.

Internal

reset signals sent to the eP32 CPU and other meanary/O devices use positive
logic; therefore, arst must be inverted to m_rstich is used to reset internal

modules.

Here are local

signals defined in the top level2&&tem. They are used to

connect the eP32 CPU to other modules.

Local Signal Function
m_rst Master reset, inverted from external reset.
m_clk Master clock, inverted from external clockattcommodate memorn

timing constraints.

system_addr

System address from CPU to all otheluias.

system_read

Read enable from CPU to all other nesdul

system_write

Write enable from CPU to all other mied.

system_ack Acknowledge from CPU.

cpu_ready i CPU ready.

ready System ready.

cpu_data_i Data from another module to CPU. Indigidyte is selected if the

byte word signal is set.

system_data_

D System data bus connected to memory and I/O madudsmory
and 1/O devices are enabled by Bits 31-28 of systddress.

UART Component Binding

The UART used in the eP32 is initialized to 115,pa0d, 1 start bit, 8 data bits, 2

stop bits, no parity, and no flow control.
module, are not used and not brought out to th@ gla8kage.

CTS &S, though defined in the UART
Only RXD and TXD

are brought out.

Local Signal| Function

uart_ce UART enable
uart_addr UART register address
uart_data_i | Data from CPU
uart_rxd Receiver input
uart_txd Transmitter output

44

-- internal signal for gpio

signal gpio_ce: std_logic;

signal gpio_addr: std_logic_vector(1
signal gpio_data_i: std_logic_vector(31
signal gpio_in: std_logic_vector(15
signal gpio_data_o: std_logic_vector(31
signal gpio_out: std_logic_vector(15
signal gpio_dir: std_logic_vector(15

begin

kkkkkkkkkkkhkhkhkhkkhhhhhhhkhkhhhkhkhkhhhhhhhhkhhiix

*kkkkkk

- Component Binding

kkkkkkkkkkkhkhkhkhkkhhhhhhhkhkhhhkhkhkhkhhhhhhkhhiix

*kkkkkk

===z CPUBIock
cpul: ep32
port map (
-- input port
clk => aclk,
clr =>m_rst,
interrupt => interrupt_i,
data_i => cpu_data i,
intack => cpu_intack,
read => cpu_m_read,
write => cpu_m_write,
addr => cpu_addr_o,
data o =>cpu_data o

);

kkkkkkkkkkkkkkkhkhkkhhhhhhhkhkhhhhhkhkkhkhhhhhhkhhiirkx

*kkkkkk

- Internal Globle Signal Circuit

kkk

*kkkkkk

m_rst <= not arst;

m_clk <= not aclk;
system_addr <= cpu_addr_o;
system_read <= cpu_m_read;
system_write <= cpu_m_write;
system_ack <= cpu_ack_o;
cpu_ready i<="1,

cpu_data_i <= system_data_o;

system_data o <= cpu_data_o when (system_write='

downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);

*kkkkkkkkkkkkk

*kkkkkkkkkkkkk

*kkkkkkkkkkkkk

*kkkkkkkkkkkkk

1') else

memory_data_o when (system_addr(31 downto 28)="0 000")

else

uart_data_owhen(system_addr(31downto28)="100
gpio_data_owhen(system_addr(31downto28)="111

(others =>'Z");

0Melse
0Melse

45

RAM Component Binding

The RAM module handles only 32-bit words. Memoxd=a sent from CPU to
memory modules, is at bits 11-0 to address 4k wof@2-bit word memory.

All other modules in the eP32 chip are clockedH®ydxternal master clock, aclk,
except the RAM memory module, which is clocked bhyreverted clock, m_clk.

The reason is that the RAM_Q library module fronttica IPexpress is a
synchronous RAM memory, in which the rising edgéhef clock latches the input
address bus and input data bus. The eP32 exgtrishsionous RAM/ROM

memory modules, which must supply memory data tpuduo the data bus when the
address bus is valid. All registers and stackbéneP32 behave this way. Latching
the address bus would waste one clock cycle faryawemory access, making it
impossible to execute all eP32 machine instructinrassingle cycle.

A compromise between design specification and viadable RAM_Q memory
module is to clock RAM_Q modules with inverted ¢taun_clk, which forces latching
the memory address bus a half-cycle earlier, omisimey edge of m_clk, which
occurs on the falling edge of aclk. A disadvantizgeocking the memory address
bus earlier is that the memory access speed mustidethe CPU speed. This is
not a problem with FPGASs running at 50 MHz. EmhestiRAM memory in FPGAS
are generally much faster than 50 MHz. Howevee, slmould be careful in pushing
CPU speed higher. You have to avoid contentioraeagessing the memory bus.

Local Signal Function

system_write Write enable.

memory_addr Word address sent to memory module.

memory data_i| Data sent by CPU to memory modu

memory data_o¢ Data output from memory module.

GPI1O Component Binding

The GPIO module is defined as a 16-bit bidirectiof@ port. The gpio_idr signal
can be used to change the I/O direction dynamical§owever, in actual
implementation, I/O devices used are switches, diEplay, and LCD display.

They do not require dynamic I/O redirection. le #P32 system, gpio_in and
gpio_out are merged into one ioport and brouglihéoeP32 package pins. io_port
pins are defined as inout pins.

Local Signal| Function

gpio_ce GPIO chip enable

gpio_addr GPIO register address

gpio_data_i| Data send from CPU to GPIO module

gpio_in Data received from GPIO input pin

\"2J

ioport 16 bit bidirectional GPIO port

46

-- == UART Block

uartl : uart
port map (
-- input
clk_i => aclk,
rst_i=>m_rst,
ce_i=>uart_ce,
read i => system_read,
write_i => system_write,
addr_i => uart_addr,
data_i => uart_data i,
-- output
data_o =>uart_data_o,
rx_empty_o => uart_rx_empty,
rx_irg_o =>uart_rx_irq,
tx_irg_o => uart_tx_irq,
-- external interface
rxd_i => uart_rxd,
txd_o => uart_txd,
cts_i=> uart_cts,
rts_o => uart_rts
)i
uart_ce <="1' when (system_addr(31 downto 28)="1 000") else '0r;
uart_addr <= system_addr(1 downto 0);
uart_data_i <= system_data_o;
uart_rxd <= uart_i;
uart o <= uart_txd;

—==== RAMBIlock========== ———=—=——=—=——==—=—=—====
ram_memory_0 : ram_memory PORT MAP (

Address => memory_addr,

Clock =>m_clk,

ClockEn=>"'1",

Reset =>'0,

Data => memory_data i,

WE => system_write,

Q =>memory_data_o

);

memory_addr <= cpu_addr_o(11 downto 0);
memory_data_i <= cpu_data_o;

47

== GPIO Block

gpiol : gpio

port map (
-- input port
clr =>m_rst,
clk => aclk,
write => system_write,
read => system_read,
ce => gpio_ce,
addr => gpio_addr,
data_in => gpio_data i,
gpio_in => gpio_in,
-- output port
data_out => gpio_data_o,
gpio_out => gpio_out,
gpio_dir => gpio_dir

gﬁio_ce <="1"'when (system_addr(31 downto 28)="1

0"
gpio_addr <= system_addr(1 downto 0);
gpio_data_i <= system_data_o;

gpio_in <= ioport;

ioport(0) <= gpio_out(0) when gpio_dir(0)="1'e
ioport(1) <= gpio_out(1) when gpio_dir(1)='1'e
ioport(2) <= gpio_out(2) when gpio_dir(2)='1'e
ioport(3) <= gpio_out(3) when gpio_dir(3)="1"'e
ioport(4) <= gpio_out(4) when gpio_dir(4)='1'e
ioport(5) <= gpio_out(5) when gpio_dir(5)="1'e
ioport(6) <= gpio_out(6) when gpio_dir(6)='1'e
ioport(7) <= gpio_out(7) when gpio_dir(7)="1'e
ioport(8) <= gpio_out(8) when gpio_dir(8)='1'e
ioport(9) <= gpio_out(9) when gpio_dir(9)="1'e
ioport(10) <= gpio_out(10) when gpio_dir(10)="1'
ioport(11) <= gpio_out(11) when gpio_dir(11)="1'
ioport(12) <= gpio_out(12) when gpio_dir(12)="1"
ioport(13) <= gpio_out(13) when gpio_dir(13)="1'
ioport(14) <= gpio_out(14) when gpio_dir(14)="1'
ioport(15) <= gpio_out(15) when gpio_dir(15)="1'

end behavioral;

110" else

Ise 'Z";
Ise 'Z"
Ise 'Z"
Ise 'Z";
Ise 'Z"
Ise 'Z";
Ise 'Z"
Ise 'Z";
Ise 'Z"
Ise 'Z";
else 'Z";
else 'Z";
else 'Z";
else 'Z";
else 'Z"
else 'Z";

48

5.2 TheeP32 CPU Module
VHDL code of the eP32 CPU module is in the ep32Med

When | first learnt VHDL, the text books told meluoild things in modules, to

collect modules into libraries, and then call thesmlules out in the main design.

So I did that in the original design of the P16.fteAa while, | found that the CPU
was not that complicated, and all modules | neexbedd be combined together. The
end result was that | had only one module andntysntire CPU.

When RESET is set high, all registers and bothkstace cleared to 0. When
RESET is cleared to 0, the CLOCK input drives tR82 On the rising edge of
CLOCK, the program word in memory address O is retwthe | register. The first
instruction in | is decoded; i.e., a set of consiginals are sent to all components in
the eP32. On the rising edge of the next CLOCKy data are latched into
appropriate registers and stacks depending omsteiction. The next instruction is
decoded and thus executed, and so forth.

A memory interface is provided to connect to mendeyices through a 32-bit
address bus and a 32-bit data bus, with read eaablgrite enable control signals.

When reading a program word, the P register diive®xternal address bus and a
program word is read into the | register. Wherdireg or writing data words, the X
register drives the external address bus, andadateead into the T register, or written
from the T register, to the external data bus.

Two stacks are used in the eP32: a return stastote return addresses from nested
subroutine call instructions, and a data stackdmegparameters passed among nested
subroutines. The top two elements on the dat& stacusually implemented as
registers. They are the T register for “top”, @ne S register for “second”. The

top of the return stack is also implemented asXegister.

The T and S registers provide two inputs to the AiMdich carries out arithmetic and
logic operations on data from T and S, and retugsalts to the T register.

The return stack, R, T, and S registers, and datk an be viewed as a giant shift
register array. Data can be shifted right orilethis giant array. The R, Tand S
registers are windows in this giant array visildg@togrammers in programming.

The eP32.vhd file contains the complete specificatif this CPU in VHDL. You

will be amazed at how simple a 32-bit CPU can behope it will stimulate your
mind, and encourage you to design you own dreanopriocessor.

49

*kk

*kkkkkkkkkkkk

- * 150nm Extreme Temperarture Radia
- * Hardened SOC ASIC Project

* —_— _

-- * FPGA Project: 32-Bit CPU in Altera SOPC
--* File: ep32.vhd

-- * Author: C.H.Ting

-- * Description: ep32 CPU Block

*

-- * Revision History:

--*Date By Who Modification

--*06/06/05 C.H.Ting Convert EP24 to 32-
--*(06/10/05 Robyn King Made compatible wit
- * Builder.

--*06/27/05 C.H.Ting Removed Line Drawin
--*(07/27/05 Robyn King Cleaned up code.
--*08/07/10 C. H.Ting Returnto eP32p
--*11/18/10 Chen-Hanson Ting Port to LatticeX

kkkkkkkkkkkkkhkkhkhkkhhhhhhhhhkhhhkhkhkhhhhhhhhkhhiikx

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_misc.all;

use ieee.std_logic_unsigned.all;

entity ep32 is
generic(width: integer := 32);

port(

-- input port

clk: in std_logic;

clr: in std_logic;

interrupt: in std_logic_vector(4 down
data_i: in std_logic_vector(31 dow
intack: out std_logic;

read: out std_logic;

write: out std_logic;
addr: out std logic_vector(31 dow
data_o: out std logic_vector(31 downto
);
end entity ep32;

tion *
*
Builder *
*
*
*
*
*
*
bits. *

h Altera SOPC *

*

g Engine. *
*

*

P2 Brevia Kit *

*kkkkkkkkkkhkk

to 0);
nto 0);

nto 0);

50

I/O Signals of the eP32 CPU

In VHDL terminology, the entity section specifidgetinterface signals from circuit
component to the external world. The eP32, ascaomiocessor chip, shows the
pin-out of the chip in its entity section: mastck, control signals, data bus,
address bus, and I/O ports. Here are detailedfgagions of these busses and
signals:

Signal Function

clk Master clock

clr Master reset

interrupt| 5-bit interrupt ports
data i 32 bit data input bus
intack Interrupt acknowledge
read Memory read enable
write Memory write enable
addr 32 bit address bus
data_o | 32 bit data output bus

TheeP32 CPU Module

An architecture section in VHDL is the body of thesign, in which all internal
signals and logic are contained. In an architecsection, signals and registers are
defined first. Then there is a subsection wheregan define concurrent logic, a
subsection where you can define sequential logid,aasubsection defining the finite
state machine that runs the show. For the purpbdecumentation and clear
referencing to signals, one can define constantsgiace literal references.

51

architecture behavioral of ep32 is

0);

typestackisarray(31downtoO)ofstd_logic_vect

signal s_stack,r_stack: stack;

signal slot: integer range 0 to 5;

signal sp,spl,rp,rpl: std_logic_vector(7 downto 0)

signal t,s,sum: std_logic_vector(width downto 0);

signal a,r: std_logic_vector(width downto 0);

signal t_in,r_in,a_in: std_logic_vector(width down

signal code: std_logic_vector(5 downto 0);

signal t_sel: std_logic_vector(3 downto 0);

signal p_sel: std_logic_vector(1 downto 0);

signal a_sel: std_logic_vector(2 downto 0);

signal r_sel: std_logic_vector(1 downto 0);

signal addr_sel: std_logic;

signal spush,spopp,rpush,rpopp,inten,intload,intse
tload,rload,aload,pload,iload,reset,z: std_logic;

signal r_z,int_z: std_logic;

signal i,p,p_in: std_logic_vector(width-1 downto O

-- machine instructions selected by code

constant bra : std_logic_vector(5 downto 0) :="000
constant ret : std_logic_vector(5 downto 0) :="000
constant bz : std_logic_vector(5 downto 0) :="000
constant bc : std_logic_vector(5 downto 0) :="000

constant call: std_logic_vector(5 downto 0) :="000
constant nxt : std_logic_vector(5 downto 0) :="000
constant ei : std_logic_vector(5 downto 0) :="000

constant Idp : std_logic_vector(5 downto 0) :="001
constant Idi : std_logic_vector(5 downto 0) :="001
constant Id : std_logic_vector(5 downto 0) :="001

constant stp : std_logic_vector(5 downto 0) :="001
constant rr8 : std_logic_vector(5 downto 0) :="001
constant st : std_logic_vector(5 downto 0) :="001

constant com : std_logic_vector(5 downto 0) :="010
constant shl : std_logic_vector(5 downto 0) :="010
constant shr : std_logic_vector(5 downto 0) :="010
constant mul : std_logic_vector(5 downto 0) :="010

constant xorr: std_logic_vector(5 downto 0) :="010
constant andd: std_logic_vector(5 downto 0) :="010
constant div : std_logic_vector(5 downto 0) :="010
constant addd: std_logic_vector(5 downto 0) :="010

constant popr: std_logic_vector(5 downto 0) :="011
constant Ida : std_logic_vector(5 downto 0) :="011

constant dup : std_logic_vector(5 downto 0) :="011
constant over: std_logic_vector(5 downto 0) :="011

or(widthdownto

to 0);

000"
001"
010"
011"

100"
101"
110%

001"
010"
011"

101"
110%
1117

000"
001"
010"
011"

100
101"
110%
111"

000"
001"
010"
011"

52

Registers, Busses and Signals

Here are the registers, busses, and the internéiotsignals contained in the eP32
CPU. They are all defined as signals in VHDL. Hibwy are actually

implemented depends on how they are used in camwstatements and in sequential
statements.

Signal Function

s_stack | Data stack.

r_stack | Return stack.

slot Output of slot counter in finite state machine

sp Data stack pointer.

spl Alternate data stack pointer. It always has/tthee of sp+1.

rp Return stack pointer.

rpl Alternate return stack pointer. It alwaysie¢ghe value of rp+1..

Accumulator or T register, top of data stack.

Top element of data stack. S is a pseudo register

t
S
r Top element of return stack. R is a real registe
a Address register, X.

Instruction register, |.

[
p Program counter, P.

sum Output from an adder T+S.

t in Input to T register.

r_in Input to R register.

a in Input to X register.

p_in: Input to P register.

code 6-bit opcode decoded from | register.

spush Control signals to push data stack.

spopp Control signals to pop data stack.

rpush Control signals to push return stack.

rpopp Control signals to pop return stack.

tload Enable signals to load T register.

aload Enable signals to load X register.

pload Enable signals to load P register.

iload Enable signals to load | register.

z One-bit signal, true if T=0, otherwise false.

r z One-bit signal, true if R=0, otherwise false.

int_z One-bit signal, true if interrupt inputs @l€0, otherwise false.
inten Enable interrupts.

intset Set if interrupt is enabled

intload | Latch interrupt vector into P register.

a_sel Select alternate argument to X register.
p_sel Select alternate argument to P register.
r_sel Select alternate argument to R register.
t sel Select alternate argument to T register.

addr_sell Select alternate argument to address bus.

53

constant pushr: std_logic_vector(5 downto 0) :="01
constant sta : std_logic_vector(5 downto 0) :="011

constant nop : std_logic_vector(5 downto 0) :="011
constant drop: std_logic_vector(5 downto 0) :="011

-- mux to t register, selected by t_sel
constant not_t: std_logic_vector :="0000";
constant s_xor_t: std_logic_vector :="0001";
constant s_and_t: std_logic_vector :="0010";
constant s_or_t: std_logic_vector :="0011";
constant sum_t: std_logic_vector :="0100";
constant shr_sum: std_logic_vector :="0101";
constant shr_t: std_logic_vector :="0110";
constant shr_t t: std_logic_vector :="0111";
constant shl_sum_a_t: std_logic_vector :="1000";
constant shl_t a t: std_logic_vector :="1001";
constant shl_t: std_logic_vector :="1010";
constant s_t: std_logic_vector :="1011";
constant a_t: std_logic_vector :="1100";
constant r_t: std_logic_vector :="1101";
constant data_t: std_logic_vector :="1110";
constant rr8_t: std_logic_vector :="1111";

-- mux to a register, selected by a_sel
constantt_a: std_logic_vector :="001";
constant al_a: std_logic_vector :="010";
constant shr_sum_a: std_logic_vector :="011";
constant shr_t_a: std_logic_vector :="100";
constant shl_sum_a: std_logic_vector :="101";

-- mux to r register, selected by r_sel
constant rout_r: std_logic_vector :="00";
constant t_r: std_logic_vector :="01";
constant rl_r: std_logic_vector :="10";
constant p_r: std_logic_vector :="11";

-- mux to p register, selected by p_sel
constant pi_p: std_logic_vector :="00";
constant p1_p: std_logic_vector :="01";
constant r_p: std_logic_vector :="10";
constant int_p: std_logic_vector :="11";

-- mux to memory bus, selected by addr_sel
constant p_addr: std_logic :='0";
constant a_addr: std_logic :='1";

begin
data_o<= t(width-1 downto 0);
intack <= inten;

s <= s_stack(conv_integer(sp));

sum <= (('0'&t(width-1 downto 0)) + ('0'&s(width-1

11007
101"
110%
111"

downto 0)));

54

Opcodes

Machine instructions, opcodes and their functiaiesas follows:

Instruction | Code Function

bra 000000 Jump to address contained in cuimstriction.

ret 000001 Return from a subroutine to mairgpm. Pop return
address from return stack and store it in P.

bz 000010 If T=0, jump to address containecliment
instruction; else continue.

bc 000011 If Carry is set, jump to addressa@oed in current
instruction; else continue.

call 000100 Push address in P on R stack,wang {o address
contained in current instruction; else continue.

nxt 000101 If R is not O, jJump to address cod in current
instruction, and decrement R by 1; else pop R saack
continue.

ei 000110 Enable interrupts.

Idp 001001 Push T on S stack, read memory woncked to by X
into T. Increment X by 1.

Idi 001010 Push T on S stack, read memory woidted to by P
into T. Increment P by 1.

Id 001011 Push T on S stack, read memory wonatgd to by X
into T.

stp 001101 Store T into memory pointed to byr¢rement X by
1. Pop Sstackto T.

8 001110 Rotate T right by 8 bits.

st 001111 Store T into memory pointed to byPXp S stack to T.

com 010000 Complement T (1's complement).

shl 010001 Shift T left by 1 bit.

shr 010010 Shift T right by 1 bit.

mul 010011 Multiplication step. If X(0)=1, a&to T, otherwise T
is not changed. Shift T:X pair right by 1 bit.

Xorr 010100 Pop S stack and XOR itto T.

andd 010101 Pop S stack and AND it to T.

div 010100 Division step. If T+S produces agaadd Sto T,
otherwise T is not changed. Shift T:X pair left bit.
Shift carry into X(0).

addd 010111 Pop S stack and add it to T.

popr 011000 Push T onto S stack. Pop R statk to

Ida 011001 Push T onto S stack. Copy X to T.

dup 011010 Push T onto S stack.

over 011011 Push T onto S stack. Copy originatents of Sto T.

pushr 011100 Push T onto R stack. Pop S statk t

sta 011101 Copy T to X. Pop S stack to T.

nop 011110 No operation.

drop 011111 Pop S stack to T.

55

with t_sel select

t_in <= (not t) when not_t,
(t xor s) when s_xor _t,
(tand s) when s_and_t,
sum when sum_t,
(t(width-1 downto 0) & '0") when shl_t,
(t(width-1 downto 0) & a(width-1)) when shl_t a t
(sum(width-1 downto 0) & a(width-1)) when shl_sum
('0'&sum(width downto 1)) when shr_sum,
('0'&t(width-1)&t(width-1 downto 1)) when shr _t,
("00"&t(width-1 downto 1)) when shr_t _t,
s when s_t,
awhen a_t,
rwhenr_t,
t(width)&t(7 downto 0)&t(width-1 downto 8) when r
'0'&data_i(width-1 downto 0) when others;

with slot select

code <=i(29 downto 24) when 1,
i(23 downto 18) when 2,
i(17 downto 12) when 3,
i(11 downto 6) when 4,
i(5 downto 0) when 5,
nop when others;

-- icode <= code;

with a_sel select

a in<=at+lwhenal a,
(‘'0'&t(0)&a(width-1 downto 1)) when shr_t_a,
('0'&sum(0)&a(width-1 downto 1)) when shr_sum_a,
(‘'0'&a(width-2 downto 0)&sum(width)) when shl_sum
t when others;

with r_sel select

r in<=rlwhenrl r,
'0'&p when p_r,
r_stack(conv_integer(rp)) when rout_r,
t when others;

with p_sel select
p_in <= (p(width-1 downto width-8) & i(width-9 dow
pi_p,
r(width-1 downto 0) whenr_p,
("000000000000000000000000000"&interrupt(4 downto
int_p,
p+1 when others;

with addr_sel select
addr <= a(width-1 downto 0) when a_addr ,
p(width-1 downto 0) when others;

a_t,

r8_t,

nto 0)) when

0)) when

56

Concurrent Assignments

Most of the concurrent assignments (using “<=")@wroute signals from one place
to another. A few concurrent assignments actuidlgome useful things, like

Signal | Source

sum Get sum of T+S.

z z=1if T=0; z=0if T is not O.

rz r z=1if R=0; r_z=0if R is not (.

The most interesting concurrent assignments agetbhbthe multiplexers. Here are
a few multiplexers explicitly defined, and theitesg signals:

Multiplexer | Select Signal
TMUX t sel

RMUX r_sel

XMUX a_sel

PMUX p_sel
Address Bug addr_sel
code slot

The VHDL code on the left page shows constant waliged to set selection signals to
the various multiplexers.

Many other more complicated multiplexers are ndinge explicitly, but are
implicitly defined in case statements of individnahchine instructions. Please
examine these statements to see how particulaalsigre selected and routed.

data_o, which is the output data bus in the eP82 @bwvays sends out data in the T
register. When we write data to memory and topbenial devices, the address is
provided in the X register, and data are providethe T register.

“intack” is the interrupt acknowledge signal.

The S register is a pseudo-register. It is noheefas a register, but as the top of the
data stack, s_stack, pointed to by the data staickgr, sp. It is always used as the
second argument, next to the T register, for ardticrand logic machine instructions
that expect two arguments.

“sum” is the adder in the eP32. Itis shared bgmee instructions ADD, MUL and
DIV. It adds data from the T register and S regisin the top of the data stack.

“t_in" is the output bus of a giant multiplexer, wh provides input data to the T
register. Machine instructions changing the Tstgimust provide the proper select
signal, t_sel, to this multiplexer to get the dedidata routed to t in. Then, on the
rising edge of the next clock, data presented ondre latched into the T register.

57

z <= not(t(width-1) or t(30) or t(29) or t(28)
or t(27) or t(26) or t(25) or t(24)
or t(23) or t(22) or t(21) or t(20)
or t(19) or t(18) or t(17) or t(16)
or t(15) or t(14) or t(13) or t(12)
or t(11) or t(10) or t(9) or t(8)
or t(7) or t(6) or t(5) or t(4)
or t(3) or t(2) or t(1) or t(0));

r_z <= not(r(width-1) or r(30) or r(29) or r(28)
or r(27) or r(26) or r(25) or r(24)
or r(23) or r(22) or r(21) or r(20)
or r(19) or r(18) or r(17) or r(16)
or r(15) or r(14) or r(13) or r(12)
or r(11) or r(10) or r(9) or r(8)
or r(7) or r(6) or r(5) or r(4)
or r(3) or r(2) or r(1) or r(0));

int_z <= interrupt(0) or interrupt(1) or interrupt
or interrupt(3) or interrupt(4) ;

-- sequential assignments, with slot and code
decode: process(code,a,z,r_z,int_z,t,slot,sum,inte

t_sel<="0000";
a_sel<="000";
p_sel<="00";
r_sel<="00";
addr_sel<="0";
spush<='0’;
spopp<='0%;
rpush<="0";
rpopp<='0%;
tload<='0",
aload<='0",
pload<='0;
rload<='0";
write<='0";
read<='0",
iload<='0";
reset<="0";
intload<='0",
intset<="0";

if slot=0 then
if (int_z="1" and inten="1") then
pload<="1";
p_sel<=int_p;--process interrupts
rpush<="1";
r_sel<=p_r;
rload<="1";
reset<="'1";
else iload<="1";
p_sel<=pl_p;--fetch next word
pload<="1";
read<='1";
end if;
else

)

n) begin

58

“code” is the output bus of the instruction mulipér, which selects one of 5 machine
instructions stored in the | register. “slot” s#ethe machine instruction to be
executed in the current clock cycle. “code” wdl bsed in the instruction decoder’s
decode process, to produce relevant control sigoagecute the selected machine
instruction.

“a_in” is the input bus of the XMUX multiplexer, wdlh normally gets data from the
T register. However, when executing memory reaitévimstructions, it can
optionally increment by selecting data from theeyister through an increment
circuit. Used in MUL and DIV instructions, it ta&kelata from the X register shifted
to the right or left, respectively. Shifting opgoas are coordinated with the T
register so that the T:X register pair acts likébebit shift register.

“r_in” is the input bus of the R register, whicHesgs data from the P register for the
CALL instruction, the T register for the PUSHR ingttion, the top of the return stack
r_stack for the POPR instruction, and from R-1tfer NEXT instruction. It
manages the return stack in the eP32.

“p_in" is the input bus of the P register, whicles¢s data from P+1 in slotO to fetch
the next program word, the R register for the RESEruction. In slotO, if interrupt
pins are not all zero and when interrupts are exilg_in selects 5 bits from the
interrupt input pins, zero extended to 32 bitgutap to an interrupt service routine.

“addr” is the output bus of the address multiplexérich provides addresses to
output bus addr_o of the eP32 module. It outpdtsess in the P register when
reading program words, or addresses in the X igighen reading and writing data
to/from memory or peripheral devices.

“z” returns a 1 if bits T(0) to T(31) are all zerolf any of these bits is not a zero, z
returns a zero. Itis used by the BZ instructmibrtanch to a new program location
when T is zero.

“r_z" returns a 1 if bits R(0) to R(31) are all @er If any of these bits are not a zero,
r_zreturns a zero. Itis used by the NEXT indtaurcto loop to a new program
location when R is zero. It allows looping in agle clock cycle.

“int_z” returns a 1 if bits interrupt(0) to intept(4) are all zero. If any of these bits

are not a zero and interrupts are enabled, a jsmgade to an interrupt service
routine.

59

case code is
when bra =>
pload<="1";
p_sel<=pi_p;
reset<='1";
when ret => pload<="'1";
p_sel<=r_p;
rpopp<="1"
r_sel<=rout r;
rload<="1";
reset<='1";
intset<='0";
intload<="1";
when bz =>
if z="1"' then
pload<='1";
p_sel<=pi_p;
end if;
tload<="'1"
t sel<=s t;
spopp<="1}
reset<='1";
when bc =>
if t(width)="1" then
pload<='1";
p_sel<=pi_p;
end if;
tload<="'1"
t sel<=s t;
spopp<="1}
reset<='1";
when call =>
pload<="1";
p_sel<=pi_p;--process call
rpush<="1";
r_sel<=p_r;
rload<="1";
reset<='1";
when nxt =>
if r_z="0"then
p_sel<=pi_p;
pload<="1";
r_sel<=rl r;
else
r_sel<=rout r;
rpopp<="1"
end if;
rload<="1";
reset<='1";
when ei =>
intset<="'1";
intload<="1";

60

Sequential Assignments

This big sequential assignment is the instructiecoder of the eP32 CPU. In the
“decode” process, control signals are initialized ¢hen set according to the needs of
each different machine instruction. These corgighals flow out to concurrent
assignments to select proper signals to be latchiedegisters and stacks, on the
rising edge of the next clock pulse.

When slot=0, that is, the slot machine is execudirsiptO function, the external 5 bit
interrupt signals are examined. If all interruiginsls are low, the address of the
next program word in the P register is sent othéaddress bus. “iload” is set so
that a program word from the external data buslvéllatched into the | register.
“pload” is also set so that the P register williberemented.

If any bit of the interrupt signals is high, theswubroutine call is forced to an address
from location 1 to 31, as specified by the 5-biemupt input signals.

If “slot” is not zero, then a machine code in slailslot5 of the | register is selected
and executed. Executing a machine instructiormgly setting some control

signals to route proper data through concurreritlagd connecting multiplexers to
targeted registers and stacks. On the rising efitfee next master clock, all data are
latched and then the next machine instruction coded and executed.

First, default values of signals are assigned.alllmstructions, only a few of these
signals are changed to achieve specific functiand,we only have to specify those
changed signals for those instructions.

Here are the signals changed when the instrucéqoecer is in Slot0. This
includes external interrupt pins. If one or moreerrupts are set, the CPU calls an
interrupt service routine from memory location I3ta If no interrupt is set, this
causes the program word pointed to by the P redstee fetched, and the instruction
sequencer is incremented to Slotl, in preparatiaxecute the first instruction in the
program word.

If there is an interrupt request, call an interragttor.

Signal Function

pload<="1"' Load P register

p_sel<=int p Select interrupt vector for P register
rpush<="1' Push P to R and return stack

r sel<=p r Select P for RMUX

rload<="'1' Load R register

reset<="1' Force next cycle to slotO

If there is no interrupt request, fetch and exetuenext program word.
Signal Function

iload<="1" Load | register

p_sel<=pl p Select P+1 to P register

pload<="1 Load P register

read<="1' Read program memory to P register

61

when Idp => addr_sel<=a_addr;
a sel<=al a;
aload<='1"
tload<="1";
t sel<=data_t;
spush<='1";
read<='1";
when Idi => pload<="1";
p_sel<=pl_p;
tload<="'1"
t sel<=data_t;
spush<="1";
read<="'1"
when Id => addr_sel<=a_addr;
tload<="1";
t sel<=data_t;
spush<='1";
read<="'1"
when stp => addr_sel<=a_addr;
aload<="1";
a_sel<=al a;
tload<="1";
t sel<=s t;
spopp<="1",
write<="1";
when st => addr_sel<=a_addr;
tload<="1";
t sel<=s t;
spopp<="1",
write<="1";
when rr8 =>
tload<="'1"
t_sel<=rr8 t;
when com =>
tload<="'1"
t_sel<=not t;
when shl =>
tload<="1";
t sel<=shl_t;
when shr =>
tload<="'1"
t_sel<=shr _t;
when mul =>
aload<='1"
tload<="1";
if a(0)="1' then
t sel<=shr_sum;
a_sel<=shr_sum_a;
else t sel<=shr_t t;
a_sel<=shr t a;
end if;
when xorr =>
tload<="'1"
t sel<=s_xor_t;
spopp<=1}

62

Decoder

The big case statement using “code” as selecterméaies which machine instruction
to execute, which control signals are set or ckamdich signals must go through
their respective multiplexers, and which signatstarbe latched into registers and
stacks.

If the instruction sequencer is not in Slot0, ieentes instruction “code” selected
from one of 5 slots in the | register. This isiang case statement listing all changed
signals associated with each and every instructidrnese instructions change
appropriate signals to route proper signals thrdugdses and multiplexers, to be
latched into stacks and registers on the risingeddghe next clock.

Transfer Instructions

Following are transfer instructions, which loadheget program address into the P
register, and thus jump to different memory loaagio The target address is formed
by appending the contents of the address fieli@fdng instruction to the 8-bit page
address in the P register. Therefore transferuagbns can branch to any location
within the current 16M word page. Only the RETtinstion can branch to the
entire 32-bit memory space, because it obtainsiiget address from the R register.

To execute the BRA instruction, set the followingnsls:

pload<="1' Load P register
p_sel<=pi_p Select address field for P register
reset<="1' Force next cycle to slotO

To execute the RET instruction, set the followirgnals:

pload<="1' Load P register

p_sel<=r p Select R register to load P register
rpopp<='1' Pop return stack

r_sel<=rout_r Select r_stack to load R register
rload<="'1' Load R register

reset<="1' Force next cycle to slotO
intset<="0' Clear interrupt enable flag
intload<="1" Load inten register

To execute the BZ instruction, set the followingrsils if T=0:

pload<="1"' Load P register

p_sel<=pi_p Select address field for P register
Always set the following signals:

tload<="1' Load T register

t sel<=s t Select top of s_stack to load T register
spopp<='1' Pop s_stack

reset<="1' Force next cycle to slotO

63

when andd =>
tload<="1";
t sel<=s_and_t;
spopp<="1",

when div =>
aload<="1";
tload<="'1"
a_sel<=shl_sum_a;
if sum(width)="1" then

t sel<=shl_sum_a t;

else t sel<=shl t a t;
end if;

when addd =>
tload<="'1"
t_sel<=sum_t;
spopp<="1}

when popr =>
tload<="1";
t sel<=r _t;
spush<='1";
r_sel<=rout r;
rload<="1";
rpopp<='1;

when Ida =>
tload<="'1"
t sel<=a_t;
spush<='1";

when dup =>
spush<='1";

when over =>
spush<='1";
tload<="'1"
t sel<=s t;

when pushr =>
tload<="'1"
t sel<=s t;
rpush<="1";
r_sel<=t r;
rload<="1";
spopp<='1;

when sta =>
tload<="1";
t sel<=s t;
a_sel<=t_a;
aload<="1";
spopp<="1}

when nop => reset<="'1";

when drop =>
tload<="1";

t sel<=s t;
spopp<="1}
when others => null;

end case;
end if;
end process decode;

64

To execute the BC instruction, set the followingnsils if carry T(32)=1:

pload<="1"' Load P register

p_sel<=pi p Select address field for P register

Always set the following signals:

tload<="1" Load T register

t sel<=s t Select top of s_stack to load T register
spopp<='1' Pop s_stack

reset<="1' Force next cycle to slotO

To execute the CALL instruction, set the followisignals:

pload<="1' Load P register

p_sel<=pi_p Select address field for P register
rpush<="1' Push R and r_stack

r sel<=p r Select P to load R register
rload<="'1' Load R register

reset<="1' Force next cycle to slotO

The NXT instruction is probably the most complichteansfer instruction. lItis a
single cycle loop instruction. It uses the R ragigs a loop counter, counting down
towards 0. When R is not zero, it is decremerded, program register P is loaded
with an address in the address field of this laaggfer instruction. The loop is then
repeated. When R is decremented to 0, the R ee@int r_stack are popped, and
execution continues with the next program word. e Tdop is thus terminated.

To execute the NXT instruction, set the followingrals if R is not O:

p_sel<=pi p Select address field for P register
pload<="1' Load P register
r sel<=rl_r Load R-1 into R register

Set the following signals if R is O:

r_sel<=rout_r

Select top of r_stack to load R regis

rpopp<="1"

Pop r_stack

Always set the following signals:

rload<='1"

Load R register

reset<="1'

Force next cycle to slotO

Enable Interrupts

To execute the El instruction, set the followingrsils:

intset<="'1"

Set interrupt acknowledge flag

intload<="1"

Load inten (interrupt enable) register

65

Memory Instructions

Following are the memory instructions, which reatadrom memory to the T
register or write data from the T register to meynorThe address of memory is
always in the X register. When reading, the Tstgiis pushed onto the data stack.
When writing, the data stack is popped to the Tsteg

To execute the LDP instruction, set the followingnsls:

addr_sel<=a_addr Select X to load memory address bu
a sel<=al a Increment X register

aload<="1"' Load X register

tload<="1' Load T register

t sel<=data t Select data bus to load T register
spush<='1' Push s_stack

read<="1' Enable memory read

To execute the LDI instruction, set the followingrels:

pload<="1 Load P register

p_sel<=pl p Select P+1 to load P register
tload<="1' Load T register

t sel<=data t Select data bus to load T register
spush<="1' Push s_stack

read<="1' Enable memory read

To execute the LD instruction, set the followingrals:

addr_sel<=a_addr

Select X to load memory address bu

tload<="1' Load T register

t sel<=data t Select data bus to load T register
spush<="1' Push s_stack

read<="1"' Enable memory read

To execute the STP instruction, set the followirggpals:

addr_sel<=a_addr

Select X to load memory address bu

aload<="1" Load X register

a sel<=al a Increment X register
tload<="1' Load T register

t sel<=s t Select R to load T register
spopp<="1' Pop s_stack

write<="1' Enable memory write

To execute the ST instruction, set the followingnsils:

addr_sel<=a_addr

Select X to load memory address bu

tload<="1' Load T register

t sel<=s t Select R to load T register
spopp<='1' Pop s_stack

write<="1' Enable memory write

66

ALU Instructions

To execute the RR8 instruction, set the followiignals:

tload<="1' Load T register

t sel<=rr8 t Select T rotate right 8 bit to loadegister

To execute the ST instruction, set the followingnsils:

tload<="1' Load T register

t sel<=not t Select not(T) to load T register

To execute the SHL instruction, set the followingnsls:

tload<="'1' Load T register

t sel<=shl t Shift T left 1 bit

To execute the SHR instruction, set the followirgmnals:
tload<="1' Load T register

t sel<=shr t Shift T right 1 bit

To execute the XOR instruction, set the followingnals:
tload<="1' Load T register

t sel<=s xor_t Select (S xor T) to load T register
spopp<='1' Pop s_stack

To execute the AND instruction, set the followingrals:
tload<="1' Load T register

t sel<=s and _t Select (S and T) to load T register
spopp<='1' Pop s_stack

To execute the ADD instruction, set the followingrals:
tload<="1' Load T register

t sel<=sum t Select (S + T) to load T register
spopp<="1"' Pop s_stack

MUL Sep

The MUL step and DIV step instructions are the nooshplicated instructions.
They use T and X as a register pair. The T-X tegisair is shifted right or left, and
the T register may either receive results fromatiéer or remain unchanged.
Repeating these instructions is the simplest aadrbst efficient way to implement
an unsigned multiplier and an unsigned divider.

In the MUL instruction, the T and X registers aomsidered a 65-bit right-shift
register. Initially, a partial sum is loaded ireth register, a multiplier in the X
register, and a multiplicand in the S register. th# least significant bitin X is 1, S is
added to T, and the resulting T-X pair is shifteght by 1 bit. If the least significant
bitin X is 0, T is not changed, and the T-X paishifted right by 1 bit. After
repeating the MUL instruction 32 times, the T-Xistgr pair will contain a double
product of X*S +T.

67

To execute the MUL instruction when X(0)=1 :

aload<="1" Load X register

tload<="1" Load T register

t sel<=shr_sum Select right shifted (S+T):X
a_sel<=shr_sum_a Select right shifted (S+T):X
To execute the MUL instruction when X(0)=0 :
aload<="1" Load X register

tload<="1" Load T register

t sel<=shr t t Select right shifted T:X

a sel<=shr_t a Select right shifted T:X

DIV Sep

In the DIV instruction, the T and X registers agaia considered a 65-bit left-shift
register. A double integer dividend is containedhie T-X register pair, and a
negated divisor is in the S register. In the Althé sum of S and T is always
computed by an adder. If the carry bit in adden(@2) is 1, S is added to T, and the
resulting T-X pair is shifted left by 1 bit. Ifehcarry bit in adder is O, T is not
changed, and the T-X register pair is shiftedbgftl bit. In either case, the carry bit
is shifted into the least significant bit in therégister. After repeating the DIV
instruction 33 times, the X register contains thetgent, and the T register contains
2x of the remainder of division.

To execute the DIV instruction when the carry bimng32)=1 :

aload<="1" Load X register

tload<="1" Load T register
a_sel<=shl_sum_a Select left shifted T:X

t sel<=shl sum a t Select left shifted (S+T):X
To execute the DIV instruction when the carry bing32)=0 :
aload<="1"' Load X register

tload<="1' Load T register
a_sel<=shl_sum_a Select left shifted T:X

t sel<=shl t a t Select left shifted T:X

Register and Stack Instructions

To execute the POPR instruction, set the follovaigpals:

tload<="1' Load T register

t sel<=r_t Select R to load T register
spush<='1' Push s_stack

r_sel<=rout_r Select r_stack to load R register
rload<="'1' Load R register

rpopp<=1' Pop r_stack

To execute the XT instruction, set the followingrals:
tload<="'1' Load T register

t sel<=a_t Select X to load T register
spush<="1' Push s_stack

68

To execute the DUP instruction, set the followirgnals:

spush<="1'

| Push s_stack

To execute the OVER instruction, set the followsignals:

spush<="1"' Push s_stack
tload<="1' Load T register
t sel<=s t Select S to load T register

To execute the PUSHR instruction, set the follonsignals:

tload<="1' Load T register

t sel<=s t Select S to load T register
rpush<="1' Push r_stack

r sel<=t r Select T to load R register
rload<="1' Load R register
spopp<="1"' Pop s_stack

To execute the TX instruction, set the followingrals:

tload<="1' Load T register

t sel<=s t Select S to load T register
a_sel<=t _a Select T to load X register
aload<="1" Load X register
spopp<="1' Pop s_stack

To execute the NOP instruction, set the followiigmnals:

reset<="1"'

| Force next cycle to slot0

To execute the DROP instruction, set the followsignals:

tload<="'1' Load T register
t sel<=s t Select S to load T register
spopp<='1' Pop s_stack

69

-- finite state machine, processor control unit
sync: process(clk,clr) begin
if clr="1" then -- master reset
inten <='0'; slot <= 0;
sp <="00000000"; spl <="00000001";
rp <="00000000"; rpl <="00000001";
t <= (others =>'0");
r <= (others =>'0");
a <= (others =>"'0";
p <= (others =>'0Y;
i <= (others =>"'0");
foriiin s_stack'range loop
s_stack(ii) <= (others =>"'0");
r_stack(ii) <= (others =>"'0";
end loop;
elsif (clk'event and clk="1") then
if reset="1' or slot=5 then
slot <= 0;
else slot <= slot+1;
end if;
if intload="1" then
inten <= intset;
end if;
if iload="1" then
i <= data_i(width-1 downto 0);
end if;
if pload="1"' then
p <=p_in;
end if;
if tload="1" then
t<=t in;
end if;
if rload="1" then
r<=r_in;
end if;
if aload="1" then
a<=a_in;
end if;
if spush="1" then
s_stack(conv_integer(spl)) <=t;
sp <= sp+1;
spl <= spl+l;
elsif spopp="1' then
sp <= sp-1;
spl <= spl-1,
end if;
if rpush="1' then
r_stack(conv_integer(rpl)) <=r;
rp <=rp+1;
rpl <=rpl+1;
elsif rpopp="1' then
rp <=rp-1,
rpl <=rpl-1;
end if;
end if;
end process sync;
end behavioral;

70

Finite Sate Machine

Finite state machine “sync” is a process paced asten clock “clk”. This is what |
called a Slot Machine. The master clock drivesstaie counter, “slot”, and
increments it from 0 to 5 and then repeats theesgepi Each clock cycle can thus
be named slot0 to slot5, according to the contehtslot”.

Machine instructions are decoded in the “decodetess, where control and select
signals are set and data are routed through camtuogic and multiplexers. On the
rising edge of master clock “clk”, selected registend stacks latch outputs from
respective multiplexers. A machine instructiothigs executed. The “slot”
counter is incremented, and the next instructiomfthe next slot in the | register is
decoded and executed.

When “slot” is 5, or when a transfer instruction}d., RET, BRA, BZ, or BNC) is
executed, the counter “slot” is cleared to 0. hiemext clock cycle, slot0, the eP32
will process an interrupt if any interrupt is pemgli or fetch the next program word
from memory and start executing machine instrustioontained in this program
word.

When “clr” is set, the eP32 is in a reset staten the reset state, all registers and both
stacks are cleared to 0, except spl and rpl, venemitialized to 1. When “clr” is
cleared to O, the eP32 starts running. Since ttegiBter is cleared to O on reset, and
“slot” is 0, the program word in memory locatiomstfetched from memory on the
rising edge of master clock “clk”. On the risindge of the next clock, the machine
instruction in slotl of this program word is decd@dand executed. What happens
next depends on this instruction.

All elements in s_stack and r_stack are cleareagusifor-loop in the sync process.

When “clr” is cleared to 0, the master clock stdrigsing the Slot Machine and starts
the CPU running. (clk'event and clk="1") specitieat all actions occur on the rising
edge of master clock “clk”.

On the rising edge of “clk”, the counter “slot”ircremented. When “slot” is
incremented to 5, or when reset=1, as a trans$¢énuiction (CALL, RET, BRA, BZ,
or BNC) is executed, “slot” is cleared to 0. I thext clock cycle, slotO, the eP32
will process an interrupt if any interrupt is pemgli or fetch the next program word
from memory and start executing machine instrustioontained in this program
word.

If intload=1, the inten register is aligned to ettsvhich enables or disables
interrupts.

If iload=1, the next program word is latched int@gjister.

If pload=1, the P register is loaded from PMUX.

If tload=1, the T register is loaded from TMUX.

If rload=1, the R register is loaded from RMUX.

When aload=1, the X register is loaded from XMUX.

The data stack and return stack are implement8@ 88-bit register arrays. Stacks

71

have to be pushed or popped in a single clock ¢cyata all other actions in the CPU.
When pushing, the stack pointer must be pre-incnéeae and when popping, the
stack pointer must be post-decremented. In corvaaitdesigns, it would take
another cycle to pre-increment a stack pointer. mése sure that all stack actions
are always accomplished in a single cycle, we aadauxiliary stack pointers, spl
and rpl, which are always one count above the ipahstack pointers, sp and rp.
When pushing, spl or rpl is used to write a neskstéement above the top of stack.
When popping, sp or rp is used to read the top eheimn the stack. Whenever sp or
rp is changed, spl or rpl are changed accorditugly,

When pushing the data stack, spush=1. The T szgsstopied to the top of s_stack,
pointed to by spl. This is what is called pre-emsenting, as spl is pointing to a
location above the top of the data stack, poimdaytsp. Then, both sp and spl are
incremented, so that now sp is pointing to the lmmation on top of s_stack.

When popping the data stack, spopp=1. Nothingmiqular needs to be done, as
the top of s_stack pointed to by sp is read outn th@ rising edge of the next clock,
both sp and spl are decremented. This is poséhertting.

When pushing the return stack, rpush=1. The Rstegis copied to the top of
r_stack, pointed to by rpl. rpl is pointing tmedtion above the top of the return
stack, pointed to by rp. Then, both rp and rplimeeemented, so that now rp is
pointing to the new location on the top of r_stack.

When popping the return stack, rpopp=1. The tofhefr_stack pointed to by rp is
read out. On the rising edge of the next clockhlop and rpl are decremented.

5.3 RAM Memory Module
The VHDL code of the RAM module is in the ram_meyndnd file.

The design of the memory module is different fo5A8 from different
manufacturers. It is the only module in the eR& tannot be ported across FPGA
chips. However, FPGA manufacturers generally supmory blocks in VHDL

and Verilog modules. The user can pick the merbtogk from a library, and
configure it to suit his design requirements. S&HREA systems allow the user to
initialize a memory block so that the resulting mrocessor system can boot up
immediately on power up.

For the eP32 system, the memory block has to biegewed as follows:
Memory word width 32 bits

Memory depth 4096 or more words

Single phase clock

No input latch

No output latch

Some FPGAs contain ROM and RAM memory blocks. R@&Mmory must be
initialized to contain program code. The LatticeXias only RAM memory blocks,
but RAM memory is initialized from flash memory. hi§ configuration is very
convenient for microprocessor designs, becausmit®processor can be initialized

72

immediately from flash memory on power up, and paoags are executed in RAM.
No extra ROM memory is necessary to store prograae cand a single FPGA chip
becomes a complete microprocessor system.

The eForth system software to be executed on tB2 elfip must be compiled and
copied into an mem.mif file. mem.mif must be cabilkto the eP32 project folder
so that the ispLEVER system can use it to initeaiRAM memory. When the eP32
chip design is downloaded into a LatticeXP2 chimréh goes along.

The eP32 uses memory of the simplest type, asynobsoRAM memory. No clock
signal is needed for reading. When the addressskatable, the addressed memory
cell puts its contents on the output data bus. Mhemory is in write mode,
write-enable is pulled high. Then when the wrikeck pulse is high, input data on
the data bus is written into the memory cell adskdsy the address bus. This is
how most static RAM memory chips were designedianplemented. Most FPGA
manufacturers, however, choose to implement thaWRnodules as synchronous
RAM, which uses a clock pulse to first latch itsleeks and data bus, and then put the
addressed memory cell on the output data bus.

One must be very careful in clocking memory blockSynchronous memory is
incompatible with the eP32 design, because the meoamtents are not available
before the rising clock edge, after the memory esklis changed. In the eP32,
memory contents must be stable before the risiockatdge. This clocking problem
is solved by using synchronous memory blocks aackahg them with the trailing
edge of the master clock. A disadvantage is tit@CPU can only run at 1/2 of

maximum memory access speed.

It is not a problgéimmost FPGASs running at 50

MHz. It may become a problem when you have to phslspeed higher.
A few lines of data in mem.mif in Addressed-Hexnfat are as follows:

#Format=AddrHex
#Depth=4096
#Width=32
#AddrRadix=3
#DataRadix=3
#Data

0:68D

24:80

25:A

26:7C6
27:7C8
28:7C6

29:4A0
2A:4D2
2D:7C6
101:564F4405
102:5241
103:1805E79E
104:101
105:3C3002
106:1179E79E
107:3000109
108:1A69405E
109:A05E79E
10A:FFFFFFFF
10B:105

10C:2B4D5503
10D:1769E79E

10E:3000110
10F:1A69405E
110:A05E79E
1111

112:10C
113:55443F04
114:50
115:1A79E79E
116:2000118
117:1A05E79E
118:179E79E
119:113
11A:454E4407
11B:45544147
11C:10710297
11D:1
11E:1A79E79E
11F:3000121
120:1805E79E
121:1829705E
122:1

123:11A
124:53424103
125:1A45E79E

126:3000128
127:179E79E

128:1029705E

73

Only the first page of ram_memory.vhd is shownlmleft page. It is generated
automatically by the RAM_Q memory module in theXpress library of the
ISPLEVER system. Terms used in this file are inceimensible except to experts at
Lattice, and | will not try to comment on it. Wesf need to know its interface to the
eP32, and leave the details to Lattice and theBMHR system.

RAM memory is mapped in the the address space bet@end OxFFF.

Port signals defined for the RAM memory module are:

Port Signal| Function

address Address from CPU

clock Memory clock, inverted from master clock
clockEn Clock enable, always enabled

data Data input from CPU

reset Clear addfress and data registers, alwagbldt}
we Write enable from CPU

q Data output to CPU

VHDL code for this memory module is generated awteally by IPexpress in the
iISpLEVER system. It is not printed here.

RAM memory must be initialized properly with a prag in it, so that when the eP32
chip is synthesized and downloaded into the FPG&ptrogram starts executing after
Reset is released and the clock is applied tolile ¢ RAM memory is initialized

with the contents of the mem.mif file. This fieproduced by the eForth
metacompiler, which builds a memory image of therdfsystem, and copies this
image into the mem.mif file. The mem.mif file mi& copied into the folder where
all other VHDL files reside. When IPexpress in islglEVER System generates
mem_memory.vhd, it reads mem.mif and includes @astantiating program words
into the RAM module.

-- VHDL netlist generated by SCUBA ispLever_v81_SP1 _Build (36)
-- Module Version: 7.1

--D:\ispToolispfpga\bin\nt\scuba.exe -w -lang vhdl -synth synplify
-bus_exp 7 -bb -arch mg5a00 -type bram -wp 10 -rp 1 000 -addr_width
12 -data_width 32 -num_rows 4096 -writemode NORMAL -resetmode SYNC
-memfile

d:/isptool/demo_latticexp2_brevia_soc_vhdl/demo_lat ticexp2_brevia
_soc/project/ep32q_xp2_4/mem.mif -memformat orca -c ascade -1 -e

-- Sat Dec 11 08:41:47 2010

library IEEE;

use IEEE.std_logic_1164.all;
-- synopsys translate_off
library xp2;

use xp2.components.all;

-- synopsys translate_on

entity ram_memory is
port (

Clock: in std_logic;

ClockEn: in std_logic;

Reset: in std_logic;

WE: in std_logic;

Address: in std_logic_vector(11 downto 0);

Data: in std_logic_vector(31 downto 0);

Q: out std_logic_vector(31 downto 0));
end ram_memory;

architecture Structure of ram_memory is

-- internal signal declarations
signal scuba_vhi: std_logic;
signal scuba_vlo: std_logic;

-- local component declarations
component VHI
port (Z: out std_logic);
end component;
component VLO
port (Z: out std_logic);
end component;

component DP16KB
-- synopsys translate_off
generic (INITVAL_3F : in String; INITVAL_3E > in String;

INITVAL_3D :in String; INITVAL_3C :in String;
INITVAL_3B : in String; INITVAL_3A »in String;
INITVAL_39 : in String; INITVAL_38 :in String;
INITVAL_37 : in String; INITVAL_36 »in String;
INITVAL_35 :in String; INITVAL_34 :in String;
INITVAL_33:in String; INITVAL_32 :in String;
INITVAL_31 : in String; INITVAL_30 »in String;
INITVAL_2F : in String; INITVAL_2E :in String;
INITVAL_2D :in String; INITVAL_2C »in String;
INITVAL_2B : in String; INITVAL_2A :in String;
INITVAL_29 : in String; INITVAL_28 »in String;
INITVAL_27 : in String; INITVAL_26 :in String;
INITVAL_25 :in String; INITVAL_24 »in String;

75

54 UART Module

The VHDL code of the UART module is in the uart.\iid.

A UART port is the simplest and the most effici# device allowing a FORTH
system to interact with users. With a UART porg @an bring up an eP32 system

on power-up and a user can immediately begin soé&waavelopment.

This UART system is set to 115,200 baud, 1 stasBaiata bits, 1 stop bit, no parity,
and no flow control.

4 Registers are defined in the UART module, and #dddresses and functions are as
follows:

Address Register Function
Ox80000000 Baud Rate Register 32-bit baud rate counter
Ox80000001 Transmit Register Bits7-0, transmit datag;

bit8, transmitter status

Ox80000002 Receive Status RegisteBit0, flow control,
bit8 receiver status

Ox80000003 Receive Buffer RegisterBits7-0, Receive data

Signals in UART modules are defined in an architects follows:

Port Signal | Function

clk i Master clock input

rst i Master reset input

ce | UART chip select input
read i Read enable input

write_| Write enable input

addr_i Register address input
data i Data input from CPU
data_o Data output to CPU
rx_empty o| Receiver buffer empty
rx_irg_o Receiver interrupt request
tx_irg_o Transmitter interrupt request
rxd_i Receiver data input

txd_o Transmitter data output
cts_i Clear-to-Send input

rs o Ready-to-Send output

The UART is initialized to run at 115,200 baud. ingsa 50 MHz crystal for the
master clock, the baud rate register is set to 43¥hen | switched to a 16 MHz
clock, the board seemed to work fine at 38,400 baldART devices are very
forgiving in clock variations. The baud rate régids a read-write register, and
baud rate can be dynamically changed by writing\a baud rate count into the baud
rate register.

76

kkk

- UART Serial Interface

P y—— —_—

*kkkkkk

—_————%

--* Project: FG in PROASIC
-- * File: uart.vhd
-- * Author: Chien-Chia Wu

--*02/13/03 Chien-Chia Wu Reference uart statem
--*02/14/03 Chien-Chia Wu (1)Copy from bpchip,

o (2)Modify to 32-hits

Sk (3)Swap the cts and rts .
_o kkkx

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_misc.all;

use ieee.std_logic_unsigned.all;
entity uart is

port(
-- input
clk_i: in std_logic;
rst i in std_logic;
ce i in std_logic;
read_i: in std_logic;
write_i: in std_logic;
addr_i: in std_logic_vector(1 downto 0);
data i: in std_logic_vector(31 downto 0);
-- output
data_o: out std_logic_vector(31 downto 0);

rx_empty_o:out std_logic;
rx_irg_o: out std_logic;
tx_irg_o: out std_logic;

-- external interface

rxd_i: in std_logic;
txd_o: out std_logic;
cts_i: in std_logic;
rts_o: out std_logic
);
end uart;

ents t *

*kkkkkkkkkk

77

Internal Signals

Following are the internal signals in the UART mtzdu

baudrate reg

Baudrate register

hw_xonoff_ff Hardware xon/xoff flag
tx_shift_reg Transmitter shift register
tx_shift_en Transmitter shift enable
tx_en Transmitter enable

tx_rq Transmitter request
tx_counter Transmitter clock counter
tx_bitcnt Transmitter bit counter
rx_shift_reg Receiver shift register

rx_buffer_reg

Receiver buffer register

rxb_full

Receiver buffer full flag

rx_full Receiver full flag

rx_en Receiver enable
rx_counter Receiver clock counter
rx_bitcent Receiver bit counter

rxd_ff Receiver data flag

rs_o Ready to send output flag
rx_empty o Receiver empty output flag

Read UART Registers

uart_register_file_read is an asynchronous protssahich the eP32 CPU can read
the UART register at any time. When read_i=1 amd=l, the register selected by
addr_1 puts its contents on the data_o bus foC#id to read.

When addr_i =0, data_o returns the baud rate daauht baud rate register. When
the master clock rate is 50 MHz and the baud 145,200 baud, the baud rate count
is 431.

When addr_i=1, data_o returns transmitter stattgrevbit 8 shows Transmitter
Ready state.

When addr_i=2, data_o returns receiver status, evbiei8 shows Receiver Ready,
and bit 0 shows flow control state.

When addr_i=3, data_o returns the contents ofdbeiver buffer, where bits 0-7
show the last character just received.

78

begin

rts_o <= hw_xonoff_ff and (not(rx_full));
rx_empty_o <= rx_full nor rxb_full;

_o Fhkkkkkkkkkkkkkkkkhkhkhhkhhhhkhhkhkhkkhkkkhkkhkkhkkkkkkkx

-- Uart Register Circuit for Read
_o FThkkkkkkkkkhkkkhhkhhkkhkkhhkhhhhkhhhhhhkhhhkhhhkhiixx
uart_register_file_read:
process(read_i, ce_i, addr_i, baudrate_reg, tx_en
hw_xonoff_ff, rxb_full, rx_buffer_req)
begin
if (read_i='1"' and ce_i='1") then
case addr_iis
when "00" => data_o <= baudrate_reg;
when "01" =>data_o<= --read TX ready flag
"00000000" & "00000000" & "0000000" &
((not tx_en)and(cts_i or(not hw_xonoff_ff)))
& "00000000";
when "10" => data_o <= --only cleared by rxb re
"00000000" & "00000000" &
"0000000" & rxb_full &
"0000000" & hw_xonoff _ff;
when others => data_o <= -- read&clear rxb_full f
"00000000" & "00000000" & "00000000" &
rx_buffer_reg;
end case;
else
data_o <= (others=>'1");
end if;
end process uart_register_file_read;

_ Kkkkkkkkkkkkkkkkkkkkkkhkkhkhhhhhhhkhkhkhkhkhkhkhkkkkkk

- Uart Register File Process for Write
_o kkkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkx
uart_register_file_write : process (rst_i, clk i)
begin
if (rst_i="1") then

baudrate_reg<="00000000000000000000000110101111";

-- 50 MHz, 115.2Kbps
tx_shift_reg <= (others=>'0";
tx_rq <="'0"
hw_xonoff_ff <='0",
elsif (clk_i'event and clk_i="1") then
if (tx_en="0") then
if (write_i="1"and ce_i="1") then
case addr_iis
when "00"=>baudrate_reg<=data_i;
when "01"=>
tx_shift_reg<="11"&data_i(7 downto 0)&'0";
tx_rg<='1%
when "10"=>hw_xonoff_ff<=data_i(0);--flow Contro
when others => null;
end case;
end if;

*kkkkkkk

*kkkkkkk

, Cts_1,

ad

*kkkkkkkkkk

*kkkkkkkkk

79

Write UART Registers

uart_register_file write is a synchronous procedsch writes new data into the
UART registers.

When the eP32 is in the reset state, rst_i=1 asesas the UART to be reset. Inthe
reset state, the UART initializes the baud ratéstegto Ox1AF (decimal 431), and
sets the baud rate to 115,200 baud when the n@stéris 50 MHz. In the
meantime, flags tx_shift_reg, tx_rq, and hw_xonfbfare all cleared to O.

Once the eP32 is in its running state, the UARpaads to write commands from the
CPU on the rising edge of clock clk_i when writel end ce_i=1.

When tx_en=0, the UART is not actively transmitteagharacter.

Writing with addr_i=0, new data is written into thaud rate register and the new
baud rate will take effect immediately. One shdwgdcareful in changing the baud
rate, because the external device connecting td&RT port should be set up so it
responds to the new baud rate correctly.

Writing with addr_i=1, new data is written into ttransmitter shift register,
tx_shift_reg. The lower 8 bits of data is a chtgato be transmitted. Transmit
request, tx_rq, is also set to start transmitting tharacter.

Writing with addr_i=2, the flow control bit can lohanged by bit O of the written
data.

When tx_en is not zero, the UART is transmittingharacter.

If tx_shift_en=1, the rising edge of clk_i causles tharacter in the transmitter shift
register, tx_shift_reg, to be shifted right by 1. biThe lowest bit is shifted out to
txd_o.

Transmit Process

The transmitter in the UART is running in a synefoos process, uart_tx_core.

On booting up, rst_i is set, and all registershim UART transmitter are cleared to
zero. Only txd_o is pulled up, raising the UARTmut line TX to high, which is the
rest state of the UART output.

When transmit request, tx_rq, is set, a charastir ix_shift_reg, ready to be
transmitted. tx_counter is initialized by copyitig baud rate count from

baudrate_reg, and the transmit bit counter, txnhbiis initialized to 11 for 1 start bit,
8 data bits and 2 stop bits. tx_en is now setax the transmitting procedure.

80

else
tx_rq <="'0"
if (tx_shift_en="1") then
tx_shift_reg<="1'&tx_shift_reg(10 downto 1);
end if;
end if;
end if;
end process uart_register_file_write;

_o Fhkkkkkkkkkkkkkkkkhkhkhhhhhhhhkhkhkkkkkhkhkhkkhkkkkkkkx

-- Uart TX Core Process
_o Fhkkkkkkkkkkkkkhhkkhkhkkkkhhkhhhhkhhhhhhkhhhkhhhkhiixx
uart_tx_core : process (rst_i, clk_i)
begin
if (rst_i="1") then
tx_counter <= (others=>'0");
tx_bitcnt <= (others=>'0");
txd_o<="1"
tx_en <="0}
tx_shift en <="'0";
tx_irg_o <="0}
elsif (clk_i'event and clk_i="1") then
tx_shift_en <=0,
tx_irg_o <="0}
if (tx_en="0") and (tx_rg="1") and
(cts_i="1" or hw_xonoff_ff='0") then
tx_counter <= baudrate_reg;
tx_bitent <="1011";
tx_en<="1"
elsif (tx_en='1") then
if (tx_counter/="00000000000000000000000000000000
then tx_counter <= tx_counter-1;
elsif (tx_bitcnt/="0000") then
tx_bitcnt <= tx_bitent-1;
txd_o <= tx_shift_reg(0);
tx_shift en <="1";
tx_counter <= baudrate_reg;

else
txd_o<="1" -- mark-high=stop-bit
tx_irg_o <='1"; -- transmitter empty
tx_en<='0" -- closed
end if;
end if;
end if;

end process uart_tx_core;

*kkkkkkkkk

*kkkkkkkkk

81

As tx_en is set, every rising edge causes tx_cotmige decremented. When
tx_counter is 0, one bit in tx_shift_reg is shiftaa to txd_o, by setting tx_shift_en,
which causes the uart_register_file_write processotthe shifting. In the meantime,
tx_bitcnt is decremented and tx_counter is reatfi#ed to baudrate_reg. This
sequence is repeated 11 times to shift out all bitgdan tx_shift_reg.

After all 11 bits in tx_shift_reg are shifted otx, en is cleared to stop the
transmitting procedure. An interrupt request isvated by setting tx_irq_o. txd_o
is again set to put the UART to its rest state.

Receive Process
The receiver in the UART is running in a synchrosipuocess, uart_rx_core.
On booting up, rst_i is set, and all registershm WART receiver are cleared to zero.

When the receiver receives a complete charactefylix1. On the rising edge of
the master clock, the character received in rxt gieif) is copied to rx_buffer_register,
which can be sent to the eP32 when eP32 readsffer lnegister at location
0x80000003.

rxb_full flag is set only when rx_shift_reg is cegiinto rx_buffer_reg. It otherwise
is always cleared to 0.

On the rising edge of every clock, the receiveutdme, rxd_i, is always sampled
and its state is stored into rx_ff. rxd_i is noliyjaigh when the UART is resting.
When rxd_i is lowered to O, rx_ff is cleared anthdicates that a start bit is detected
and a character is coming. Activities in the neage of VHDL code cause this
character to be received.

When the receiver is resting, rx_en=0. When 4 btais detected and rx_ff is
cleared, the receiver is initialized to prepareendag a new character. rx_counter is
first initialized to half of the baud rate countbaudrate_reg, so that the receiver line,
rxd_i, will be sampled in the middle of every Bteived. rx_en is set, and rx_bitcnt
is initialized to 9, for 1 start bit and 8 datasbit

When rx_en is set, every rising edge of the madtek decrements rx_counter until
it is zero.

When rx_counter=0, rxd_ff is shifted into rx_shitg, rx_bitcnt is decremented, and
rx_counter is reinitialized to the baud rate caarttaudrate _reg.

When rx_bitcnt is decremented to zero, a completeacter is received in
rx_shift_reg. rx_full is set so that the charaaterx_shift_reg will be copied into
rx_buffer_reg, and be made available to the eP382.irq_o is set to request an
interrupt, and rx_en is cleared to receive the obharacter.

82

__ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkk *kkkkkkkkkk

-- Uart RX Core Process
_o FThkkkkkkkkkhkkkkhhkkhhkkkhhkhhhhkhhhhhhkhhhkhhhkhiixk *kkkkkkkkk
uart_rx_core : process (rst_i, clk_i)
begin
if (rst_i="1") then
rx_full <="0"
rxb_full <="0"
rx_irg_o <='0,
rx_buffer_reg <= (others=>'0");
rx_counter <= (others=>'0");
rx_bitcnt <= (others=>'0");
rx_en <='0"
rx_shift_reg <= (others=>'0";
rxd_ff <="0"
elsif (clk_i'event and clk_i='1") then
rx_irg_o <="'0,
rxd_ff <=rxd_i;
if (rx_full="1") then
if (rxb_full='0") or
(read_i='1"and ce_i="1"and addr_i="11") then
rx_buffer_reg <= rx_shift_reg;

rxb_full <="1"
rx_full <="0"

end if;

else

if (read_i='1"and ce_i="1" and addr_i="11") then
rxb_full <="0",

end if;

if (rx_en='0") and (rxd_ff='0") then
rx_counter <="'0"' & baudrate_reg(31 downto 1);
rx_bitcnt <="1001";
rx_en<="1%
elsif (rx_en="1") then
if(rx_counter/="00000000000000000000000000000000
then -- bit-T-counting
rx_counter <= rx_counter-1;
elsif (rx_bitcnt/="0000") then
-- last bit has been received
rx_bitcnt <= rx_bitcnt-1;
rx_shift_reg<=rxd_ff&rx_shift_reg(7 downto 1);
rx_counter <= baudrate_reg;

else
rx_irg_o <="1";--flag for generate pulse
rx_full <="1"
rx_en <="'0;

end if;

end if;
end if;
end if;

end process uart_rx_core;
end behavioral;

83

5.5GPIO Module
The VHDL code of the GPIO module is in the gpio.\itel
A general purpose parallel I/O port is most usefukal-time applications to interface
to a wide range of external devices. In the eB8%&m, such a GPIO port is
included. Itis designed as a 16-bit bidirectigoalallel port, but the user can
configure it to suit any purpose. It is declareceatity in the gpio.vhd file.

Port signals of the GPIO module are defined inGIREO entity as follows:

Port Signal | Function

clr Master reset

clk Master clock

write Write enable

read Read enable

ce GPIO chip select
addr Register address
data in Data input from CPU
gpio_in GPIO input

mem_conf_g Bit0 memory select: 0-ROM; RAM
Bitl CPU reset

data_out Data output to CPU
gpio_out Data output to GPIO output
gpio_dir Direction select of GP1O

Registers in the GPIO module, their address anctifums are as follows:

Address Register Function

0xE000000Q gpio_out When written, send data to gpio port

OxEO0000001 gpio_dir_reg| Select port pin direction: O-input; 1-output

0xEO0000002 gpio_in Read gpio port

As GPIO is a module in the eP32 system, it is nohected directly to 1/O pins on
the eP32 system package. Therefore, gpio_in, gptoand gpio_dir signals are all
brought out as ports in the GPIO module. Theseatsgare used in the ep32_chip
top level module to drive I/O pins.

In the eP32, a GPIO port is a 32-bit device. Haavewe only brought out 16 lines
to pins on the LatticeXP2-5E-TN144C chip to driveEBDs and to monitor 8
pushbutton switches.

Reading GPIO registers is an asynchronous prosesisoavn in the
gpio_register_file_read process. Bits in the ggioregister define pins as input or
output. A bit set in gpio_dir makes the correspoggin an output pin. A bit
cleared in gpio_dir makes the corresponding pimpat pin. Reading the gpio_in
register obtains the status of the input pins. ti\githe gpio_out register sends data
to the output pins.

84

_ kkk

*kkkkkkkkk

General Purpose Input Output Module

*==

-- * Project: FG in PROASIC *
--* File: gpio.vhd *
-- * Author: Chien-Chia Wu *

--*03/02/03 Chien-Chia Wu Created.

_o kkkx
library ieee;

use ieee.std logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_unsigned.all;

entity gpio is
port(
-- input port
clr: in std_logic;
clk: in std_logic;
write: in std_logic;
read: in std_logic;
ce: in std_logic;
addr: in std_logic_vector(1 downto 0);
data_in: in std_logic_vector(31 downto 0);
gpio_in: in std_logic_vector(15 downto 0);
-- output port

std_logic_vector(31 downto 0);
std_logic_vector(15 downto 0);
std_logic_vector(15 downto 0)

data_out: out
gpio_out: out
gpio_dir: out
);
end gpio;

*kkkkkkkkkk

architecture behavioral of gpio is
signal gpio_reg: std_logic_vector(15 downto 0);
signal gpio_dir_reg:std_logic_vector(15 downto 0);
begin
gpio_out <= gpio_reg;
gpio_dir <= gpio_dir_reg;

_ kkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkhhhhhhhkhhkhkkkkkk

GPIO Register Circuit for Read
_ kkkkkkkkkkkkkkkkkkkhkkhkkhkkhhhkhhhkkhhkhhikkhhikhiix
gpio_regqister_file_read:
process(read, ce, addr, gpio_reg, gpio_dir_reg,gpi
begin

if (read="1" and ce='1") then

case addr is
when "00" =>
data out<="00000000"&"00000000"& gpio_reg;
when "01" =>

data_out<="00000000"&"00000000"& gpio_dir_reg;
when others=>
data_out<="00000000"&"00000000"& gpio_in;
end case;
else
data_out <= (others=>'1");
end if;
end process gpio_register_file_read;

*kkkkkkkkk

*kkkkkkkkk

0_in)

85

_ kkkkkkkkkkkkkkkkkkkkkkkkkkkhkhhkhkhhhhhhhkhhkhkkkkkk *kkkkkkkkk

- GPIO Register Circuit for Write
_ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk *kkkkkkkkk
gpio_regqister_file_write:
process(clr, clk)
begin
if (clr="1") then
gpio_reg <= (others=>'0";
gpio_dir_reg <= (others=>'0";
elsif (clk'event and clk="1") then
if (write="1" and ce='1") then

case addr is
when "01" => gpio_dir_reg <= data_in(15 downto 0);
when others => gpio_reg <= data_in(15 downto 0);
end case;
end if;

end if;
end process gpio_register_file_write;
end behavioral,

Writing the GPIO registers is done using a syncbusrprocess,
gpio_register_file_write.

On reset, rst_i=1, and all GPIO registers are ekb&w zero.

When running, on the rising edge of clk_i, if ceaird write=1, data from the CPU
on the data_i bus are written into the registezed by addr_i. Writing to the
gpio_reqg register send data to output pins. \Wgitmthe gpio_dir register defines
the input and output pins.

56 Remarks

Here | had just shown you the design of a com@@&atbit microprocessor in VHDL.
What | want to convey is the idea that CPU is nfficdlt. It can be very simple.
It was made very complicated because CPU desiginrsot fully understand the
fundamental components necessary for a CPU toiiamand thus made designs
unnecessarily complicated.

| cannot overemphasis the fact that the eP32 CRIdudas all instructions in a single
clock cycle. All prior CPU designs required maiyc& cycles to execute an
instruction. Designers tried very hard to covethip deficiency with pipelining and
other techniques, and made the CPU even more ocatgyi.

This design of eP32 microprocessor is only a stgupioint for you to design and
build your own microprocessor. You should conseldending this design in the
following directions:

For immediate applications, you should consideiragldew I/O modules to handle
specific tasks in your applications. | gave yadBRIO and a UART as examples.
You can incorporate existing /0O modules into ydasign. If you understand your

86

tasks, it is probably easier to design your ownrti@ules than pulling ‘library
module$ off the shelf.

For long term development, you should considerragldew instructions to the CPU
core. |am sure you feel constrained by the verglkinstruction set | put into the
eP32 CPU. There are spaces for 37 more instriginothe current eP32
architecture. If you are ambitious, why not encodgructions in bytes? Then,
you can have 256 instructions. Now, you are aiiatfgo implement a Java Virtual
Machine with byte codes.

The possibility is only limited by your imagination

How about software? If one changed hardware desilya's going to provide
software to make use of improvments?

As President Obama saidYes, we can!

Read the next chapter.

87

Chapter 6. Metacompilation of the eP32

In 1990, | hosted monthly meetings of the Fortledlest Group. The morning
sessions were generally for FORML, Forth ModifioatLaboratory, where we
discussed how to enhance the FORTH of the time. w&fe brain-storming what
FORTH would be like in the next century. Two di#fat directions were debated.
Tom Zimmer and Andrew McKewan wanted a FORTH fontiws, and developed
Win32Forth to take advantage of the popular Windpilasform. It became a huge
and complicated system. Bill Muench and | wantethgple FORTH portable to all
new and exciting microprocessors coming in thertutu We developed eForth and it
was implemented on 30 some different microprocesand microcontrollers by
many volunteers.

In the meantime, | also worked with Chuck Moorehtsminext FORTH chip, the
MuP21. It was targeted to a 1.2 micron CMOS preeasilable from Orbit
Semiconductor on shared 5 inch wafers. Dies webe224 mm, and it forced Chuck
to strip bare his CPU. He reduced instruction83pand fit a 20-bit microprocessor
on this small die, with an NTSC video coprocessm a DRAM memory coprocessor.
It was a marvelous design, but we ran out of mdredgre it was perfected.

| compared the designs of eForth and the MuP21fantl great similarity, in spite

of the completely different origins of these twesdms. eForth is a software design
and the MuP21 is a hardware design. However, oty were based on primitive
instruction sets with about 30 instructions. Mamstructions were identical in these
two instruction sets. Those instructions whichewdifferent, were different because
of hardware constraints. | was able to implemé&iatréh on the MuP21, and it was a
very pleasant system, a real FORTH language oal&@RTH CPU.

After the MuP21, Chuck and | went our separate ways$e founded iTV and
Intellesys, and built multiprocessor chips basedhenMuP21 core design. |
discovered FPGASs, and developed scalable P-sergsprocessors based on the
same core, implementing 16-, 24- and 32-bit vessimfithe P-microprocessors.

A young fellow in Taiwan, Mr. Cheah-shen Yap, pdr&dorth to Windows to become
the weForth system. He further enhanced it arehseld it as the F# system. These
are the simplest FORTH implementations for Winddwg,they can call all Windows
APIs to build applications running on a PC. | ubeth to write metacompilers for
embedded systems. However, for the eP32, | pesfemeForth, because it has a
simpler user interface to load applications. Wivefrorth.exe is executed on
Windows, it loads a start.f file, which loads innMilows utilities and application files.
F# has a more sophisticated graphical user intertawd gives the user better ways to
organize software projects. For an eP32 metacempibwever, weForth is more
than enough, and it is easier to document andptaex

The complete command set of weForth is shown inedpx B for your reference.

88

My goal is to build a FORTH microprocessor basedheneP32 CPU on an FPGA
chip, the LatticeXP2-5E, hosted on a LatticeXP2vizxdevelopment Kit. FPGA
synthesis and programming tools are provided ingheEVER Development system
supplied by Lattice. The FORTH system on the eB2& eForth system, and |
build this eForth target system in weForth, an #Fsystem running on a Windows
PC.

In FORTH terminology, a metacompiler is a FORTHgweom which produces an
image of program memory, which is copied into thesmory of a target
microprocessor. When the target microprocessoep®wp, a FORTH system is
booted up to interact with its user.

| believe the best way to explain this eForth gysig through the source code of the
eForth metacompiler in weForth that produces tyssesn. | like to take the same
approach in presenting the eP32 hardware by conmgemn its VHDL source files.

| will put eForth source code on left pages, anthim@ntary on opposing right pages.
Going through source code almost line by line,pénthat | can make clear the
process of producing a target system on the eR3&¢k as make clear the code and
other relevant information that go into program roeyrn the eP32.

Before going through source code files in the dforetacompiler, | will first show

you the metacompiling process in weForth, and howR32 target image is
generated. In addition, | will show you a simutatoweForth, which simulates the
eP32 eForth as an eP32 running on a Brevia DeveopKit. This way you can try
running an interactive FORTH system on a simulafeé82 without the Brevia Kit.

It is a good way to learn how FORTH works. Youd&avo FORTH systems to
experiment with: weForth as a Windows applicatemmg eP32 eForth as an embedded
application on the Brevia Kit.

6.1 Metacompiling the eP32

All source code of the eP32 eForth system is coathin the ep321_xp2.zip file.
weForth and its Windows utilities are also includhedle.

Unzip file ep32g_xp2.zip and put all the files irdolder named “ep32q_xp2”.
Start weForth by double clicking weforth2.exe ie #p32q_xp2 folder, as shown in
Figure 29.

weForth opens a console window, loads the eFortacoepiler and generates a new
eP32 target system.

A memory image of the eP32 eForth target systestoigd in file mem.mif. While
building this system, weForth prints out large amtaaf messages on its console
window.The console window at the end of the metgmtation process is shown in
Figure 30.:

Scroll the console window back to its beginningyd gou can see that weForth loads

several system files, win32.f, api.f, and ui.fbiing in the necessary Windows APIs,
as shown in Figure 31.

89

% EF32q xp?

BEE BKEED HBAE0 FSEW IO HHA® -,
EHHEE x Fov HBRY {EEE% HHA
& 3 hary ~| |Blapif IKE Fig% 10/26/2006 9:58 AM
% () ispTool] ARM32gF 4KE F#E 10/26/2006 9:58 AM
@) Keil ®|EFi2q F I6EE Fig%E 12/11/2010 8:32 &AM
) Mandel_float #]ep32.vhd 14KB VHD %% 11/18/2010 8:51 PM
) Mandel float_mous |®]ep32_chip vhd 11KE VHD %% 11/23/2010 9:16 PM
= midi &) epilq mem 21 KE MEM % 12/11/20108:33 AM
=) MusicScale |#]ep32g_th.vhd 3KB VHD#% 11/16/2010 10:29 PM
@ () offete 5] gpio vhi 4KE VHD#% 6242006 900 A
) passion =|KERN32q F 3KE F#E 12/11/20108:33 AM
=) PPT #]logt I36EE Fig%E B/7/010 12:24 AM
& () Program Filss #|META32Q.F 4KB FHE 11/23/2010 8:17 PM
& 3 th 4 ﬂ T imeimnory.yhd 162 KE VHD 8% 11/23£2010010:35 PM
=) mbyn-king [Z] readime tet IKE =rTarid BA0/2010 1:32 A
B 339 |5]51M32q F BKE FHE 12/10/2010 11:55 PM
5 eef 2] start.£ KB FHE 10/26/2006 9:58 AM
5 cef b |5 mart vhd I0KE VHD %% 74342006 403 PM
) eforthsutrs |2]vit 4KE F#= 10/26/2006 9:58 AM
=) #1532 € wetorth? exe 121KE FERIZ= 10/26/2008 9:58 L1
) ep32_aliera | win32 £ 2KE F#E 10/26/2006 9:58 AM
Iy ep32a
= I~ en3ia 3
< | >

Figure29. ep32 Project Folder

Il WeForth 2 .01
File Edit Tool: Help

Tools ~
dm+ 569 reDef dm+DUHMF 579 reDef DUHP

>*MAME 58C reDef >MAME.ID 59F reDef _ID

SEE S5AA reDef SEEWORDS 5C8 reDef WORDS.S 5DV reDef .S

file download and upload

READ 5SEFOK GS5FFSEMD S18FORGET 62F reDef FORGET

Hardware reset

DIAGHOSE 648 reDef DIAGHOSE

COLD 68D reDef COLD

Structures

BEGIMN 6A3 reDef BEGIMTHEM 6A8 reDef THENFOR 6AD reDef FOR

HEXT 6B5 reDef HEXTUNTIL 6BD reDef UNTILAGAIN 6C5 reDef AGAINIF 6CC reDef IF
AHEAD 6D4 reDef AHEADREPEAT 6DC reDef REPEATAFT G6E1 reDef AFTELSE G6E8 reDef
ELSEWHEH 6EFWHILE ©6F4 reDef WHILE

ABDRT" &F9 vreDef ABORT"S$" 702 reDef $"." 7OB reDef ."

doUAR 712 reDef doUARCODE 716 reDef CODECREATE 71D reDef CREATEVARIABLE 727 reDef
UARIABLECOHMSTANT 738 reDef CONSTANTDOES 739

a
24
ok
Loading sim32q.f reDef D+ reDef DHEGATE reDef TOD reDef next reDef S reDef reset
reDef P ok
ok
ok
| v

Figure30. Bootup ep32 Metacompiler

90

B WeForth 2.01
File Edit Tool: Help

eForthOK ~
weForth vz.81

Loading Loading win32.f ok

Loading api.f ok

Loading ui.f ok

Loading meta32q.f Loading asm32q.f reDef IMHEDIATE reDef hi reDef # reDef next
reDef HEXT reDef jmp reDef BEGIN reDef UNTIL reDef IF reDef THEN reDef ELSE reDef
WHILE reDef REPEAT reDef AGAIN reDef AFT reDef FOR ok

Loading kern32q.f

system variables vreDef HLD reDef SPAN reDef >IN reDef HTIB reDef BASE

reDef CONTEXT reDef CP reDef LAST reDef 'EUAL reDef tmp
macro words

reDef EXIT reDef EXECUTE reDef t reDef @ reDef R> reDef R@ reDef >R reDef DUP reDef
SWAF reDef DROP reDef 2DROF reDef + reDef HOT reDef AND reDef XOR reDef ODUER reDef
HEGATE reDef 1- reDef 1+ reDef BL reDef +! reDef - reDef OR reDef ROT reDef Z2DUP reDef
2% reDef 2@ reDef COUNT
kernel words

188
DOUAR 1838< 186 reDef 8<UM+ 18D reDef UHW+?DUP 115 reDef ZDUP
DHEGATE 11C reDef DHEGATEABS 125 reDef ABS
= 12C reDef =
B> 133*B 13B ok

Loading ef32q.f|

Chararter I0
7KEY 147 reDef ?KEYKEY 14E reDef KEYEWMIT 156 reDef EMIT
Common fFunctions
U< 15D reDef U< 16A reDef <MAX 177 reDef HAXMIN 17F reDef MINWITHIN 189 reDef v

Figure31. Beginning of Metacompilation

The next file loaded is meta32q.f, which is the 2Rtetacompiler. It first loads
asma32q.f to bring in the eP32 assembler. It pontsa list of command names
followed by a “reDef” message. These commandsiafimed in the eP32 assembler,
preparing to assemble commands in the eP32 kernel.

The next file loaded is kern32q.f, which first aefs many macro commands. Then
it starts building the eP32 kernel at target mentocgtion $100. There you can see
names of target commands followed by their codd Aedresses. They form a

symbol table, which you can use to look up namelsaaitiresses of target commands.

After the kernel is built, the metacompiler loadif32q.f, which compiles the
complete eForth target system, and writes its FORIEHonary out into a file
mem.mif. This file is used to initialize the RAMQ@memory array in the
ram_memory.vhd file, and to synthesize the eP16aoantroller in the FPGA chip
on the Brevia2 Kit as mentioned in the last section

After the eP32 target system is built, the metadtenmads sim32q.f, which is an
eP32 simulator. This simulator executes eP32uostns compiled by the
metacompiler, and can faithfully simulate the eRB8&truction by instruction.

Simulating the eP32

Once the sim32q.f simulator is loaded, type theroammd:
HELP

91

and a list of simulator commands appear, as shovAngure 32.

Hl WeForth 2.01
File Edit Tool: Help

ok *~
ok
HELP
eP32 Simulator, copyright eForth Group, 2088
C: execute next cycle
$: show all registers
D: display next 8 words
addr HM: display 128 words from addr
addr P: start execution at addr
addr G: run and stop at addr
RUH: execute, one key per cycle

ok

ok

ok

ok

ok

ok

ok

ok

ok

ok

ok

ok

ok

ok

ok

Figure32. HELP Directionsof eP16 Simulator

Type this command:
-1G

and the simulator boots up the eP32 eForth systehpants out its sign-on message:
eP32q v2.05

This is what you see next in Figure 33.

Now you can exercise eP32 eForth by typing in FOR®hhmands.
The following screen shot shows results when ype fommand:
WORDS
If you care to count them, there are 167 commandBhese commands are
documented in Appendix B.

92

Hl WeForth 2.01
File Edit Tool: Help

ok -~
ok
ok
ok
ok
ok
ok
ok

Press any key to stop.

eP32q v2.85
0K
0K

[114

Figure33. eP16in Simulation

Il WeForth 2.01

File Edit Tool: Help
Press any key to stop. ~
eP32q v2.05

0K

0K

0K
WORDS

COM XOR AHD DROP DUP COUNT 2@ 2t 2DUF ROT OR - +% BL 1+ 1- HEGATE

NOT + 2DROP OUER SWAP >R RE R» @ ' EXECUTE EXIT IMMEDIATE (“ .{ DOES
COMSTANT UARIABLE CREATE CODE . 4 ABORT" WHILE WHEN ELSE AFT REPEAT

AHEAD IF AGAIN UNTIL HEXT FOR THEN BEGIN COLD DIAGNOSE FORGET SEND OK

READ .S WORDS SEE .ID >MAME DUMP dm+ :] ; OVERT $COMPILE $§,n TUNIQUE
(cALL) §," LITERAL COWPILE [COMPILE] , ALLOT * QUIT EVAL .0K [$INTERPRET
ERROR abort™ ABORT QUERY EXPECT accept KTAP TAP “H HAME? find SAME? HAME>
WORD TOKEMH PARSE (parse} ? . U. U.R .R ."| $"| do$ CR TYPE SPACES CHARS
SPACE MHUMBER? DIGIT? DECIMAL HEX str #> SIGHN #S # HOLD <# EXTRACT DIGIT
UNPACK UNPACKS 4/ PACKS FILL CHMOUE @EXECUTE TIB PAD HERE >CHAR =/ =/HOD

H* * UM+ HMfHOD J HOD JHOD UM/HMOD WITHIN HIN HAX < U< EWMIT KEY ?KEY B
B> = ABS DMEGATE ?DUP UM+ 8< DOUAR OK

~

Figure34. WORDSIin eP32

Here are more eForth commands you can type intavéf@rth console to test the
eForth system:

HEX 0 80 DUMP
SEE WORDS

93

HERE .

12+.

:TEST112345;

TEST1

S

: TEST2 10 FOR R@ . NEXT ;
TEST2

: TEST3IF1ELSE 2 THEN . ;
0 TEST3

1 TEST3

: TEST4 CR .” HELLO, WORLD!";
TEST4

After these tests, the weForth console looks devisl

I WeForth 2 .01

File Edit Tool: Help

tTEST1 12 3 45 ; 0K
TEST1 DK

S5 43212043 6D 65 53 6C 4D 6B 74 72 6F 46 65 0 0 0 0 0 8 8 8 5F 2 4A6 30 48D
5p7 5 8

0K

: TEST2 18 FOR RE . HEXT ; OK

TEST2Z 1B FEDCBA98 7654327180 0K
: TEST2 IF 1 ELSE 2 THEH . ; DK

8 TEST3 2 DK

1 TEST3 1 DK

: TEST4 CR .* HELLO, WORLD*" ; DK

TEST4

HELLO, WORLD* 0K

| v

Figure35. Testsof eP32 Simulator
6.2 TheeP32 Metacompiler
The eP32 metacompiler is contained in file metal32q.

“Metacompiler” is a term used by a FORTH programioedescribe the process of
building a new FORTH system on an existing FORTBtesy). The new FORTH
system may run on the same platform as the old FO&/Btem. It may be targeted
to a new platform, or to a new CPU. The new FORYbBtem may share a large
portion of FORTH code with the old system, hene@etdrm “metacompilation”. In
a sense, the metacompiler is very similar to a entignal cross assembler/compiler.

94

start.f is similar to a MAKE file in UNIX. FORTHamnmands in this file are
executed by the weForth system upon startup. attdon a metacompiler in
meta32q.f, which compiles a target eForth systenth®eP32. It produces a
memory image file, which will be used to initialimeemory blocks by IPexpress in
the Lattice iSpLEVER system to program the LattiP@GE FPGA chip. meta32q.f
contains the following commands to load source domt@ many other files:

asm32q.F eP32 assembler

kern32q.F Primitive commands in eP32 eForth
ef32q.F Compound commands in eP32 eForth
sim32g.F eP32 simulator

95

(meta32.f for weforth)

HEX
VARIABLE debugging?

: .head (addr -- addr)
>IN @ 20 WORD COUNT TYPE SPACE >IN!
DUP .

:crCR
debugging? @
IF .S KEY OD = ABORT" DONE"
THEN

: forth_'";

: forth_dup DUP ;

: forth_drop DROP ;

. forth_over OVER ;

: forth_swap SWAP ;
forth @ @ ;

forth !'1;

: forth_and AND ;

: forth_ + +;

. forth_- -;

. forth_word WORD ;

: forth_words WORDS ;
. forth_.s.S;

:CRRcr;

: forth_.([COMPILE] .(;
: forth_count COUNT ;

: forth_r> R>;

:-or XOR;

: >body 5 +;

. forth_forget FORGET ;

CREATE ram 8000 ALLOT

: reset ram 8000 O FILL ;

ram@ 4*ram+ @ ;

ram! 4*ram+ ! ;

: binary 2 BASE ! ;

: four 3 FOR DUP ram@ 9 U.R 1+ NEXT ;

: show (a) OF FOR CR DUP 9 .R SPACE
four 2 SPACES four NEXT ;

: showram 0 OB FOR show NEXT DROP ;

: dump-ram
BASE @ binary 0
1000 FOR AFT
CR DUP ram@ <# 1F FOR # NEXT #> TYPE
1+
THEN NEXT
DROP BASE ! CR

96

We start here to discuss metacompiler commandsimieta32q.f file.

All other

files referred to in this file will be discussedthreir separate sections.

debugging?

A variable containing a switch to turn break poimtsand off. Wher
debugging? is set to -1, compilation will stop #imel data stack is
dumped when a “cr” command is executed. SprinKlarg
commands in the source code file allows you to wéte progress of
metacompilation and even stops it when necessary.

.head

Display name of a command that is about twobw®iled. It is used
to display a symbol table. You can look up theecheld address of
any command in this table.

cr

Stop metacompilation if debugging? is -1, anchdwata stack. If

you press control-A, metacompilation is aborted.thedwise,

metacompilation continues. Itis a NOP if debug@iis O.

During metacompilation, FORTH commands will be feds so that they compile
subroutine call instructions or assemble other nm&cimstructions into the target

memory image.

There are numerous occasions whereriginal behavior of a

FORTH command must be exercised. To preserveripmal behavior of a FORTH

command, it is assigned a different name.

Theadtey a command is redefined,

can still exercise its original behavior by invogithe alternate name.

we

For example, “+” is a FORTH command that adds ¢ipetivo numbers on the data
stack in the weForth system. Then in the kern3fdg,fa new “+” command is

defined to assemble an ADD instruction in the tagft32 system.

If you still need

to add two numbers, you must use the alternate @mdrfforth_+" as shown below.
All the weForth commands you need to use later mesedefined as “forth_xxx”

If you neglect to redefine them, youifimtl that the system behaves
very strangely.

commands.

The eP32 executes program words and accessendatgamemory range 0-1FFF.
In weForth we allocate a 32k byte memory arrayn'rao hold the eP32 target image.
This array contains code and data to be copiedaR&2 internal memory at 0, to be

executed on the eP32 chip.

U

ram Memory array in weForth for the eP32 targetgedt has a logical
base address of O for the eP32. Code and datawotlde target are
stored in this array.

ram@ Replace a logical address on stack with datadsin “ram” image
array.

ram! Store second integer on stack into logicaresklof “ram” image
array.

reset Clear “ram” image array, preparing it to reeeode and data for the
eP32.

four Display four consecutive words in target.

show Display 128 words in target from address “at.also returns a+128
to “show” the next block of 128 words.

showram Display the entire eP32 image of 2k words.

dump-ram | Display 4k words of data in binary.

97

VARIABLE hFile
CREATE CRLF-ARRAY 0D C, OA C,

: CRLF
hFile @
CRLF-ARRAY 2
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error"
QUIT THEN

: open-mif-file
Z" mem.mif"
$40000000 (GENERIC_WRITE)
0 (share mode)
0 (security attribute)
2 (CREATE_ALWAYS)
$80 (FILE_ATTRIBUTE_NORMAL)
0 (hTemplateFile)
CreateFileA hFile !

: write-mif-line
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
CRLF

. write-mif-header
hFile @
$" #Format=AddrHex "
write-mif-line
hFile @
$" #Depth=4096 "
write-mif-line
hFile @
$" #Width=32 "
write-mif-line
hFile @
$" #AddrRadix=3 "
write-mif-line
hFile @
$" #DataRadix=3 "
write-mif-line

98

The eP32 metacompiler builds a target image for the2edP$ in “ram”, a memory
array in weForth. This image eventually will beponted to the iSpLEVER system
so that this target image will be incorporatechie RAM_Q module, which will be
synthesized with the eP32 core logic to be implasgm the LatticeXP2-5E FPGA
chip. IspLEVER requires that the target image bigew in a file conforming to its
Addressed-Hex format, which consists of a head#r avfew lines of system
information in ASCII text, and then a body contagnmemory information in
hexadecimal numbers. The header and first fevg lafi¢he body are as follows:

#Format=AddrHex
#Depth=4096
#Width=32
#AddrRadix=3
#DataRadix=3
#Data

0:68D

24:80

25:A

26:7C6
27:7C8
28:7C6

29:4A0
2A:4D2
2D:7C6
101:564F4405
102:5241
103:1805E79E
104:101
105:3C3002
106:1179E79E
107:3000109
108:1A69405E
109:A05E79E

In the body of mem.mif, each line of data considtan address and its contents as
hexadecimal numbers separated by a colon character.

hFile A variable holding a file handle.

CRLF Insert a carriage return and a line feed théocurrently
opened file.

open-mif-file Open a file named mem.mif for writing

write-mif-line Write one line of text into currefite.

write-mif-header Write a header required by ispLERVIAto current file.

“mif” is a leftover term used when | was implemeigtithe eP32 for the Xilinx FPGA,
and its development system expected a memoryofiteetin its mif format. Now,
iISpLEVER from Lattice wants a mem file. So be iEPGA development systems
from Actel and Altera also require different memdly formats. It is easy to
conform to their requirements by changing thesenmuixyyy commands here.

99

: write-mif-data
0 (initial ram location)
$1000 FOR AFT
DUP ram@ IF
hFile @
OVER
<# 3A HOLD #S #>
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
hFile @
OVER ram@
<# #S #>
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
CRLF
THEN
1+
THEN NEXT
DROP (discard ram location)

: close-mif-file
hFile @ CloseHandle DROP

: write-mif-file
open-mif-file
write-mif-header
write-mif-data
close-mif-file

FLOAD asm32q.f
FLOAD kern32q.f
FLOAD ef32q.f
write-mif-file
FLOAD sim32q.f

100

write-mif-data | Write a 4k word image of the eFoBystem from memory array
“ram” to the mem.mif file.

close-mif-file Close the mem.mif file.

write-mif-file Write a file mem.mif containing 2k evds of the eForth System
according to the Address-Hex format required by ress.

IPexpress in the ispLEVER FPGA development systepees an eP32 target image
in Hex-Address format. A mem file has a headetaioimg system information, and
a body that contains memory data in hexadecimallA&@racters.

Write-mif-file opens an mem.mif file, writes a headwrites data, and then closes the
file. The mem.mif file must be copied into the R8oject in the ispLEVER

system to be synthesized with the eP32 VHDL filesrder to build the eP32 system
for the LatticeXP2-5E FPGA chip.

The eP32 metacompiler continues to load the ePSghadser in asm32q.f, the eP32

kernel in kern32q.f, and the eForth system in efB&gh the following commands:
FLOAD asm32q.f
FLOAD kern32q.f
FLOAD ef32q.f

The target image is complete, and can be now wrdté into mem.mif by the
write-mif-file command.

The metacompiler now loads in the simulator in on8with:
FLOAD sim32q.f

The eP32 eForth system can now be simulated in sleFolt is most satisfying to

see that the output of this simulator matches &xadtat is produced by the eP32
eForth system in the XP2 FPGA chip. This simul&a simulator, working at
machine instruction level. It is much more coneanito run than the Active-HDL
simulator which works at clock cycle level. Onceewvelopment cycle is closed in
this fashion, we have very high confidence that sofjware change in source code of
the eForth system will work in the FPGA, if it firsassed this high-level simulator.

6.3 TheeP32 Optimizing Assembler

The ASM32q.f file contains a structured, optimizegsembler for the eP32. It
packs up to 5 machine instructions into one 34mgram word. The strategy of
this eP32 assembler is to clear a program locatiamted to by a variable “hw”,
preparing it to receive up to 5 machine instrucionAssembly commands are
executed to insert machine instructions into combee slots. Assembly commands
make necessary decisions as to whether to addinstractions to the current
program word, or start a new program word.

101

The eP32 has two types of instructions, 32-bit lemgtructions and 6-bit short
instructions. The long instruction format is:

31-30| 29---24| 23---18| 17---12| 11----6 | 5----- 0
00 CCCCCC| aaaaaq aaaapa aanaamaaq

and the short instruction format is:

31-30] 29---24] 23---18] 17---12] 11---6] 5-----0
00 CCCCCC| ccccecea CCCCCL cccceececcececece

cccccce is a 6-bit machine instruction, and aaaaaaa@a-aaaaaa-aaaaaa is a 24-bit
address. Each 32-bit program word can contaim@ ilestruction, or 5 short
instructions.

Assembly commands for long instructions are defimgthe word JUMP, and
assembly commands for short instructions are definyethe word INST. Defining
words in FORTH makes this optimizing assembler &#myple and very efficient.

However, this assembler does not use long instmstilirectly to redirect program
flow. Instead, it uses standard FORTH controlctrre commands to build control
structures in assembly programs. It thus avoidsptications in labels and forward
referencing. It significantly simplifies this optizing assembler.

The eP32 eForth system is based on the Subroutireading Model, in which a
compound command consists of a list of subroutaieimstructions. As call and
return instructions execute in a single cycle,dR82 is very efficient in executing
FORTH compound commands as a list of subroutinarsdtuctions. Compound
commands in the form of lists of subroutine caditinctions can be freely intermixed
with other machine instructions. Thus this optimizassembler becomes an
optimizing compiler as well.

102

HEX

VARIABLE h
VARIABLE lasth O lasth ! \ init linkfield

s namer! (d--)
h @ ram! \ store doubl
1h+! \ bump nameh

: COMPILE-ONLY 40 lasth @ ram@ XOR lasth @ ram! ;

: IMMEDIATE 80 lasth @ ram@ XOR lasth @ ram! ;

VARIABLE hi

VARIABLE hw

VARIABLE bi (for byte packing)
»align 14 hi!;

:org DUP . CR h! align;

callot (n--)h+!;

CREATE mask 3F000000 , FC0000, 3F000, FCO, 3
#, (d)h@ram! 1 h+!;
w (d)hw @ ram@ OR hw @ ram! ;
S (d)hi@14=1F0hi'h@ hw! 0#,
hi @ mask + @ AND ,w 4 hi +!;
:spread (n-d) DUP 40 * DUP 40 * DUP 40 * DUP 4
2,1 (n)spread,i;
b (c)bi@0=IF1bi'h@ hw!0#, wEX
bi@1=IF2bi!100*,wEXIT THEN
bi @ 2 =1IF 3 bi! 10000 * ,w EXIT THE
0 bi 1 1000000 * ,w ;

: inst CONSTANT DOES>R> @ ,i ;
1E spread inst nop

: anew BEGIN hi @ 14 < WHILE nop REPEAT O bi!;
:#(d) OA spread ,i #, ;

Cldi#

(LT (d--)#;

address Ifa

e to code buffer

F,

THEN
O*++++;

IT THEN

103

COMPILE-ONLY | Patch Bit 6 in first word of name field in curr@atget

command. Text interpreter checks it to avoid exagut
compiler commands.

IMMEDIATE Patch Bit 7 in first word of name fielahicurrent target
command. Compiler checks it to execute commandkewhi
compiling.

h A variable pointing to the next free memory @glthe top of the target

dictionary.

lasth A variable pointing to the name field of therent target command under
construction.

namer! | Compile a 32-bit value, “d”, to the top béttarget dictionary.

hw A variable pointing to a new program word beaogistructed.

hi A variable pointing to a slot to pack the nexdahine instruction.

bi A variable pointing to a byte to pack the neg@ll character.

align Initialize pointer “hi” to start assemblinghaw program word.

org Initialize pointer “h” to a new address to s@ssembling.

allot Add a “n” to pointer “h”. It skips an areatarget memory and starts
assembling above this area.

mask An array of 5 masks to isolate one 6-bit maeimstruction from a 32-bit
instruction pattern. A machine instruction can bgeanbled in one of 5
instruction slots selected by “hi”.

#, Compile “d” to top of target dictionary. It is¢ most primitive assembler
and compiler. The eP32 assembler is an extensitmsoprimitive
assembly command.

W OR “d” to the program word pointed to by “hwt.denerally fills the
address field in the current program word.

spread | Repeat 6-bit machine instruction “n” inSadllots to form a 32-bit
instruction pattern. “mask” uses it to select a &0 assembling.

i Use “hi” to select one machine instruction irf @hd assemble it into the
program word selected by “hw”.

| Spread a 6-bit machine instruction to a 32-bitgrn and assemble a
machine instruction with “,i”.

b Pack byte “b” into current program word. Poiritaf determines which
byte field to pack. “bi” is incremented to faciliéapacking of next byte.

inst Define short instruction assembly commandstdates a short instructign
assembly command like a constant. When a shorticigin assembly
command is later executed, this constant is retdeas an instruction
pattern and a short machine instruction is asseaibte the current
program word by command “,i".

nop First short instruction assembly command ddfimg“inst”.

anew Fill current program word with NOPs and iriite hi and hw to assemble
new machine instructions in the next program word.

Assemble a load literal LDl instruction. Iteehial value is assembled in
the next program word pointed to by "h".

[di Alias of “#".

LIT Alias of “#”.

104

: (makehead)
anew
20 WORD
lasth @ namer!
h @ lasth !
COUNT DUP b
1- FOR

COUNT ,b

NEXT
DROP anew

: makehead
>IN @ >R
(makehead)
R>>IN!

SSLIT (--)
anew
22 WORD

\ get name o
\ fill link fi
\ save nfa in
\ store count

\ fill name

\ save inter

\ restore wo

COUNT DUP ,b (compile count)

1- FOR

COUNT ,b (compile characters)

NEXT
DROP anew ;

f new definition
eld of last word
lasth

field

preter pointer

rd pointer

: jump CONSTANT DOES> anew R> FFFFFF AND @ OR #, ;

0 jump bra

2000000 jump bz
3000000 jump bc
4000000 jump call
5000000 jump next

0 jump jmp

5000000 jump NEXT
5000000 jump <NEXT>

: return CONSTANT DOES> R> @ ,i anew ;

1 spread return ret

6 spread return times

105

In the eP32 eForth system, all target commandsargpiled in a target dictionary,
and linked as a list. Each target command haskdikld of one 32-bit word, a
variable length name field in which the first bgtntains a length followed by the
ASCII code of the name string, null filled to a BR-word boundary, and a
variable-length code field containing 32-bit pragrar data words. Primitive target
commands have machine instructions in their cagld§i Compound target
commands generally have call instructions in thede fields. As call instructions
can intermix with other machine instructions, ptimg words are indistinguishable
from compound words.

(makehead) Build a header for a new target command. The haadkrdes a link
field and a name field. The address of the nagid in the last
target command is stored in “lasth”, and is contpiteo the link
field. “h” points to the name field of the new commnal, and is copied
into “lasth”. Now, the following string is packeato the name field
starting with its length byte, and null filled tioet word boundary.
Now, “h” points to the code field of this new targemmand.

makehead | Build a header with (makehead) and saveatme string to define a
compiler command in metacompiler. It displays thene and code
field address. A string can be used repeatedlyakijng and restoring
its pointer in a “>IN” word.

SLIT Compile a packed string for a string litertalworks similarly as
(makehead). However, the name string is delimitethb space
character (ASCII 0x20), while a string literal islinited by the
double-quote character (ASCII 0x22).

jump A defining command that creates long instarcassembly
commands. It uses transfer instruction code likersstant. When
a long instruction assembly command is later exagtut retrieves
this code, ORs it with a 24 bit address, and askenabtransfer
instruction in the target dictionary.

Following are the eP32 long instruction assembinm@ands defined by “jump”:

bra Assemble a branch always instruction, BRA.

bz Assemble a branch on zero instruction, BZ.

bc Assemble a branch on carry instruction, BC.

call Assemble a subroutine CALL instruction.

next Assemble a loop NEXT instruction.

return A defining command to create assembly conasdmat abandon

remaining slots in the current program word, aiagit$etching the
next program word.

ret Assembly command to return from subroutine. ¢edt” is similar to
“nop”, in that all machine instructions followingegm in the same
program word will be ignored.

times Assembly command to terminate a micro lobs. mot implemented
in eP32.

106

: beginanew h @ ;
s until bz ;

: untilnc bc ;

: jmp bra;

;if h@ 0bz; (5F80000)
ifnc h @ 0 bc ; (5F40000)
:skip h@Obra; (5FC0000)
: then begin OVER ram@ OR SWAP ram! ;
. else skip SWAP then ;
: while if SWAP ;
: whilenc ifnc SWAP ;
: repeat bra then ;
:again bra;
raft(a--a'a")
DROP skip begin SWAP ;

:BEGIN anew h @ ;
: UNTIL bz ;

: UNTILNC bc;

: JMP bra ;

IF h@0bz; (5F80000)
:IFNC h @ 0 bc ; (5F40000)
:SKIP h@Obra; (5FC0000)
: THEN begin OVER ram@ OR SWAP ram! ;
: ELSE skip SWAP then;
: WHILE if SWAP ;
: WHILENC ifnc SWAP ;
: REPEAT bra then;
: AGAIN bra;
AFT (a--a'a")

DROP skip begin SWAP ;

.. begin .head CONSTANT DOES>R> @ call ;
: CODE makehead " ; \ for eforth kerne
: code makehead ": ; \ for eforth kerne

08 spread inst Idrp 09 spread inst Idxp

(OA spread inst Idi) OB spread inst ldx

0C spread inst strp 0D spread inst stxp
OE spread inst rr8 OF spread inst stx

10 spread inst com 11 spread inst shl

12 spread inst shr 13 spread inst mul

14 spread inst xor 15 spread inst and

16 spread inst div 17 spread inst add

18 spread inst popr 19 spread inst xt

1A spread inst pushs 1B spread inst over
1C spread inst pushr 1D spread inst tx

(1E spread inst nop) 1F spread inst pops

cfor(--a)
pushr begin ;

:FOR (--a)
pushr begin ;

| words
| words

107

The eP32 transfer instructions are not used directijhey are used by control
structure commands to construct control structurdhese commands are in lower
case for the assembler and in upper case for tinpiter:

Command Function

begin Mark current location in target for later egk$ resolution.

until Terminate a begin-until loop if zero-flagakeared.

untilz Terminate a begin-until loop if zero-flagsst.

untilnc Terminate a begin-until loop if carry-flagycleared.

jmp Jump to the address on top of the data stack.

if Start a conditional branch structure. Assemble anstruction.

ifnc Start a conditional branch structure. Assenablb instruction.

skip Start a branch structure. Assemble a brauattm.

then Terminate a conditional branch structure Isplkeng the branch
instruction at “if” or “else”.

else Resolve branch instruction at “if”, and stabranch structure.
Assemble a bra instruction.

while Start a conditional branch structure in aibeghile-repeat loop.
Assemble a bz instruction.

whilenc Start a conditional branch structure iregib-while-repeat loop.
Assemble a bc instruction.

repeat Terminate a begin-while-repeat loop, andrabke a bra instruction to
“begin”.

again Terminate a begin-again loop, and assemila enstruction to “begin”.

CODE defines new primitive commands in the eP3@etar Primitive commands
thus defined will assemble CALL instructions in edeelds of compound commands

in the eP32 target.

Using the Subroutine Threaodel, primitive commands are

the same as compound commands. Their differermaysconceptual.

Define a nameless subroutine. “begin” pointshie code field and is
defined as a constant in the metacompiler. Theinu@ behavior of
this constant is changed to execute commands@&S>, which uses
the saved code field address to assemble a CAlttugi®on. It also
displays the name of the new command and its eixecatdress on th¢
terminal, with the .head command.

1%

CODE Define a new target command. It creates aheader in the target, and
then uses ‘: to start a new subroutine. It alsatgs an assembly
command in the metacompiler. This assembly comnagsdmbles a
subroutine call instruction.

code Alias of CODE.

for Assemble a “pushr” to start a FOR-NEXT loop.

FOR Alias of FOR.

All short eP32 instruction assemblers are defingtirst”. Their names are the same
as mnemonics of respective machine instructions.

108

6.4 The eP32 Kernel

In the original eForth Model, a small group of FGHRGommands were identified as
kernel commands, low level commands, or primitiwenmands. These commands
were coded in machine instructions of the host opicscessor. All other commands
were written as lists of commands, and are caligh kevel commands or compound
commands. Compound commands are lists of primidremands and other
compound commands. This division of commands veag useful in porting eForth
to many different microprocessors, because onlyiiie commands needed to be
rewritten when moving eForth to a new microprocesso

In eP32 eForth, we retained this division, andgrumitive commands in the
KERN32a.F file. However, we optimized commandthim eP32 so that the system
executes at the highest speed and occupies thereasory space. All commands
that can be are written in assembly. Much morenaigtition is achieved by a set of
assembly macros, which assemble the most commeely compound commands in
machine instructions and pack these machine ingtngcas tightly as possible. The
end results are that code size is significantlyiced and execution speed greatly
increased.

Commands in this file also serve as programmingrgtas for the optimal use of the
eP32 CPU. Itis worth your time to study them tidhg and use them as templates
when you want to convert compound commands interalsky.

In the LatticeXP2-5E FPGA chip, there are 166K bitEmbedded Block Memory,
EBM, and we use them to implement 4096 words obiBRAM memory. The
nicest feature of EBM is that it can be initializiedm on-chip flash memory. In fact,
this RAM memory can be used to host programs ataltiat otherwise would have
to be implemented in ROM memory. This feature nsakpossible to implement a
complete FORTH system on a single FPGA chip, whiz never been possible in
other brands of FPGA.

Using EBM, the memory map of eP32 eForth is gresthplified:

Address Function

0x0 Reset and interrupt vectors
0x20 System variables

0x30 Text buffer

0x80 Terminal input buffer
0x100 Start of eForth dictionary
Ox1FFF End of RAM memory
0x80000000 Start of UART registers
0OxE0000000 Start of GPIO registers

The data stack and return stack are in the eP2, and do not need RAM memory.

109

System variables are variables used by the eFgstera to perform all its various
functions. They are defined as assembly macro comds) with LDI machine
instructions pointing to their respective addressdle system variable area, starting
at location $20. These assembly macro commandsalsgeused by the
metacompiler to compile the optimized system vadesbeferenced in the eP32 target

system.

Command | Address Function

HLD 20 Pointer to a buffer holding next digit ioameric
conversion.

SPAN 21 Number of characters received by EXPECT.

>IN 22 Input buffer character pointer used bt taterpreter.

#TIB 23 Number of characters in input buffer.

‘TIB 24 Address of Terminal Input Buffer.

BASE 25 Number base for numeric conversion.

CONTEXT | 26 Vocabulary array pointing to last name fieléls o
vocabularies.

CcpP 27 Pointer to top of dictionary, the first géafale memory
location.

LAST 28 Pointer to name field of last commandliictionary.

'EVAL 29 Execution vector switching between $INREBRET and
$COMPILE.

'ABORT 2A Execution vector to handle error coiuit

TEXT 30 Buffer to unpack text strings.

tmp 2B Pointer to a scratch pad.

cpi 2C Pointer to slots in assembler.

cpw 2D Pointer to program word under construction

etxbuf 80000001| Transmit data register.

etxbempty | 80000001 Transmit status register.

erxbfull 80000002 | Receiver status register.

erxbuf 80000003| Receiver data register.

110

HEX

cr .(system variables)

:HLD 201di; \scratch

: SPAN 21 Idi; \#chars input by expect
;>IN 22 1di; \input buffer offset

(#TIB 23 1di; \#chars in the input buffer
'TIB241di; \tb

:BASE 251di; \number base

cr
: CONTEXT 26 Idi ; \first search vocabulary
: CP 271di; \dictionary code pointer

: LAST 281di; \ptrto last name compiled
'EVAL 29 Idi; \interpret/compile vector
:'ABORT 2Adi ;

: TEXT 301Idi; \unpack buffer

:tmp 2B Idi; \ ptrto converted # string
:cpi2CIdi; \assembler slot poiner

:cpw 2D Idi; \ pointer to word under cons

: etxbuf 80000001 Idi ;
. etxbempty 80000001 Idi ;
: erxbfull 80000002 Idi ;
: erxbuf 80000003 Idi ;

cr .(macro words) cr
: DOLIT #;
DEXIT ret ;
: EXECUTE (a) pushr ret anew ;
l(na--)txstx;
@ (a-n)txldx;
:R>(-n) popr;
:R@ (-n) popr pushs pushr ;
: >R (n) pushr;
:DUP (n-nn)pushs;
:SWAP (n1ln2-n2nl)
pushr tx popr xt ;
:DROP (ww --)
pops ;
: 2DROP (ww --)
pops pops ;
+(ww--w)add;
:NOT (w--w) com;
:AND and ;
: XOR xor ;
: OVER over ;
:NEGATE (n---n)
com 1 |di add ;

truction

111

Assembly macro commands assemble one or more neaicistmuctions into the
target dictionary. One 32-bit program word cardhagb to 5 short machine
instructions. These assembly macro commands Eactaay instructions in a
program word as possible to make the most effiaisetof memory and execution
time. They allow the metacompiler to produce optad code for the target system.

Macro Function

DOLIT Same as LIT. Assemble LDI; attach a valuaéxt word.

EXIT Single machine instruction.

EXECUTE Push address in T to R and use RET to é&etcu

! Pop T to X and then store value in memory.

@ Pop T to X and then read value from memory.

R> Single machine instruction.

R@ Pop R to T, duplicate T, and push T to R.

>R Single machine instruction.

DUP Single machine instruction.

SWAP Use Rand Xtoswap T and S.

DROP Single machine instruction.

2DROP Pop T twice.

+ Single machine instruction.

NOT Single machine instruction.

AND Single machine instruction.

XOR Single machine instruction.

OVER Single machine instruction.

NEGATE Compliment T and add 1 to it.

1- Add -1toT.

1+ Add1toT.

BL Return $20, ASCII code for space.

+! Add n to contents of a. Pop a in T to X, fetaimber, add n, and
store back.

- Subtract w3=wl-w2. Complement w2, add 1, andwatld

OR w3=wl or w2. Complement w2, push it to R, commeat w1,
pop /w2, AND /w1, and complement results.

ROT Rotate w1, w2, w3. Push w3, push w2, saveond, {pop w2,
pop w3, and copy w1l back from X.

2DUP Duplicate wl/w2 pair. Dup w2, push w2, push d@p w1l, pop
w1l to X, pop w2, push wl from X, pop w2.

2! Store double integer d in a. Pop address a fwuxh dh, store dlj
pop dh, and store dh.

2@ Fetch double integer from a. Pop address a teaX dl, read dh.

COUNT Retrieve n from a, and increment a. Pop@skla to X, read n,
push n, restore a+1 from X, pop n back.

112

:1-(a--a)
-1 Idi add ;
1+ (a--a)
1 Idi add ;
:BL(--32)
20 Idi;

s+l (na-)
tx ldx add stx

Z,-(WlWZ——W3)
com add 1 Idi add

:OR (wlw2-w3)
com pushr com
popr and com ;

: ROT (w1l w2w3--w2w3wl)
pushr pushr tx popr
popr xt ;

: 2DUP (w1l w2 -- wl w2 wlw2)
pushs pushr pushr
pushs tx popr xt popr

12! (da--)
tx pushr stxp
popr stx ;
2@ (a--d)
tx ldxp Idx ;
:COUNT (b--b+n)
tx ldxp pushr xt
popr ;
cr .(kernel words) cr
$100 org

code DOVAR popr ret
code 0<(n-f)
shl ifnc pushs pushs xor ret
then
-1 Idi ret
code UM+ (nn-ncarry)
add pushs
ifnc pushs pushs xor ret
then
1 Idi ret
code ?DUP (w--ww|O0)
pushs
if pushs ret then
ret

113

We are now actually compiling new commands intoténget dictionary. First,

assembly command ORG initializes the dictionarnfei h, to memory location
$100. The memory area below $100 is reservedeg®trand interrupt vectors,
system variables, text buffer, and the terminautriguffer.

The following are the first few code commands cdatpinto the eP32 target
dictionary. They are defined using the CODE command when they are
referenced later in the EP32q.F file, each of telincompile a subroutine call
instruction pointing to their code field. The ct®ito define a CODE command as
an assembly macro is rather arbitrary. However,abmmand requires a branch
instruction, it has to be coded as a CODE commia@chuse macro commands
cannot handle branch instructions gracefully. Agsdg macro commands only do
simple machine instruction placement.

Many compound commands defined in the original #Fmodel are now coded in
assembly and moved to this kernel. We tried towobest in giving you the
smallest and fastest FORTH system. All commanatsdan be optimized are so
optimized.

Command Function

DOVAR Execution code for variables. Return addidg®llowing program
word. DOVAR is always followed by its value in thext program
word, whose address happens to be in the R regidtap return
stack and this address is popped back onto thesthatk.

0< If n<0, return true flag; otherwise, returnskalflag. Negative flag is if
bit T(31). Shift T left sends this bit into carrit H(32), which is
tested for branching by ifnc.

—

UM+ Add two integers on stack; return sum and ca&BD adds two
integers on data stack and carry bit is in T(32hc® tests this bit and
pushs a 1 or 0 on stack accordingly.

?DUP If wis not O, duplicate it; otherwise, domag. w is duplicated and
tested by “if”.

DNEGATE | Negate double integer d on stack. dh is first cemmginted and
pushed onto the return stack. dl is complementeldrecremented.
If carry is set, dh is retrieved and incrementddeowise, dh is
retrieved but not incremented

ABS Return absolute value of n. n is duplicated tested for being
negative by a left shift and “ifnc”. If negativeggate it; otherwise,
leave it alone.

= Return a true flag if the two numbers on dad&lstare equal;
otherwise, return false flag. Use “xor” and “if” test equality.

B> Pack a byte at “b” into least significant 8 biis'a”. Return b+1 and
“a” to pack next byte.
>B Unpack 4 bytes from “a” to byte array at “b”.tRe1 a+1 and b+4 to

unpack next word. Least significant byte in “a’also returned, as it
may be the count of a packed string.

114

cr
code DNEGATE (d ---d)
com pushr com 1 Idi
add pushs
ifnc popr ret
then
popr 1 Idi add ret
code ABS (n--+n)
pushs shl
ifnc ret then
NEGATE ret

cr

code=(ww--t)
xor
if pushs pushs xor ret then
-1 Idi ret

cr (pack b> and unpack >b strings)
codeB>(ba--b+la)
pushr tx ldxp pushr
Xt popr popr tx
$FF Idi and
ldx $FFFFFFOO Idi and xor
rr8 stx xt ret
code >B (a b -- a+1 b+4 count)
pushr tx ldxp pushr
xt popr popr (a+1nb) tx
pushs $FF Idi and stxp rr8
pushs $FF Idi and stxp rr8
pushs $FF Idi and stxp rr8
pushs $FF Idi and stxp rr8
pushr xt popr $FF Idi and
ret

115

QUIT

QUERY

.L R L S LS et “I.I._
I s Bl
> i = Sly i
_E m A .
[! = i
\ _W ISI
1 1 © ES i
1 « 55 = 1
_ : - SNk
! : — S
\ Lo I
\ _ 1]
" ! 3 i
1 ! m i
1 T i H i
' i = — m
\ =L i
: i
: | i
S ! {
! =}
" \ 1 _
_ Y i 2 .
1 - M e > .‘l i
_ > 2 5 gk
1 m .N m m
" PN i
. mMn B _
" mm i
1 _E - !
|]
" P B m
1 mm m
_ A ¥ A ;
1
1
R R T e R R e T e R e R R R e e e e e R R R T e T e R e e e R

Figure36. TheeForth Operating System

116

6.5 eP32 Compound Commands

The EF32q.F. file contains compound commands toobepiled into the eP32 target
image. These commands are defined with the “mmand and terminated by “;;”
command. They are like the regular “:” and “;” amiands in FORTH, but they
compile new eP32 commands into the eP32 targetemag

The ultimate goal of these commands is to impleraarihteractive operating system,
or a text interpreter, which accepts a line of FBREbmmands from a terminal,
executes these commands in sequence, and waésdtrer line of commands.

This FORTH system is best represented in the flartcdhown on the left page, in
which all FORTH commands are enclosed in rectanglés we go through source
code in EP32q.F line by line, you will see how theemmands are implemented, and
will appreciate the overall design of this eP32rdfreystem.

The text interpreter is also called the outer piteter in FORTH. It is functionally
equivalent to an operating system in a conventionatoprocessor. It accepts
commands similar to English words entered by a, @set carries out tasks specified
by the commands. As an operating system, tharepreter could be very
complicated, because of all the things it has to ddowever, because FORTH
employs very simple syntax rules, and has very mnmpernal structures, the FORTH
text interpreter is much simpler than conventia@@rating systems. It is simple
enough that we can make a diagram of it as showtheleft page.

Let us summarize what a text interpreter does:

COLD Power up routine

QUIT Text interpreter

QUERY Accept text input from a terminal
EVAL Evaluate or interpret a line of text
PARSE Parse out a string from input text
SINTERPRET Interpret a string

$COMPILE Compile a string

NAME$ Search dictionary for a command
NUMBER? Translate a text string into an integer
EXECUTE Execute a commasd

IMMED? Is this command an immediate command?
LITERAL Compile a integer literal

COMPILE Compile a command token

FORTH allows us to build and integrate these fuumgigradually in modules. All
modules finally fall into their places in the commdaQUIT, which is the text
interpreter itself.

You might want to look up the code of QUIT firstchsee how the modules fit
together. A good feeling for the big picture witlp you in understanding lower
modules. Nevertheless, we will doggedly follow tbading order in the source
code, and hope that you will not get lost in thecess.

117

. :code ;
Dret;

CRR .(Chararter 10) CRR

;. ?KEY erxbfull @ ;;

- KEY begin erxbfull @ until erxbuf @ ;;

:» EMIT begin etxbempty @ until etxbuf ! ;;

CRR .(Common functions) CRR

U< (uu--t)2DUP XOR 0< IF SWAP DROP 0< EXIT

n<(nn-1t)2DUP XOR O<IF DROP 0< EXIT

2“MAX(nn--n)2DUP < IF SWAP THEN DROP ;

= MIN (nn--n)2DUP SWAP < IF SWAP THEN DROP ;

mWITHIN (uuluh --t)\ul<=u<uh
OVER ->R -R> U< ;

CRR .(Divide) CRR
CODE UM/MOD (ud u --uruq)
com 1 Idi add tx
pushr xt pushr tx
popr popr
skip
CODE/MOD (nn--rq)
com 1 Idi add pushr
tx popr O Idi
then
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div 1 Idi xor shr
pushr pops popr xt
ret
CODEMOD (nn--r)
/MOD
pops ret
CODE/(nn--q)
/MOD
pushr pops popr ret
2 M/MOD (dn--rq)\floored
DUP 0< DUP >R
IF NEGATE >R DNEGATE R>
THEN >R DUP 0< IF R@ + THEN R> UM/MOD R>
IF SWAP NEGATE SWAP THEN ;;

THEN - 0< ;;
THEN - 0< ;;

118

Defining Compound Target Commands

Create a new compound target command. Becauséhakses the
Subroutine Threading Model, compound commands @anddvel
primitive commands are the same.

Terminate a compound command. Assemble a REhimec
instruction. All commands are called as subroutines RET will
unnest a subroutine call, as well as a list of sutime calls.

Character 1/0

?KEY

Inspect register “erxbfull” and return a trlexg if a character has
been received. If no character was received, retdafse flag.

KEY

Wait for a character, and return it after regay it in “erxbuf”.

EMIT

Wait until transmit buffer is empty, by tesgjmegister “etxbempty”.
Then send out a character to register “etxbuf”.

Common Functions

Return true if two integers are equal.

U< Compare two unsigned integers. Return truedabsd integer is less
than top integer. It is used to compare addresses.

< Compare two signed integers. Return true if sééoteger is less
than top integer.

MAX Retain the larger of top two signed integerssbeck.

MIN Retain the lesser of top two signed integersiatck.

WITHIN Check whether the third signed integer aacktis within range
specified by top two signed integers. The randgedkisive of the
lower limit and exclusive of the upper limit. Ifétthird item is within
range, a true flag is returned.

Divide

UM/MOD | Divide an unsigned double integer by an gned single integer.
Return unsigned remainder and unsigned quotiergigdad double
integer dividend is in the T:X register pair, andemated 32-bit
divisor is in the S register. Repeat “div” steptBBes. Remainder in
the T register is shifted once too many, and ittbdse shifted back
one bit to the right.

/IMOD Divide a signed single integer by a signe@gar. Return signed
remainder and quotient.

MOD Divide a signed single integer by a signeegatr. Return signed
remainder.

/ Divide a signed single integer by a signed inteBeturn signed
guotient.

M/MOD Divide a signed double integer by a signetyk integer. Return
signed remainder and signed quotient.

M/ Divide a signed double integer by a signed sngteger. Return

signed quotient.

119

CRR .(Multiply) CRR
CODE UM* (uu--ud)

tx O Idi

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

pushr pops xt popr

ret
m*(nn--n)UM*DROP ;;
SM*(nn--d)

2DUP XOR 0< >R ABS SWAP ABS UM* R> IF DNEGATE T
2 *MOD (nnn-rq)>R M*R>M/MOD ;;
“*(nnn-q)*MOD SWAP DROP ;;

CRR .(Bits & Bytes) CRR

2 >CHAR (c--c¢)

$7F LIT AND DUP $7F LIT BL WITHIN
IF DROP (CHAR _) $5F LIT THEN ;;

CRR .(Memory access) CRR

~“HERE(--a)CP @ ;;

©“PAD(--a)CP @50LIT +;;

=TIB(--a)TIB@ ;;

CRR

» @EXECUTE (a--) @ ?DUP IF EXECUTE THEN ;;

2 CMOVE (bbu--)

FOR AFT >R DUP @ R@ ! 1+ R> 1+ THEN NEXT 2DROP ;;
“FILL(buc--)

SWAP FOR SWAP AFT 2DUP ! 1+ THEN NEXT 2DROP ;;

:: PACKS$ (bua--a)\nullfil
pushs pushr
2 Idi tmp tx stx
tx pushs pushr rr8 stx
xt popr
FORAFT (ba)
B>
tmp tx ldx
IF ldx -1 Idi add stx
ELSE 3 Idi stx
1 Idi add
THEN
THEN NEXT
BEGIN
tx ldx $FFFFFFOO Idi and
rr8 stx xt
tmp tx ldx
WHILE
ldx -1 Idi add stx
REPEAT

POps pops popr

HEN ;;

120

Multiply

umM+*

Multiply two unsigned integers and produce arsigned double
integer product. “mul” conditionally adds the inéegn S to T if bit
X(0) is set, and the T:X register pair is shifttidgpy 1 bit. Two
multiplicands are placed in the S and X registeRepeat “mul” 32
times and a 64-bit product is produced in the Edister pair.

Multiply two signed integers to produce a sigrseagle integer
product.

M*

Multiply two signed integers to produce a sigreimlible integer
product.

*MOD

Multiply signed integers nl and n2, and thiivide the double
integer product by n3. Scale n1 by n2/n3. Retuoth bkemainder
and quotient.

*/

Similar to */MOD except that it only returns qtient.

Bitsand Bytes

>CHAR

Filter non-printable character to a harmlesslerscore’ character,
ASCII 95.

Memory Access

HERE

Returns address of WORD buffer 1 cell aboveroand dictionary.
Text interpreter parses out a string from Terminplut Buffer and
packs it here. In case this string is the namer@va command, it is
already in the name field.

PAD

Returns address of a buffer pad 80 cells alsowemand dictionary.
It is a scratch pad area to store temporary texidata. It floats on to
of the dictionary as new commands are added tdittienary. The
memory area below PAD is used for numeric convarsiduild a
number string backwards as least significant digiesextracted from
an integer.

TIB

Return address of Terminal Input Buffer.

@EXECUTE

Jump to execution address stored in a memory mtaa’.

CMOVE

Copy “u” cells of memory from array “b1” taray “b2”.

FILL

Fill “u” cells of memory array “b” with theame data, “c”.

PACK$

Copy “u” bytes in a byte array at “b” and pdbhem into a cell array
at “a”. A packed string starts with a length byighe lowest 8 bits of
the first cell. PACKS is designed to pack bytesiotlls in a
cell-addressable machine. The packed string isfilet to a word
boundary. Target address “a” is returned.

121

4/

shr shr ret
:UNPACK$ (ab--b)
DUP >R (save b)

>B $1F LIT AND 4/
FOR AFT

>B DROP

THEN NEXT

2DROP R>

:UNPACK (ab--b)
DUP >R (save b)
>B $FF LIT AND 4/
FOR AFT

>B DROP

THEN NEXT
2DROP R>

CRR .(Numeric Output) CRR \ single precision

= DIGIT (u--¢)

9 LIT OVER < 7 LIT AND +
(CHARO)30LIT+;;

" EXTRACT (nbase--nc)

0 LIT SWAP UM/MOD SWAP DIGIT ;;
n<#(--)PADHLD'!;;

HOLD (c--)HLD @ 1- DUP HLD !'! ;;
m#(u--u)BASE @ EXTRACT HOLD ;;

::#S (u--0) BEGIN # DUP WHILE REPEAT ;;
CRR

:2SIGN (n--)0<IF (CHAR -) 2D LIT HOLD THEN
n#>(w--bu)DROPHLD @ PAD OVER - ;;
str(n--bu)DUP >R ABS <# #S R> SIGN #> ;;
:HEX (--) 10 LIT BASE ! ;;

:: DECIMAL (--) OA LIT BASE ! ;;

CRR .(Numeric Input) CRR \ single precision
:DIGIT? (cbase --ut)
>R (CHARO0) 30 LIT -9 LIT OVER <
IF7LIT - DUP OA LIT <OR THEN DUP R> U< ;;
2 NUMBER? (a--nT|aF)
BASE @ >R 0 LIT OVER COUNT (a0 b n)
OVER @ (CHAR $) 24 LIT =
IF HEX SWAP 1+ SWAP 1- THEN (a0 b'n’)
OVER @ (CHAR-)2D LIT=>R (a0bn)
SWAP R@ - SWAP R@ + (a0b"n") ?2DUP
IF1-(aObn)
FOR DUP >R @ BASE @ DIGIT?
WHILE SWAP BASE @ * + R> 1+
NEXT DROP R@ (b ?sign) IF NEGATE THEN SWAP
ELSE R> R> (b index) 2DROP (digit number) 2
THEN DUP
THEN R> (n ?sign) 2DROP R> BASE ! ;;

DROP O LIT

122

4/ Divide top of stack by 4.

UNPACK$ Unpacks a packed string at “a” to a bytayat “b”. The first byte
in the packed string is a length byte. Unpack ayto 31 bytes.
Use >B to do unpacking.

UNPACK Identical to UNPACKS, except it unpacks sgs up to 255 bytes.

Numeric Output

FORTH is interesting in its special capabilitiehendling numbers across a
man-machine interface. It recognizes that machaneshumans prefer very
different representations of numbers. Machinefepi@nary representation, but
humans prefer decimal Arabic representation. Hewnelepending on
circumstances, a human may want numbers to besemesl in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine)susrexternal (human) number
representations by insisting that all numbers epeasented in binary form in CPU
and memory. Only when numbers are imported or eggdor human consumption
are they converted to external ASCII representatiorhe radix of the external
representation is stored in system variable BASHEe user can select any
reasonable radix in BASE, up to 72, limited by &alae printable characters in the
ASCII character set.

DIGIT Convert integer “u” to a digit “c”.

EXTRACT | Extract least significant digit “c” from a numbar™ “n” is divided by
radix “base”.

HOLD Insert an ASCII character “c” in numeric outsiring.

H# Extract one digit from integer “u”, according tadix in BASE, and
add it to output string.

"#S" Extract all digits to output string until “u$ O.

SIGN Insert a “-” sign in numeric output strind‘if’ is negative.

#> Terminate numeric conversion and return addxeddength of output
string.

str Convert signed integer “n” to a numeric outpwing.

HEX Set numeric conversion radix to 16 for hexaaediconversions.

DECIMAL | Set numeric conversion radix to 10 for decimal @sions.

Numeric Output

DIGIT? Convert a digit “c” to its numeric value “@ccording to current radi
“b”. If conversion is successful, push a true fédmgpve “u”. If not
successful, return “c” and a false flag.

NUMBER? | Convert a count string of digits at location “a”ao integer. If first
character is a $, convert in hexadecimal; othervageavert using
radix in BASE. If first character is a “-”, negdtgeger. If an illegal
character is encountered, address of string aatsa flag are
returned. Successful conversion returns integerevahd a true flag.

123

CRR .(Basic I/0) CRR

:: SPACE (--) BLEMIT ;;

. CHARS (+nc--)

SWAP 0 LIT MAX

FOR AFT DUP EMIT THEN NEXT DROP ;;
:: SPACES (+n --) BL CHARS ;;
“TYPE(bu--)

FOR AFT DUP @ >CHAR EMIT 1+
THEN NEXT DRORP ;;

= CR(--)(=Cr)

OA LIT OD LIT EMIT EMIT ;;

2 do$ (--a)

R>R@ TEXT UNPACK

R@ R> @ $FF LIT AND 4/ 1+ +
>R SWAP >R ;;

CRR

28" (-a)dos$;;

" (--) do$ COUNT TYPE ;;

T R(n+n--)

>R str R> OVER - SPACES TYPE ;;
SUR(u+n--)

>R <# #S #> R> OVER - SPACES TYPE ;;
mU.(u--)<##S#> SPACE TYPE ;;
m.(n--)

BASE @ OA LIT XOR

IF U. EXIT THEN str SPACE TYPE ;;
n?(a-)@. 5

CRR .(Parsing) CRR
i (parse) (b uc--budelta; <string>)
tmp ! OVER >R DUP\buu
IF1-tmp @ BL =
IF \ b u'\'skip'
FOR BL OVER @ - 0< NOT
WHILE 1+
NEXT (b) R> DROP 0 LIT DUP EXIT \ all delim
THEN R>
THEN OVER SWAP \ b'b' u'\ 'scan’
FORtmp @ OVER @ - tmp @ BL =
IF O< THEN WHILE 1+
NEXT DUP >R
ELSE R> DROP DUP 1+ >R
THEN OVER - R> R> - EXIT
THEN (b u) OVER R> - ;;
. PARSE (c-- b u; <string>)
>R TIB>IN @ +
#TIB @ >IN @ -
R> (parse) >IN +! ;;
. TOKEN (-- a ;; <string>)
BL PARSE 1F LIT MIN 2DUP
DUP TEXT ! TEXT 1+ SWAP CMOVE
HERE 1+ PACKS$:;
:"WORD (c -- a; <string>)
PARSE HERE 1+ PACKS ;;

124

Basicl/O

SPACE Output a blank space character.

SPACES | Output “n” blank space characters.

CHARS | Output a string of “n” characters “c”.

CR Output a carriage-return and a line-feed.
TYPE Output “n” characters from a string in memuo¥.
do$ Unpack a packed string literal, pointed to tigirass on return stack.

The string is unpacked to TEXT buffer “a”. The metaddress on return
stack is incremented to skip over the string litera

String literals are data structures compiled in poond commands, in-line with other
commands. A string literal must start with a ggfraommand, which knows how to
handle the following packed string at run time.

$ Alias of "do$. Unpack following packed stringthis string literal and
return address of unpacked string.

Y Unpack following packed string in this striliigral and output string
characters.

R Output a signed integer “n” right-justified irfiald of “+n” characters.

U.R Output an unsigned integer “n” right-justifieda field of “+n”
characters.

u. Output an unsigned integer “u” in free formatjdwed by a space.

: Output a signed integer “n” in free format, folled by a space.

? Output a signed integer stored in memory “afree format followed
by a space.

Parsing

FORTH source code consists of commands, which 8@IPRstrings separated by
spaces and other white space characters likedaliggge returns, and line feeds.
The text interpreter scans text in the Terminautripuffer, TIB, isolates strings and
interprets them in sequence. After a string is@awout of the input stream, the text
interpreter “interprets” it—executes it if it iscammand, compiles it if the text
interpreter is in compiling mode—and converts iatoumber if the string is not a
valid command.

(parse) Parse out the first string delimited byrabter “c” from input buffer at
b1, length ul. Return address b2 and length uBeo$tring just parsed
out, and the difference “n” between b1l and b2.

PARSE Parse a string delimited by character “cTliB, from character pointed
to by >IN. It returns address “b” and the lengttpafsed string “u”.

—

TOKEN | Parse out next text string delimited by acgpeharacter in TIB. The te
string is assumed to be the name of a commandisalehgth is limited
to 31 characters. This string is packed into theR&uffer one cell
above the dictionary; i.e., HERE+1.

WORD Parse out next text string delimited by chamatc” in TIB. This string
Is packed into the WORD buffer one word above tramand
dictionary; i.e., HERE+1. Length of string is limdt to 255 characters.

125

CRR .(Dictionary Search) CRR
: NAME> (a -- xt)
DUP @ $1F LIT AND
4/ + 1+ ;;
. SAME? (ala2u--ala2f\-0+)
$1F LIT AND 4/
FOR AFT OVERR@ + @
OVERR@ + @ - ?DUP
IF R> DROP EXIT THEN
THEN NEXT
OLIT ;;
find (ava--xtnalaF)
SWAP \vaa
DUP @ tmp ! \ va a \ get cell count
DUP @ >R \vaa\count
1+ SWAP \a'va
BEGIN @ DUP \ a' na na
IF DUP @ $FFFFFF3F LIT AND
R@ XOR \ ignore lexicon bits
IF1+-1LIT
ELSE 1+ tmp @ SAME?
THEN
ELSE R> DROP SWAP 1- SWAP EXIT\a F
THEN
WHILE 1- 1-\a'la
REPEAT R> DROP SWAP DROP
1- DUP NAME> SWAP ;;
i+ NAME? (a--xtna|aF)
CONTEXT find ;;

CRR .(Terminal) CRR
:: "H (bot eot cur -- bot eot cur) \ backspace
>R OVER R> SWAP OVER XOR
IF (=BkSp) 8 LIT EMIT
1- BL EMIT \ distructive
(=BkSp) 8 LIT EMIT \ backspace
THEN ;;
:: TAP (bot eot cur ¢ -- bot eot cur)
DUP EMIT OVER ! 1+ ;;
.- KTAP (' bot eot cur ¢ -- bot eot cur)
DUP (=Cr) OD LIT XOR
IF (=BkSp) 8 LIT XOR
IF BL TAP ELSE "H THEN
EXIT
THEN DROP SWAP DROP DUP ;;

CRR

maccept(bu--bu)

OVER + OVER

BEGIN 2DUP XOR

WHILE KEY DUP BL - 5F LIT U<
IF TAP ELSE kTAP THEN
REPEAT DROP OVER - ;;

;- EXPECT (b u--) accept SPAN ! DROP ;;

n QUERY (--)

TIB 50 LIT accept #TIB !
DROPOLIT>IN!;;

126

Dictionary Search

In this FORTH system, records of commands are tinke a command dictionary.
A record contains three fields: a link field holgithe name field address of the
previous record, a name field holding the naméisf command as a packed string,
and a code field holding the executable code sfcbmmand. The command
dictionary is a linear list linked through link ftss and the name fields of all records.

NAME> | Return code field address “xt” from name dielddress “a” of a
command.

SAME? | Compare two packed strings at “al” and “a2™t” cells. If
string1>string2, returns a positive integer. Ifrgjd<string2, return a
negative integer. If strings are identical, retar®.

find Look up a packed string at “a” in command icary. Search starts at|
“va”. If a command is found, return code field aglsk “xt” and name
field address “na”. If the string is not found,unet address “a” and a
false flag.

NAME? | Search dictionary from CONTEXT for a naméait Return code field
address and name field address if a command isif@therwise,
return address “a” and a false flag.

Terminal

The text interpreter interprets source text reakivem an input device and stored in
the Terminal Input Buffer. To process characterthe Terminal Input Buffer, we
need special commands to deal with the specialitons of backspace character and
carriage return:

"H Process back-space. Erase last character anehoeat “cur”. If
“‘cur"="bot”, do nothing because you cannot backeydnd beginning
of input buffer.

TAP Output character “c” to terminal, store “c”icur”, and increment
“cur”, which points to the current character. “batid “eot” are the
beginning and end of the input buffer.

kKTAP Processes character “c”. “bot” is the begign the input buffer, and
“eot” is the end. “cur” points to the current chatex in the input buffer.
“c” is normally stored at “cur”, which is incremext by 1. If “c” is a
carriage-return, echo a space and make “eot”="culf'’c” is a

back-space, erase the last character and decrécn€nt

accept Accept “u” characters into buffer at “b”,wntil a carriage return. The
value of “u” returned is the actual count of chéees received.

EXPECT | Accept “u” characters into buffer at “b”, or undilcarriage return. The
count of characters received is in SPAN.

QUERY | Accept up to 80 characters from the inputiceto the Terminal Input
Buffer. This also prepares the Terminal Input Bufte parsing by
setting #TIB to characters received and clearirid, pbinting to the
beginning of the Terminal Input Buffer.

127

CRR .(Error handling) CRR
2 ABORT (--) 'ABORT @EXECUTE ;;
. abort" (f--)
IF do$ COUNT TYPE ABORT THEN do$ DROP ;;

CRR .(Interpret) CRR
»ERROR (a--)

DROP SPACE TEXT COUNT TYPE

$3F LIT EMIT CR ABORT
 SINTERPRET (a--)

NAME? ?DUP

IF @ $40 LIT AND

abort" $LIT compile only" EXECUTE EXIT
THEN DROP TEXT NUMBER?

IF EXIT THEN ERROR

forth_' SINTERPRET >body forth_@ LIT 'EVAL !
. IMMEDIATE
2 .OK (--)

forth_' SINTERPRET >body forth_@ LIT 'EVAL @ =
IF."| $LIT OK" CR

THEN ;;
2 EVAL ()

BEGIN TOKEN DUP @

WHILE 'EVAL @EXECUTE \ ?STACK

REPEAT DROP .OK ;;

CRR .(Shell) CRR
S QUIT (--)
(=TIB) $80 LIT 'TIB !
[BEGIN QUERY EVAL AGAIN

CRR .(Compiler Primitives) CRR
n (- xt)

TOKEN NAME? IF EXIT THEN
ERROR

ALLOT (n--)CP +!;;
“,(w--)HEREDUP 1+ CP !'!;;
:: [COMPILE] (-- ; <string>)

' 4000000 LIT +, ;; IMMEDIATE

CRR

. COMPILE (--)R>DUP @, 1+ >R ;;

: LITERAL $A79E79E LIT ,,

. IMMEDIATE

2$"(--)(CHAR™")

22 LIT WORD

DUP @ $FF LIT AND

4/ + 1+ CP l anew ;;

2 (CALL) (a -- call) FFFFFF LIT AND 4000000 LIT OR ;;

128

Interpreter

ABORT

Execute the command whose address is inyisters variable
'ABORT. This address normally points to QUIT.

abort"

When the top item on stack is non-zero, wiutipe following
packed string and execute ABORT; otherwise, skigr @vror
message. It is compiled before a packed error rgessa

ERROR

Display error message in TEXT buffer and at@ABORT.

[

Activate interpreting mode by storing $SINTERPRIHETo variable
'EVAL, which is executed in EVAL.

.OK

Prints the OK prompt. OK is printed only whé text interpreter
is in interpreting mode. While compiling, the OKoptpt is
suppressed.

EVAL

Interpreter loop, which parses strings frore therminal Input
Buffer, and the command in 'EVAL to process a stringegith
executing it with SINTERPRET or compiling it wittCOMPILE.

SINTERPRET

Processes a string at “a”. If it is \dzaommand, execute it;
otherwise, convert it to a number. Failing thagk@xe ERROR an
return to QUIT.

Compiler Primitives

Search dictionary for following name, and retitshcode field
address if a command is found; otherwise, prinbamwmg message
with “?”.

ALLOT

Allocate “n” cells of memory on top of dicti@ry.

Compile an integer “w” to dictionary, and add tiew item to the
growing command list of the current command una&istruction.
This is the primitive compiler.

[COMPILE]

Compile the code field address of the next commHrmmpiles an
immediate command, even if it would otherwise becexed.

COMPILE

Compile the code field address of the r@xhmand. It forces
compilation of a command at run time.

LITERAL

Compile an integer literal. It first compe$ doLIT, followed by an
integer vale from the stack. When doLIT is executeextracts the
integer in the next program word and pushes iherstack.

$,

Compile a packed string. String text is takemfithe input stream
and terminated by a double quote. A token (sucH'lasr $"|) must
be compiled before the string to form a sting &ter

(CALL)

Compile or assemble a subroutine CALL instran with the code
field address on the stack. Compound commandsoangited as
lists of subroutine calls.

129

CRR .(Name Compiler) CRR
:»?UNIQUE (a--a)
DUP NAME?
IF TEXT COUNT TYPE ."| $LIT reDef "
THEN DROP ;;
t$n(a--)
DUP @
IF 2UNIQUE
(na) DUP NAME> CP !
(na) DUP LAST !\ for OVERT
(na) 1-
(la) CONTEXT @ SWAP ! EXIT
THEN ERROR

CRR .(FORTH Compiler) CRR

:: $COMPILE (a--)
NAME? ?DUP
IF @ $80 LIT AND
IF EXECUTE
ELSE (CALL) , anew
THEN EXIT
THEN DROP TEXT NUMBER?
IF LITERAL anew EXIT
THEN ERROR
- OVERT (--) LAST @ CONTEXT ! ;;
$179E79E LIT , [OVERT ;; IMMEDIATE
S](--
forth_' $COMPILE >body forth_@ LIT 'EVAL! ;;
(- <string>)
TOKEN $,n];;

CRR .(Tools) CRR
mdm+(bu--hb)

OVER 6 LIT U.R SPACE

FOR AFT DUP @ 9 LIT U.R 1+
THEN NEXT ;;

::DUMP (bu-)

BASE @ >R HEX 8 LIT/

FOR AFT CR 8 LIT dm+

THEN NEXT DROP R> BASE ! ;;

CRR
2 >NAME (xt--na|F)
CONTEXT
BEGIN @ DUP
WHILE 2DUP NAME> XOR
IF 1-
ELSE SWAP DROP EXIT
THEN
REPEAT SWAP DROP ;;
».AD (a--)
TEXT UNPACK$
COUNT $01F LIT AND TYPE SPACE ;;

130

Name Compiler

?UNIQUE | Display a warning message to show thaht#me of a new commangd
is the same as a command already in the dictionary.

$,n Build a new header in the dictionary usingriaee string already
packed in the WORD buffer. Fill in the link fieldithr the address in
LAST. The top of the dictionary is now the codddief a new
command, ready to accept commands and tokens.

$COMPILE | Process a string at “a”, and compile a new tokemallanstruction, in
the dictionary. This dictionary pointer in CP istieamented, and is
ready to compile the next token.

OVERT Link a new command to the dictionary and mialevailable for a
dictionary search. OVERT changes CONTEXT to paithe name
field of this new command, and extends the dictigpchain to
include a new command.

; Terminate a compound command. Compile a RETunstn to
terminate a token list. Link this command to thetidnary, and
change the text interpreter to interpreting mode.

] Activate compiling mode by writing the addressbf@fOMPILE into
system variable 'EVAL.

Create a new compound command. Take the next gtpag to build
a new header. Now, its code field is on top ofdbexmand
dictionary, and is ready to accept new tokens.

Tools

dm+ Display 8 words from address “b”. Return newrads b+8 for the
next dm+.

DUMP Display “u” words from address “b”, with 8 was on a line. Aline
begins with an address, followed by 8 words in hex.

Decompiler Tools

Since name fields are linked into a list in the awend dictionary, it is fairly easy to
locate a command by searching its name in the cordrd&tionary. However,
finding the name of a command from its code fieldrass is more difficult, because
the name field has variable length, and we cancent the name field backwards very
easily.

>NAME Return a code field address, “xt”, of a conmddrom its name field
address, “na”. If “xt” is not a valid code field dwss, return 0. It
follows the linked list of the command dictionaapnd from every
name field address we can get a correspondingfegldeaddress. If
this address is not the same as “xt”, we go totrae field of the
next command. If “xt” is a valid code field addreg® surely will
find it. If the entire dictionary is searched amdis not found, it is
not a valid code field address.

D Display the name of a command, given its naiele fiddress “a”. It
replaces non-printable characters in a name byrsookes.

131

CRR
. SEE (--; <string>)
'CR
BEGIN
20 LIT FOR
DUP @ DUP 3F000000 LIT AND
4000000 LIT XOR
IF U. SPACE
ELSE FFFFFF LIT AND >NAME
?DUP IF .ID THEN
THEN 1+
NEXT KEY 0D LIT =\ can't use ESC on terminal
UNTIL DROP ;;
:» WORDS (--)
CR CONTEXT
BEGIN @ ?DUP
WHILE DUP SPACE .ID 1-
REPEAT ;;
CODE .S (dump all 33 stack items)
PAD tx stxp
Stxp stxp stxp stxp
Stxp stxp stxp stxp
Stxp stxp stxp stxp
Stxp stxp stxp stxp
Stxp stxp stxp stxp
Stxp stxp stxp stxp
Stxp stxp stxp stxp
Stxp stxp stxp stxp
PAD $21 LIT
FOR DUP ? 1+ NEXT
DROP PAD @ CR ;;

CRR .(file download and upload) CRR

:: READ PAD
BEGIN KEY DUP 1A LIT XOR
WHILE OVER ! 1+
REPEAT DROP
PAD - SPAN ! ;;

»OK'TIB@ >R #TIB @ >R >IN @ >R
PAD 'TIB! SPAN @ #TIB!O LIT >IN !
EVALR>>INIR>#TIB!R>'TIB! ;;

= SEND (bu--)

CR
FORAFTDUP @ <##########> TYPE 1+

DUP 7 LIT AND IF SPACE ELSE CR THEN

THEN NEXT
DROP ;;

:» FORGET (--)

TOKEN NAME? ?DUP
IF 1- DUP CP !

@ DUP CONTEXT ! LAST !
DROP EXIT
THEN ERROR

132

SEE Search the next word in the input stream foramand, and decompiILe

the first 32 program words in its code field. Desphn error message i
the next word is not a valid command. It scansctige field and looks
for CALL instructions. If it finds a CALL instruabin, use the address in
the address field to find this command in the comangdictionary, and
display its name. If a word in the code field i¢ adCALL instruction,
just display its value.

WORDS | Display all names in the command diction@he display order of
commands is reversed from compiling order. Thedafihed command
is displayed first.

S Display the contents of the data stack on sdreéree format. The
bottom of the stack is shown on the right. Thettpiis shown on the
left. The eP32 has a 33-level hardware data stattkel CPU, and it
wraps around like a circular buffer. .S displays3a@l stack levels and
the T register.

File Download and Upload

If the eForth system is connected to the serial @ioa computer, the computer can
emulate a terminal to communicate with eForth. tMesninal emulation programs
can send large text files to the serial port. Uiber can now compose and edit large
applications as text files on the computer. T fike can then be downloaded to
eForth for interpreting or compiling.

PAD is a free memory area 80 words above the tagpeo€ommand dictionary. It
can be used to store temporary data, and is ahptiez to download a text file.

READ Accept characters from terminal and store tiefAD buffer. A Ctrl-Z
character terminates the READ command. After aidildownloaded,
the length of the file is stored in variable SPAN.

OK Interpret text downloaded in PAD buffer. In QUBEVAL interprets text
in the Terminal Input Buffer. EVAL uses three systeariables to
manage the Terminal Input Buffer: 'TIB points te theginning of the
text buffer, #TIB contains the length of the teattd >IN points to a
character in the text buffer currently being intetpd. OK saves these
three variables, replaces them by PAD, SPAN, abdamd then calls
EVAL to interpret the text in the PAD buffer. Aftdre text is interpreted
successfully, 'TIB, #TIB and >IN are restored amel text interpreter is
restored to its normal state.

SEND Upload contents of a memory area, “n” wordststg at address “b”, ta
the terminal. Each word is sent as 8 hex digitéovieed by a space. A
carriage return-linefeed pair is sent every 8 words

FORGET | Search the next word in the input stream for a camanlf it is a valid
command, delete it and all subsequent commanddedmm the
dictionary.

133

CRR .(Hardware reset) CRR
:: DIAGNOSE (-)
$65 LIT
\'F' prove UM+ 0< \carry, TRUE, FALSE
OLITO<-2LITO< \OFFFF
UM+ DROP \ FFFF (-1)
3 LIT UM+ UM+ DROP \3
$43 LIT UM+ DROP \'F
\'0' logic: XOR AND OR
$4F LIT $6F LIT XOR \ 20h
$FO LIT AND
$4F LIT OR
\'r' stack: DUP OVER SWAP DROP
8 LIT 6 LIT SWAP
OVER XOR 3 LIT AND AND
$70 LIT UM+ DROP \'r'
\ 't'-- prove BRANCH ?BRANCH
OLIT IF $3F LIT THEN
-1 LIT IF $74 LIT ELSE $21 LIT THEN
\'h' -- @ ! test memeory address
$68 LIT $40 LIT!
$40LIT @
\'M' -- prove >R R> R@
$4D LIT >R R@ R> AND
\''l' -- prove 'next' can run
61 LIT $A LIT FOR 1 LIT UM+ DROP NEXT
\'S" -- prove Idp, stp
$50 LIT $3 LIT
$30 LIT tx stxp stxp
$30 LIT tx Idxp ldxp
xor
\'emi' -- prove mul, dupy, popy
$656D LIT $1000000 LIT UM*
SWAP rr8 rr8 rr8
\' C'-- prove div
$2043 LIT O LIT $100 LIT UM/MOD
\ 5

CRR

;2 COLD (--)
DIAGNOSE
CR."| $LIT eP32q v"
DECIMAL

CCLIT <### (CHAR .) 2E LIT HOLD # #> TYPE

CR QUIT

134

Hardware Reset

When eP32 is powered up, or when it is reset,acates COLD to start the eForth
system running. The first thing COLD does is eatliagnostic routine, DIAGNOSE,
to run a series of tests, verifying that the eR#2 ¢s working properly. It is
superfluous once the eP32 is fully debugged. Hewen implementing the eP32

on a new FPGA or on a custom chip, DIAGNOSE isesr@ly helpful in hardware
simulation and in hardware verification. In ab@000 cycles, you can observe most
instructions executed, and verify that they execoteectly.

DIAGNOSE tests the following machine and primitcs@mmands in the eP32:
LIT
o<

Bz
UM+
DROP
XOR
AND
OR
DUP
OVER
SWAP
BRA

@

!

>R
R@
R>
NEXT
X
STXP
LDXP
RR8
UM*
UM/MOD

Cold Boot

COLD initializes the eP32 to start eForth. TheZR3a real FORTH
microprocessor, and the hardware initializes itse€OLD does not have much to
do. It first executes DIAGNOSE to run a few testseP32 machine instructions,
displays a sign-on message, and then jumps to QUCOLD is the first compound
command executed after power up or after chip redét address is placed in
memory location 0, which is the hardware resetorect

135

CRR .(Structures) CRR

:: BEGIN (-- a) anew HERE ;; IMMEDIATE

" THEN (A --) BEGIN SWAP +! ;; IMMEDIATE

2 FOR (--a) 1C79E79E LIT , BEGIN ;; IMMEDIATE
CRR

- NEXT (a--) 5000000 LIT OR, anew ;; IMMEDIAT
2 UNTIL (a--) 2000000 LIT OR, anew ;; IMMEDIAT
:2 AGAIN (a--) 0000000 LIT OR, anew ;; IMMEDIAT
2 IF (-- A) BEGIN 2000000 LIT, ;; IMMEDIATE
CRR

:: AHEAD (-- A) BEGIN 0000000 LIT, ;; IMMEDIATE
:: REPEAT (A a--) AGAIN THEN ;; IMMEDIATE

2 AFT (a--aA) DROP AHEAD BEGIN SWAP ;; IMMEDI
:: ELSE (A -- A) AHEAD SWAP THEN ;; IMMEDIATE
2“WHEN (aA--aAa)lFOVER;; IMMEDIATE
“WHILE (a--Aa) IF SWAP ;; IMMEDIATE

CRR
;2 ABORT" (-- ; <string>)
forth_' abort" >body forth_@ LIT (CALL) HERE !
$," ;; IMMEDIATE
%" (--; <string>)
forth_' $"| >body forth_@ LIT (CALL) HERE !
$,";; IMMEDIATE
(- <string>)
forth_' ."| >body forth_@ LIT (CALL) HERE !
$," ;; IMMEDIATE

CRR
" doVAR popr ret
:: CODE (-- ; <string>) TOKEN $,n OVERT align ;;
:: CREATE (--; <string>) CODE
forth_' doVAR >body forth_ @ LIT (CALL) , ;;
:» VARIABLE (--; <string>) CREATE O LIT, ;;
:: CONSTANT CODE $A040000 LIT, , ;;
:: DOES (--) R> (CALL) LAST @ NAME>! ;;

mmm

ATE

136

Structures

BEGIN Begin a loop structure. Leave address “athefcurrent program word
on the stack.

THEN Resolve address field in a transfer instruchb“a”.

FOR Assemble a PUSH instruction and leave the addkthe next word
“a” on the stack.

NEXT Assemble a NEXT instruction using target addré&a”.

UNTIL Assemble a BZ instruction using target addr&s’.

AGAIN | Assemble a BRA instruction using target acsréa”.

IF Assemble a BZ instruction whose address, ‘@aleft on the stack.

AHEAD | Assemble a BRA instruction whose address, Igleft on the stack.

REPEAT | Assemble a BRA instruction using target addr‘a”. Use the address
of the next program word to resolve the addredd 6éthe branch
instruction at “a”..

AFT Assemble a BZ instruction and leave its adsless“a”,. Replace the
address “a” left by FOR with the address of thet peagram word.
ELSE Assemble a BRA instruction, and use the addoséthe next program

word to resolve the address field of the BZ indinrcin “a”.. Replace
“a”with the address of its BRA instruction.

WHILE | Assemble a BZ instruction and leave its addréa”, on the stack.
Address “a” is swapped to the top of the data stack

Sring Commands

(&)

ABORT" | Compile an error message. This error messageptagied when the to
of the stack is non-zero.

Compile a string literal, which will be displag at run time.

$" Compile a string literal. When it is executed]y the address of the
string is left on the data stack for the next comdsato access this
string.

Defining Commands

Defining commands are molds to create many comméradshare the same run time
execution behavior.

CODE Create a new primitive command that is intendecontain
machine instructions.

Create a new compound command to compile a tdisn$he text
interpreter is switched to compiling mode, whicimdiles integer
literals and control structures more gracefully.

CREATE Create a new data array without allocatirgaory.

VARIABLE Create a new variable, initialized to O.

CONSTANT | Create an integer constant.

DOES Define the run time execution routine domew class of commandj
This execution routine follows the DOES command.is similar
to the DOES> command that we used in the assembler.

137

CRR
(makehead) .((-) 29 LIT PARSE TYPE ;; IMMEDIATE
(makehead) \ (--) #TIB @ >IN ! ;; IMMEDIATE
(makehead) (29 LIT PARSE 2DROP ;; IMMEDIATE
(makehead) IMMEDIATE $80 LIT LAST +! ;;

CRR
(makehead) EXIT popr pops ret
(makehead) EXECUTE pushr ret
(makehead) ! tx stx ret
(makehead) @ tx ldx ret
(makehead) R> popr tx popr xt pushr ret
(makehead) R@ popr tx popr pushs pushr xt pushr ret
(makehead) >R popr tx pushr xt pushr ret
(makehead) SWAP

pushr tx popr xt ret
(makehead) OVER

pushr pushs tx popr

xt ret
(makehead) 2DROP

pops pops ret

(makehead) + add ret
(makehead) NOT com ret
(makehead) NEGATE

com 1 |di add ret
(makehead) 1-

-1 Idi add ret
(makehead) 1+

1 Idi add ret

138

M akehead Commands

(makeHead) compiles only a header in the targeiodiary and such commands are
invisible to the metacompiler. In contrast, th& tommand compiles a header in
the target dictionary and a header in the metadempind the command thus defined
will compile itself to the target dictionary whealbsequently invoked. After
(makehead) commands are defined in the targebdenty, they can still be used in
the metacompiler as usual.

(Display the following string, delimited by).
\ Start a comment. Ignore all characters until @nlihe.
(Start a comment. Ignore the following stringliméed by).
IMMEDIATE | Set the immediate bit in theame field of the last defined commar
Such a command will be executed, not compiledpmpaling
mode.

Redefine Macro Commands

A set of macro commands were defined in eP32 adsemobproduce optimized code
in the eForth system. These commands are alsedeéedhe target system. Here
they are re-defined as primitive commands for th82target system. In the eForth
target, they will be compiled as a subroutine wéthout optimization. To produce
optimized code for the target, we need an optingizissembler for the target. It was
so implemented in one of our earlier eP32 systams was fairly complicated. We
decide to leave it out for this XP2 FPGA impleméiota

Command | Function

EXIT Return from subroutine
EXECUTE | Jump to address

! Store integer to address

@ Fetch integer from address

R> Pop from return stack

R@ Copy top of return stack

>R Push on return stack

SWAP Exchange top two integers on stack
OVER Duplicate second integer on stack
2DROP Discard two integers off stack

+ Add top two integers on stack
NOT Complement top of stack
NEGATE Negate top of stack

1- Add -1 to top of stack

1+ Add 1 to top of stack

139

(makehead) BL
20 Idi ret
(makehead) +!
tx ldx add stx
ret
(makehead) -
com add 1 Idi add
ret
(makehead) OR
com pushr com
popr and com ret
(makehead) ROT
pushr pushr tx popr
popr xt ret
(makehead) 2DUP
pushs pushr pushr
pushs tx popr xt popr
ret
(makehead) 2!
tx pushr stxp
popr stx ret
(makehead) 2@
tx ldxp ldx ret
(makehead) COUNT
tx ldxp pushr xt
popr ret

(makehead) DUP pushs ret
(makehead) DROP pops ret
(makehead) AND and ret
(makehead) XOR xor ret
(makehead) COM com ret

h forth_ @

0 org
forth_' COLD >body forth_ @ #,
0# 0%#,0#,

$24 org
$80 #,
0A #,
lasth forth_ @ #,
#,
lasth forth_ @ #,
forth ' SINTERPRET >body forth_ @ #,
forth_" QUIT >body forth_@ #,
0#,
0#,
lasth forth_ @ #,

140

BL Return $20

+! Add second integer to address on top of stack

- Subtract top of stack from second integer

OR OR top two integers on stack

ROT Rotate third integer to top of stack

2DUP Duplicate top two integers on stack

2! Store second and third integers as a doubdgantto the address on
top of stack

2@ Fetch double integer from address on top cksta

COUNT Read contents from address on top of siackement address

DUP Duplicate top of stack

DROP Discard top of stack

AND AND top two integers on stack

XOR XOR top two integers on stack

COM 1's Complement of top of stack

Initialize System Variables

When the eP32 powers up, the P register is cléar@dso we have to have some
valid machine instruction at address 0 to boothegpeP32. The eForth boot up
routine is the command COLD. Therefore, in memocgation 0, we assemble a
JMP COLD instruction.

Memory locations 1-$1F contain an interrupt vet¢édnle for interrupt services.
However, no interrupt is expected in this eP32esysiand this area is cleared to O.
System variables are in the area between $20 and $hey contain vital

information for the eP32 eForth system to work grop Only the following system

variables have to be initialized:

System Address | Initial | Function

Variable Value

'TIB $24 $80 Pointer to Terminal Input Buffer.

BASE $25 $0A Number base for numeric conversions.

CONTEXT | $26 $7C1 | Pointer to name field of last command in
dictionary.

CP $27 $7C3 | Pointer to top of dictionary, firstefremory
location to add new commands. It is saved by ["
forth_@" on top of the source code page.

LAST $28 $7C1 | Pointer to name field of last command

'EVAL $29 $4A0 | Execution vector of text interpretimitialized to
point to SINTERPRET. It may be changed to
point to $COMPILE in compiling mode.

'ABORT $2A $4D2 | Pointer to QUIT command to handiee
conditions.

tmp $2B $0 Scratch pad.

cpi $2C $0 Instruction slot counter for assembler.

cpw $2D $7C3 | Pointer to top of dictionary, firsteérmemory
location to assemble machine instructions.

141

6.6 eP32 Simulator

An accurate and fast logic simulator is extremellgble in designing and testing a
new CPU. Itis also very useful in separating hend and software development,
so that hardware and software can be developedtameously. This eP32
simulator served me well in the process of develgphe eP32 CPU and its
associated eForth system simultaneously.

CYCLE Copies TO Array into FROM Array

FEOM Array TO Array
F P
T T
A A
E R
I I
SP SP
EFP Control Logic RFP
— ——~ and ——
Multiplexers
Data Stack Data Stack
— P
Return Eeturn
Stack Stack
RAM g

Figure37. eP32 Simulator

This eP32 simulator faithfully replicates the logehavior of the eP32 CPU on a
cycle-by- cycle basis. The eP32 CPU is composedsett of registers and two
stacks. The registers and stacks latch input Egmathe rising edge of the master
clock. Itis very simple to simulate this behaJimgically in software.

The adder in the eP32 produces a 32-bit sum aadwphit. To allow maximal

142

programming flexibility, the carry bit must be peeged in all registers and on stacks.
Each register and all stack elements are repraségtvo 32-bit words. The first
word contains the current value of the registed, i@ second word contains the carry
bit associated with this value.

A large array, REGISTER, is opened to host theskibdouble integers. Itis
divided in two banks: a FROM bank and a TO bankhe FROM bank contains
current values of all registers and all stack el&ie A machine instruction takes
data in the FROM bank, modifies them, and writedaie¢d data into the TO bank.
The rising edge of the master clock copies thed@ e FROM bank, and thus
simulates a machine instruction. Multiplexersha €P32 are replaced by FORTH
words that perform logic functions and update vsilinem the FROM bank to the TO
bank.

The Slot Machine, which fetches a program word froemory, and executes 5
machine instructions in this word, is simulatedab§2-bit counter. The least
significant 3 bits in this counter steps througttsD to 5 in 6 clock cycles. Then
this 3-bit field is cleared to zero and the upp@ibi field is incremented. Therefore,
the upper 29-bit field in this counter gives anuaeate program word count.

The most interesting feature of this eP32 simuletdinat it vectors KEY and EMIT
commands to equivalent Windows functions “get” gmat”, so that the simulator can
actually run eP32 eForth interactively on a Winde@esputer, and produces identical
outputs as actual an eP32 microprocessor woulchdoterminal. The simulator
was proven to run identically to an actual eP32ropmcessor. This simulator can
be used for software development, in place of baled@2 microprocessor.

The source code of this simulator is in SIM32q.R.is loaded at the end of
META32q.F, which builds an eP32 eForth system immey array “ram”. The
simulator reads program words from this array aretetes instructions contained in
these program words.

The KEY and EMIT commands in the target eP32 systmrpatched so that eForth
accepts characters from a PC keyboard and sendsctéra to the weFORTH console
window on the PC screen. We add two machine iastms in the simulator:
Instruction “get” (code $3E) receives a charaatemfthe PC and instruction “put”
(code $3F) sends a character to the PC. Prograch$@&11E79E contains these
machine instructions: get/ret/nop/nop/nop, andcaishped into the code field of KEY.
Program word $3F11E79E contains these machinaugigins: put/ret/nop/nop/nop,
and is patched into code field of EMIT.

Once the KEY and EMIT commands are patched to dovalgnt Windows functions,
this simulator can actually run the eP32 eFortaratively, and it produces identical
output as actual eP32 microprocessor would dotemainal.

“forth_forget h” truncates the eForth dictionaryckdo where “h” was defined. It
thus deletes words defined in the metacompileerabter, kernel, and target eP32.
eForth is cleaned to a pristine state to host aamgvication, which is the eP32
simulator.

143

To manipulate double integers representing a valuegisters and stacks, we need a
set of ALU commands operating on double integers:

Command Function

D+ Add top two double integers.

D- Subtract top double integer from second doutikger.
DNEGATE Negate top double integer. 2's complement.

D2/ Shift double integer to right by 1 bit.

D2* Shift double integer to the left by 1 bit.

LIMIT Limit stacks depths are 256 levels.

RANGE Limit program size to 32kB, the size of tRAM’ array

CLOCK A variable that has a 29-bit program wordmofield and a 3-bit

SLOT field. The SLOT field sequences program wetdh and
execution of up to 5 instructions in the progranravo

BREAK A variable holding breakpoint address.

(REGISTER)| A variable pointing either to the FROM bank orve fTO bank.
FROM Switch register array to the FROM bank.

TO Switch register array to the TO bank.

REGISTER | Base address of registers and stack arrays.

The eP32 CPU is paced by a single master clockgiskes, stacks, and memory
contents are latched on the rising edge of theenakick. This latching action must
be simulated accurately. The eP32 Simulator wgesdgister arrays, a FROM bank
and a TO bank. Logic circuitry takes data from FROM array and operates on
them according to the current machine instructaog stores results in the TO array.
The rising edge of the master clock is simulateddgyying the contents of the TO
array to the FROM array, and then the system gyréar actions in the next clock
cycle.

Registers and stacks are defined as pointers pgiitto the REGISTER array:

Register Function

Program counter

Accumulator, top item on data stack

Top of return stack

Address register

P

T

S Second item on data stack
R

X

|

Instruction latch

11 Machine instruction in slotl
12 Machine instruction in slot2
13 Machine instruction in slot3
14 Machine instruction in slot4
15 Machine instruction in slot5
RP Return stack pointer

SP Data stack pointer

RSTACKO Origin of return stack

SSTACKO Origin of data stack

RSTACK Address of top of return stack

SSTACK Address of top of data stack

144

HEX

3E11E79E forth_' KEY >body forth_@ ram!

3F11E79E forth_' EMIT >body forth_ @ ram!

forth_forget h

DECIMAL

: D+ ROT + >R UM+ R> +;

: DNEGATE NEGATE >R NEGATE DUP IF -1 ELSE 0 THEN R> +
: D- DNEGATE D+ ;

: D2/ DUP 2/ >R 1 AND IF 2/ $80000000 OR ELSE 2/ $7 FFFFFFF AND THEN
R>:

: D2* 2* >R DUP $80000000 AND IF 2* R> 1 OR ELSE 2* R> THEN ;

$1F CONSTANT LIMIT (stack depth)

$1FFF CONSTANT RANGE (program memory size in words)

VARIABLE CLOCK (slot is in the last 3 bits)

VARIABLE (REGISTER) (where registers and stacks ar e)

VARIABLE BREAK

: REGISTER (REGISTER) @ ;
: FROM PAD (REGISTER) ! ;
:TO PAD $600 + (REGISTER) ! :

:P REGISTER;

.1 REGISTER 4 +;

111 REGISTER 8 +;

112 REGISTER 9 +;

113 REGISTER 10 +;

114 REGISTER 11 +;

115 REGISTER 12 +;

:RP REGISTER 13 +;

:SP REGISTER 14 +;

: T REGISTER 16 +;

R REGISTER 24 +;

: X REGISTER 32 +;

:S REGISTER 56 +;

: RSTACK RP C@ LIMIT AND 8 * REGISTER + $100 + ;
: SSTACK SP C@ LIMIT AND 8 * REGISTER + $200 + ;

: CYCLE TO P FROM P $600 CMOVE 1 CLOCK +!;
: JUMP CLOCK @ 7 OR CLOCK ! ;

: RPUSH (d --, push d on return stack)
FROMR2@ RP C@ 1 + LIMIT AND TO RP C! RSTA CK2I'R2!;

: RPOPP (--d, pop d from return stack)
FROMR 2@ RSTACK 2@ RP C@ 1 - LIMIT AND TO RPCIR 2!;

: SPUSH (d --, push d on data stack)
FROMS2@ SP C@ 1 + LIMIT AND TO SP C! SSTA CK 2!
FROMT 2@ TO S 2!
TOT2!,

: SPOPP (-- d, pop d from data stack)
FROMT 2@
FROMS2@ TO T 2!
FROM SSTACK 2@ SP C@ 1 - LIMIT AND TO SP C! S2!;

145

The Slot Machine paces the simulator through eR82uctions stored in ‘RAM’
memory, just like the real eP32 CPU would do. dadtof using a single phase clock
as master clock, we use a CLOCK variable as safraenultiple phase clock. The
lowest three bits in CLOCK, Slot Counter, runs shas in the slot machine. Its
value indicates which slot is currently runningf it is 0, SlotO is executed. Ifitis 1,
Slotl is executed. Etc. On the rising edge ofntlaster clock, this slot counter is
incremented. When slot count is 5, Slot5 is exataind the slot counter is reset to
0, so that next time SlotO is executed.

JUMP also clears the Slot Counter to 0. JUMP eslusy all transfer instructions to
force the slot machine to enter slotO on the rigidge of the next clock.

Command Function

CYCLE Simulate rising edge of master clock by imeemting CLOCK.

JUMP Fetch next program word by forcing a 7 intot&ounter in CLOCK. Or
the rising edge of the master clock, CLOCK is inceated and clears
Slot Counter to 0. The upper 29-bit field in CLO@Kincremented,
indicating that a new word is fetched from memaiyus the upper 29
bits in CLOCK keeps an accurate count of eP32 wtiraishave been
executed.

RPUSH Push double integer d on return stack.

RPOPP Pop return stack and leave double integeysiam stack.

SPUSH Push double integer d on data stack.

SPOPP Pop data stack and leave double integestens stack.

“continue” simulates functions performed in slatGthe Slot Machine, which fetches
the next program word from memory and stores imgtruction register I. Machine
instructions in slotl to slot5 are extracted torapea decoder, which generates
control signals for all components in the eP32.

“continue” also increments the P register, and e®pnachine instructions in slotl to
slot5 to instruction registers 11-I5.

To execute a machine instruction, the simulatoesaturrent values in registers and
stacks in the FROM bank, computes desired new saarel deposits them back in
registers and stacks in the TO bank. On the risdge of the master clock, which is
simulated by command CYCLE, the contents of theb®@k are copied to the FROM
bank. Machine instructions are defined as commantss simulator, and they read
values in the FROM bank, make necessary changeéstare new values in the TO
bank.

As registers and stacks are represented in douotglgdars, math operations are

performed using double integer math commands défwéhe beginning of the
simulator. They are D+, D-, DNEGATE, D2*, and D2/.

146

. continue

FROM P @ DUP 1+ TO RANGE AND P !
ram@ DUP [!

64 /IMOD SWAP |5 C!

64 /IMOD SWAP 14 C!

64 /IMOD SWAP |3 C!

64 /MOD SWAP |12 C!

63 AND I1 C!

:nop JUMP ;
el
2di
tbra 1 @ TO RANGE AND P ! JUMP ;
: ret RPOPP DROP TO RANGE AND P!
JUMP ;
: bn SPOPP DROP 0< (branch on sign)
IF bra ELSE JUMP THEN ;
: bc SPOPP SWAP DROP (branch on carry)
IF bra ELSE JUMP THEN ;
: bz SPOPP DROP (branch on zero)
IF JUMP ELSE bra THEN ;
:call FROM P @ 0 RPUSH bra ;
: next FROM R 2@ DROP
IF ELSE RPOPP 2DROP JUMP EXIT THEN (exit |
FROMR 2@ DROP 1-0 TO R 2! (decrement R)
FROM bra;
: times FROM R 2@ DROP
IF ELSE JUMP EXIT THEN (exit loop)
R2@ 10D-TOR 2! (decrementR)
FROM-1P +I TO-1P +!;
: pushr SPOPP RPUSH ;
: dupr FROM R 2@ SPUSH ;
: popr RPOPP SPUSH ;
:andd SPOPP DROPTO T 2@ DROP ANDOT 2!;
: xorr SPOPP DROP TO T 2@ DROP XOROT 2! ;
:com FROMT 2@ DROP -1 XOROTOT 2!;
:add SPOPPDROPOTOT2@ DROPOD+TO1ANDT 2
: mul FROM X 2@ DROP 1 AND
IFS2@ T 2@ D+
ELSE T 2@ THEN 1 AND
2DUP D2/ TOT 2!
DROP 1 AND >R
FROM X 2@ DROP 2/ $7FFFFFFF AND R> IF $8000
X 2!
:div FROM S 2@ DROP O T 2@ DROP 0 D+
1 AND DUP >R DUP
IF ELSE 2DROP T 2@ THEN
D2* (diff) 1 AND X 2@ DROP $80000000 AND |
2!
FROM X 2@ DROP 2*R>IF 1+ THENTO 0 X 2! ;
:shr FROMT 2@ DROP 2/1TO T 2!;
:shl FROMT2@ D2*1 AND TO T 2!;
18 FROM T 2@ DROP DUP 7 FOR D2/ NEXT DROP 0 TO
:ldi FROMP @ 1+ TO RANGE AND P !
FROM P @ RANGE AND ram@ 0 SPUSH ;

oop)

0000 ORTHENTO O

F10D+THENTOT

T2!;

147

—

nop No operation.

ei Enable interrupt.

di Disable interrupt.

bra Jump to address contained in current ingtrict

ret Return from a subroutine to main program. Rprn address from
return stack and store itin P.

bn If T<O is set, jump to address contained iment instruction; else
continue.

bc If Carry is set, jump to address containecuiment instruction; else
continue.

bz If T=0, jump to address contained in current inginn; else continue.

call Push address in P on R stack, and jumpdecead contained in currer
instruction; else continue.

next If R is not O, jJump to address containedurrent instruction, and
decrement R by 1; else pop R stack and continue.

times Micro loop. Similar to “next”, except repieg instructions in current
program word.

pushr Push T onto R stack. Pop S stack to T.

dupr Push T onto S stack. Dup Rto T.

popr Push T onto S stack. Pop R stack to T.

andd Pop S stack and AND it to T.

xorr Pop S stack and XOR itto T.

com Complement T (1's complement).

addd Pop S stack and add it to T.

mul Multiplication step. If X(0)=1, add S to Ttherwise T is not changed
Shift T:X pair right by 1 bit.

div Division step. If T+S produces a carry, adtb S, otherwise T is not
changed. Shift T:X pair left by 1 bit. Shift caiinto X(0).

shr Shift T right by 1 bit.

shl Shift T left by 1 bit.

8 Rotate T right by 8 bits.

Idi Push T on S stack, read memory word pointe® mto T. Increment B
by 1.

pushs Push T on S stack.

xt Push T on S stack. Copy X to T.

pops Pop S stack to T.

overr Push T on S stack. Copy original contehS T.

tx Copy T to X. Pop S stack to T.

ldx Push T on S stack, read memory word poinie nto T.

ldxp Push T on S stack, read memory word poibteX into T. Increment
X by 1.

Idrp Push T on S stack, read memory word poibteR into T. Increment
R by 1.

stx Store T into memory pointed by X. Pop S stack.

stxp Store T into memory pointed by X. Increm¥ridy 1. Pop S stack to T.

strp Store T into memory pointed by R. Increment R bi?dp S stack to T

148

We want the simulator to run the eP32 eForth systefime real eP32 microprocessor
talks to a host computer through a UART serial poiormally we use
HyperTerminal in Windows to interact with the eP3Z.0 simulate interaction
between the eP32 and HyperTerminal, we have tokhijae output of EMIT and send
it to the weFORTH console window, and interceptdaard strokes from the
computer keyboard and feed them to KEY in eForfhihese two functions are
implemented in the simulator by creating two spaniachine instructions, “get” and
“put”, which use machine codes $3E and $3F, respyt

“get” and “put” are patched into the code fieldk@&Y and EMIT in the memory
array “ram” so that when the simulator executes EMIcharacter is displayed on the
weFORTH console, and when KEY is executed, an ASkdracter is accepted from
the keyboard. With “get” and “put”, the simulatons the eP32 eForth system
identically like the eP32-HyperTerminal system.

get Force simulator to get a character from kegdoader Windows.

put Force simulator to send a character to weFORI$ole window.

“execute” is a giant case statement that gets “ctsdm the top of the stack and
selects the proper commands to simulate a machateiction in this emulator.

Since weForth did not bother to define case strecnd associated control
commands, we just use lots of IF-THEN structuresnmlate a case structure.
“code” is duplicated on the stack and compared waithsecutive machine code. Ifa
match is found, the corresponding command is erelciat simulate that machine
instruction. After that, EXIT is executed, and éexte” is terminated. Further
comparisons are not necessary.

If “code” does not match a valid machine code, &eeha very serious problem.
Either the eForth program has a bug, or the eR8Bdlator has a bug. This simulator
is aborted. The offending “code” is displayed watiherror message. The eForth
system returns to its default text interpreter, yod can type in eForth commands to
find and correct this bug.

149

:pushs FROM T 2@ SPUSH ;

:xt FROM X 2@ SPUSH ;

: pops SPOPP 2DROP ;

:overr FROM S 2@ SPUSH ;

:tx SPOPP TO X 2!;

:ldx FROM X 2@ DROP RANGE AND ram@ 0 SPUSH ;

: ldxp ldx
FROMX2@ 10D+ 1AND TO X 2! ;

: ldrp FROM R 2@ DROP RANGE AND ram@ 0 SPUSH
FROMR2@ 10D+1AND TOR 2!;

: stx SPOPP DROP FROM X 2@ DROP RANGE AND ram! ;

. Stxp stx
FROMX2@ 10D+ 1AND TO X 2! ;

. strp SPOPP DROP FROM R 2@ DROP RANGE AND ram!
FROMR2@ 10D+1AND TOR 2!;

. get KEY DUP $1B = ABORT" done"
0 SPUSH ret ;

: put SPOPP DROP $7F AND EMIT ret ;

HEX

. execute (code --)
DUP 00 = IF DROP bra EXIT THEN
DUP 01 = IF DROP ret EXIT THEN
DUP 02 = IF DROP bz EXIT THEN
DUP 03 = IF DROP bc EXIT THEN
DUP 04 = IF DROP call EXIT THEN
DUP 05 = IF DROP next EXIT THEN
DUP 06 = IF DROP times EXIT THEN

\ DUP 07 =IF DROP di EXIT THEN
DUP 08 = IF DROP Idrp EXIT THEN
DUP 09 = IF DROP ldxp EXIT THEN

DUP OA = IF DROP Idi EXIT THEN
DUP 0B = IF DROP ldx EXIT THEN
DUP OC = IF DROP strp EXIT THEN
DUP 0D = IF DROP stxp EXIT THEN
DUP OE = IF DROP rr8 EXIT THEN
DUP OF = IF DROP stx EXIT THEN
DUP 10 = IF DROP com EXIT THEN
DUP 11 = IF DROP shl EXIT THEN
DUP 12 = IF DROP shr EXIT THEN
DUP 13 = IF DROP mul EXIT THEN
DUP 14 = IF DROP xorr EXIT THEN
DUP 15 = I[F DROP andd EXIT THEN
DUP 16 = IF DROP div EXIT THEN
DUP 17 = IF DROP add EXIT THEN
DUP 18 = IF DROP popr EXIT THEN
DUP 19 = IF DROP xt EXIT THEN
DUP 1A = IF DROP pushs EXIT THEN
DUP 1B = IF DROP overr EXIT THEN
DUP 1C = IF DROP pushr EXIT THEN
DUP 1D = IF DROP tx EXIT THEN
DUP 1E = IF DROP nop EXIT THEN
DUP 1F = IF DROP pops EXIT THEN
DUP 3E = IF DROP get EXIT THEN
DUP 3F = IF DROP put EXIT THEN

. ABORT" :lllegel instruction” ;

150

Here are the commands that run Slot Machine, aod $he contents of pertinent
registers and stacks. Originally, | thought of lementing a set of break points to
allow user the freedom to break execution at a rexrabdifferent memory locations.
Eventually, | realized that only one break poimiézessary and a simple ‘GO’
command is sufficient. This is the G command shelow.

Command Function

.stack Display the contents of a stack.

.sstack Display the contents of data stack.

Istack Display the contents of return stack.

registers | Display the contents of all the relevant registers.

S Show all the registers and stacks at this cycle.

sync Execute the current machine instruction ueb@CK to determine

which slot is being executed. CLOCK points to ohé&e routines in
SYNC-TABLE, which contains the following entries:

CONTINUE, fetch next program word

SYNC1, execute instruction in I1

SYNC2, execute instruction in I2

SYNC2, execute instruction in I2

SYNCS3, execute instruction in I3

SYNCA4, execute instruction in 14

SYNCS5, execute instruction in I5

C Run one clock cycle and display all registers stadks.

reset Clear the REGISTER array, simulating hardweset.

“C” is the single stepper in simulator. It rung tBlot Machine for one cycle, and
displays all registers and stacks. This is thetmssful command to debug the eP32
in the early development stage. You can see &lidaall registers and stacks. In
the eP32 eForth system, the first command exetsit€®LD, which executes a
diagnostic word, DIAGNOSE. DIAGNOSE runs simplstseon most machine
instructions. By single stepping through DIAGNO$Bu can validate most
machine instructions. If all tests in DIAGNOSE msurccessfully, it is very likely the
eP32 will run correctly in the FPGA.

“reset” clears the REGISTER array, and initialifes simulator to run at memory
location O.

This simulator has a very simple text-based uderfecce. The most used
commands are:

Command Stack Function
Effects

G -- Run and stop at address given on FORTH stuk.is a
very efficient way to set breakpoints and thentiliia
breakpoint is triggered. It allows the user tocxe a
large portion of the program and stop only at asieel
location.

PUSH n-- Push a new integer into the T registdrdata stack.

151

POP -- Discard contents in T and pop data stack ivéc T.

D -- Display memory starting at address in P.

M a-- Dump 128 words in memory using “show” comman
RUN -- Continue stepping with any key, terminatgcdsC.

P a-- Start simulating at the address on stack.

This simulator is most effective in debugging sksaguences of program words to
verify that the sequences are executed correcifter eP32 machine instructions are
verified, use the G command to execute a longc$tret program and break only at a
specified location. This allows large segmentprofyrams to be tested. If the
simulator runs forever and cannot reach the break gou specified, you can stop
the G command by hitting a key on the keyboaretminate it.

When weForth runs the metacompiler to compile artbFsystem for the eP32, it
displays names and code field addresses of all @mscompiled into the target
image. The display is a symbol table. You carklop a command and find its
code field address. The code field addressesarkdst place to set your break
point. To debug a command, find its code fieldradd and enter it with the G
command. The simulator will break at the beginrohthis command, and you can
use the C command to single step through it.

Typing lots of “C” commands is tedious. The RUNronand lessens your typing
chore. After executing RUN, the simulator displaggisters and stacks and pauses.
Pressing any key will single step Slot Machinedoe cycle. You can run many
steps easily this way. When you want to stop Rpdss the ESC key.

To examine memory, type an address followed byMiecommand. It will display
128 words of memory starting from that address. e ' command displays 8
program words starting at this address.

If you want to start debugging at a particular &ddr type the address followed by the
“P” command. This address is stored in the progtaomter register, P, and “C” or
“RUN” commands will single step words starting lsistmemory address.

If you want to change the data stack to run sinmatvith the data you want on the
stack, use “PUSH” and “POP” commands. Type a nurfddewed by “PUSH”,

and this number is pushed on the data stack ieithelator. You can enter as many
numbers on stack as you like in this way. If yoantvto pop a number off the data
stack, type “POP”.

The above commands allow you to set up the eP8teisimulator exactly the way
you want before running simulation.

The HELP command displays a help screen to remmodoy simulation commands
and arguments they need on the data stack.

152

. .stack (add #) FOR AFT DUP 2@ DROP U. 8 - THEN
c.sstack " S"T2@ IF." C" THEN U.

S 2@ DROP U. SSTACK SP C@ .stack ;
c.rstack " R:"R 2@ DROP U. RSTACK RP C@ .stack ;
: .Xxstack ." X:" X 2@ DROP U. ;
.registers "P="P@.." ="l @ U.

JNE"I11C@ . 12=" 12 C@ .

MI3E"I3C@ . " 14="14 C@ .

MI5="15C@ .CR;
:S CR."CLOCK="CLOCK @ . .registers

.sstack .rstack .xstack ;

:sync CLOCK @ 7 AND
DUP 0 = IF continue DROP EXIT THEN
DUP 1 =IF 11 C@ execute DROP EXIT THEN
DUP 2 =IF 12 C@ execute DROP EXIT THEN
DUP 3 =IF 13 C@ execute DROP EXIT THEN
DUP 4 = IF 14 C@ execute DROP EXIT THEN
DUP 5 =IF I5 C@ execute THEN
DROP JUMP ;

:C syncCYCLE S;

: reset FROM P $C00 O FILL 0O CLOCK ! ;

reset

:G (addr--)
CR ." Press any key to stop.”" CR
BREAK!
BEGIN sync P @ BREAK @ =
IF CYCLE C EXIT
ELSE CYCLE
THEN
?KEY
UNTIL ;
:PUSH (n) pushs TOOT 2!;
: POP pops;

:D P @ 1- four four ;
M show;
:RUN CR ." Press ESC to stop." CR
BEGIN C KEY 1B = UNTIL ;
P DUP FROM RANGE AND P! TO RANGE AND P !;

: HELP CR ." eP32 Simulator, copyright eForth Grou
CR ." C: execute next cycle"
CR ." S: show all registers"
CR ." D: display next 8 words"
CR ." addr M: display 128 words from addr"
CR ." addr P: start execution at addr"
CR ." addr G: run and stop at addr"
CR ." RUN: execute, one key per cycle"
CR;

NEXT DROP CR;

p, 2000"

153

Conclusion

In early 1990's, when | worked with Chuck Mooretba MuP21 chip, he was
daydreaming one afternoon, and said somethinghile "l wish that | had a machine
like a microwave oven on my kitchen table. | wopld in a piece of silicon and
turn on the power switch. After half a hour, | i@open the door, and there is my
chip.”

With LatticeXP2-5E FPGA chip on Brevia Kit, | amagtising Chuck's dream now,
on my desk.

You can practise Chuck's dream also. You can desig produce your own
microprocessor. You can write your own programmamguage and operating
system. All you have to do is to sit back, thirgkdy and find a good application that
you can sell a million chips.

In the FORTH programming language and in the desugriFORTH microprocessors,
Chuck Moore reduced computer software and comhatetware to their simplest
forms, which can be understood, reproduced, andave by ordinary people like us.
You do not have to be Intel or Microsoft to makengaters and to solve application
problems.

“Yes, we can! Yes, we can! Yes, we ¢an!

154

Appendix A: eP32 Instruction Set

Here | will present formal definitions of all ePB#tructions. They begin with the
assembly mnemonics and a name, followed by thele casage, stack effects, and
effects on the carry bit. These attributes aregmted in a table. Then there is a
detailed description of the instruction’s functi@miowed by some coding examples.
Usage rows show how an instruction appears in bit3&ogram word, using
following notations:

Notation Representation

00 Highest two bits, not used

iiiii Current instruction code in binary
ccecece 6 bit instruction code

nnnnnn 6 bit data

aaaaaa 6 bit address

XXXXXX 6 don’t care bits

The stack effect row shows how this instructioretff the data stack, return stack,
and sometimes the X register. Stack effects avessiin the following style:

Items before execution — items after execution
Items are identified using the following notation:

Notation Representation

n a general 32-bit integer

a a 32-bit address

f a logic flag, true=-1, false=0

If an instruction changes the return stack andXtihegister, these effects are added to
the data stack effects separated by colons:
Nin2-n3n4d;R:-n; X --n

The carry row shows how the carry bit is changethieyinstruction.

Coding examples are often taken from the kerngh@®eForth system in the files
KERN32g.F and EF32g.F. Code fragments are gegestadiwn in machine code
format. Complete definitions of code commandsséu@wvn in eForth assembly
format and FORTH compound commands are shown inTFOBrmat. You are
encouraged to read these files and examine thesepmeas in their original context.

155

ADD Addition

Code: 23

Usage Short Instruction

Stack Effects (nln2--nl+n2)

Carry Change according to n1+n2
Function:

Pop S from the data stack and add it to the T tegis
Coding Example:

The primitive addition word in eForth is thus de&fth
CODE UM+ (nn-ncarry)

add pushs

ifnc pushs pushs xor ret

then

1 Idi ret
: NEGATE (n---n) com 1 |di add ;
:1-(a--a)-1lldiadd;
1+ (a--a) lldiadd;
s+l (na--) txldx add stx ;
:-(ww--w) comadd 1 Idi add ;

AND BitwiseAND

Code: 21

Usage Short Instruction

Stack Effects (n1ln2--n3)

Carry AND of bits n1(32) and n2(32)
Function:

Pop S from the data stack and bitwise AND it toThregister.

affected.
Coding Example:

To generate a 0 in the T register:
DUP DUP COM AND
To convert a numeric digit to its corresponding AlStode:
= DIGIT (u--¢)
9 LITOVER <7 LIT AND +
(CHARO) 30 LIT +

156

All 33 hits In T are

BC Branch on Carry

Code: 3

Usage 00 000011 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects (n--)

Carry Restored from data stack

Function:

Conditionally branch to the 24-bit address in thidibld 23-0 in the current 16M
word page of memory, if the Carry flag (Bit 32 gfi$ set. It must be in slotl of a
program word. The current value in the T regigeatestroyed and the data stack is
popped back to T. This instruction is differerdrfr BRA, which does not change
the data stack or T.

Coding Example:
The negative flag T(31) is shifted into carry T(3B compiled by IFNC tests this.
CODE ABS (n--+n)

pushs shl

ifnc ret then
negate ret

157

BRA Branch Always

Code: 0

Usage 00 000000 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects None

Carry No change

Function:

Branch to the 24-bit address in bit field 23-Ohe turrent 16M word page of memory.
It must be in slotl of a program word. BRAis calegh by ELSE, REPEAT and
AGAIN to construct branch and loop structures.

Restriction:

This instruction allows the program to be redirddi® any location within a 16M
word page of memory. It does not cross page baiesda To jump to locations
outside of a memory page, one has to push a tadgkeéss onto the return stack and
execute the RET instruction to cause a long junmifhis restriction also applies to
CALL, BZ, BC, and NEXT. See also RET.

Coding Example:

To delay 50 or 100 micro seconds:

CODE 50us

2 Idi skip

CODE 100us

1 Idi

then

sta -138 Idi

begin Ida add

-until

drop

ret

SKIP compiles an unconditional branch, BRA, to THEMNIet the routine ‘50us’
share a delay loop with the routine ‘100us’.

158

BZ Branch on Zero

Code: 2

Usage 00 000010 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects (n--)

Carry Restored from data stack

Function:

Conditionally branch to the 24-bit address in thidibld 23-0 in the current 16M
word page of memory, if the T register contains a @ must be in slotl of a program
word.

The T register is destroyed and the data stackpped back to T. This instruction is
different from BRA, which does not change the dagek or T. BZ is compiled by
IF, WHILE and UNTIL to construct branch and loopustures.

Coding Example:
CODE ?DUP (w--ww |0)
pushs

if pushs ret then
ret

159

CALL Call Subroutine

Code: 4

Usage 00 000100 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects (--;R:--a)

Carry No change

Function:

Call a subroutine whose address is in bit field28-the current 16M word page of
memory. It must be in slotl of a program word.

The address of the next program word is pushedtbeteeturn stack. When a
return instruction in a subroutine is encountetleis, address is popped off of the
return stack back to the program counter and tlkiepregram word is executed to
resume the execution sequence interrupted by th@stine call.

Restriction:

This instruction allows the program to call anysuliine within the current 16M
word page of memory. It does not cross page baigsla

Coding Example:

All compound=ORTH commands are compiled as subroutine call$is i$ the most
efficient way to build program lists in FORTH.

“HERE (--a)CP @ ;;

2 PAD (--a)CP @ 100 LIT + ;;

~TIB(--a)'TIB@ ;;

160

COM Bitwise Complement

Code: 16

Usage Short Instruction

Stack Effects (n=1-n)

Carry Reset to 0Complement of T(32)
Function:

Complement all 33 bits in the T register. It isree’s complement operation.
Coding Example:

To generate a 0 in the T register:

DUP DUP COM AND
To generate a -1 in the T register:

DUP DUP COM XOR
The first step is to make two copies of T. Thewopt copy is complemented and
then ANDed or XORed into second copy of T. Allskéire cleared or set, and the
resultisaOora-1inT.

- NOT (w--w) com;
: NEGATE (n---n) com 1 Idi add ;

161

DIV Divide Sep

Code: 22

Usage Short Instruction

Stack Effects (n1ln2--n1n3)

Carry Bit T(31) or Bit 31 from adder
Function:

Conditionally add the S register onto the datakstache T register if the carry bit
from addition is 1. If carry is O, the T regisiemot modified. The T-X register
pair is then shifted to the left by one bit. Casghifted into X(0).

This DIV instruction is useful as a divide steprigplement a fast software division
routine. Repeating this instruction 33 times willide the T-X pair by S. The
guotient is in X and the remainder is in T.

Coding Example:

Divide a 64-bit positive integer by a positive 3itdivisor. A negated divisor is in S.
The 64-bit dividend is in the T-X register pair.

CODE/MOD (nn--rq)
com 1 Idi add pushr
tx popr O Idi
then
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div div div div
div 1 Idi xor shr
pushr pops popr xt
ret

162

DROP Discard T Register

Code: 31

Usage Short Instruction

Stack Effects (n--)

Carry Restore from data stack
Function:

Pop S from the data stack and store it in the Istelg The original contents in the T
register are lost. In assembler, DROP has an, §bags’.

Coding Example:
: DROP (ww --) pops;
: 2DROP (w w --) pops pops ;

DUP Duplicate T Register

Code: 26

Usage Short Instruction
Stack Effects (n--nn)
Carry No change
Function:

Duplicate the T register and push it onto the dtdak. In assembler, DUP has an
alias, ‘pushs’.

Coding Example:

Create 0 in T DUP DUP XOR AND
Create -1 in TDUP DUP XOR COM
Decrement T DUP DUP XOR COM ADD
CODEO<(n-f)

shl ifnc pushs pushs xor ret

then

-1 Idi ret

163

El EnableInterrupts

Code: 6

Usage Short Instruction
Stack Effects None

Carry No change
Function:

Enable external interrupts through the INTERRUPZY(@ins. When the eP32 is
powered up, external interrupts are disabled. rAftas executed, the CPU will
respond to external interrupts. Interrupt pinssamipled in slot0. If any of the 5
interrupt pins is pulled high, the CPU will forcesabroutine call to an address
between 1 and 31 according to the bit pattern sednpl INTERRUPT(0-4). Further
interrupts are disabled, until another El is exedut

Before executing El, the system must write validradses of interrupt service
routines into the interrupt vectors from locatidn® 31, so that the system can
respond correctly to simultaneous real time inf@sdrom 5 external devices.

L DI L oad | mmediate

Code: 10

Usage Short Instruction followed by a 32-bit lileralue
Stack Effects (--n)

Carry Reset to O

Function:

Fetch the contents of the next program word antl thet number onto the data stack.
The program counter, PC, is incremented, passmgeit program word. This
instruction allows a program to enter numbersr@i® onto the data stack at run time.
It also resets the carry flag (Bit 32) in the Tisbey.

Coding Example:

Push 1 2 3 4 on data stack:
LDI LDI LDI LDI
1
2
3
4
CODE=(ww--t)
Xor
if pushs pushs xor ret then
-1 Idi ret

164

LDX Load from X Register

Code: 11

Usage Short Instruction
Stack Effects (--n)

Carry Reset to O
Function:

Fetch the contents of a memory location whose 8aduress is in the X register and
push that number onto the data stack. The addrélse X register is not modified.

This fetch instruction is different from the @ ingttion in FORTH, which uses the
address on top of the data stack.

This instruction also resets the carry flag (Bi} B2the T register.
Coding Example:

@ (a-n)txldx;
2@ (a--d) txldxp ldx;

LDXP Load from X Register, Auto-Incrementing

Code: 9

Usage Short Instruction
Stack Effects (--n; X:ra—atl)
Carry resetto O
Function:

Fetch the contents of a memory location whose 8aduress is in the X register and
push that number onto the data stack. The addrelss X register is then
incremented to facilitate accessing the next meromgtion. It is most useful in
reading values from an array in memory.

This fetch instruction is different from the @ ingttion in FORTH, which uses the
address on top of the data stack.

This instruction also resets the carry flag (Bi} B2the T register.
Coding Example:

2@ (a--d) tx ldxp ldx ;

165

MUL Multiply Step

Code: 19

Usage Short Instruction

Stack Effects (n1n2—1lohi)

Carry Reset to 0Change to T(31) or sum(31)
Function:

Conditionally add the S register on the data stadke T register if the lowest bit in
the X register, X(0), is 1. If X(0) is O, the Tgister is not modified. The T-X
register pair is then shifted to the right by oite b

This MUL instruction is useful as a multiply stepimplementing a fast software
multiplication routine. Repeating this instructi® times will multiply X and S and
produces a 64-bit product in the T-X register paif.the T register is not initialized
to 0, its contents are added to the product.

Coding Example:
Multiply two 32-bit unsigned integers. Multiplicdns in X. Multiplierisin S.

CODE UM* (uu--ud)
tx O Idi
mul mul mul mul
mul mul mul mul
mul mul mul mul
mul mul mul mul
mul mul mul mul
mul mul mul mul
mul mul mul mul
mul mul mul mul
pushr pops xt popr
ret
The 32-bit product is in the T-X register pair. €limultiplicand in S is preserved.

166

NEXT Loop Back

Code: 5

Usage 00 000101 aaaaaa aaaaaa aaaaaa aaaaaa
Stack Effects (--;R:n—=n-1lifnisnot O, mfA=0)

Carry No change

Function:

If the top of the return stack, R, is not zerodao the 24-bit address in bit field 23-0
in the current 16M word page of memory. R is demsted by 1. If Ris O, pop
the return stack, terminate the loop, and contaxexuting the next program word.

It must be in slotl of a program word. NEXT isdefined in assembler to terminate
a loop structure by assembling a NEXT instruction.

Coding Example:

:CMOVE (bbu--)
FOR AFT
over c@ over c!
>R 1+ R> 1+
THEN NEXT 2DROP ;;
~FILL (buc--)
SWAP FOR SWAP AFT
2DUP c! 1+
THEN NEXT 2DROP ;;

NOP No Operation

Code: 30

Usage Short Instruction
Stack Effects (-)

Carry No change
Function:

No operation. This instruction forces the exeausequencer to state slotO, and
causes the next program word to be fetched andugegkc All instructions in the
current program word following NOP are ignored. asembler, NOP is
automatically padded into a program word to filusad slots.

167

OVER Duplicate S Register

Code: 27

Usage Short Instruction

Stack Effects (nln2-nl1ln2nl)
Carry Restore from S register
Function:

Push the T register onto the data stack. Copwytigénal contents of Sto T.
Coding Example:

:: 2DUP OVER OVER ;;

POP Pop Return Stack

Code: 24

Usage Short Instruction

Stack Effects (--n;R:n--)

Carry Restore from return stack
Function:

Pop the R register on the return stack to the iBteg The original contents in T are
pushed onto the data stack.

Coding Example:

Exchanging Xand T STA PUSH LDA POP
Exchanging Xand R STA POP LDA PUSH
Increment T by 4 STA LDP DROP LDA
Decrement T by 4 DUP DUP XOR COM ADD
:CMOVE (bbu--)

FOR AFT over c@ over c!

>R 1+ R> 1+
THEN NEXT 2DROP ;;

168

PUSH Push Return Sack

Code: 28

Usage Short Instruction

Stack Effects (n--;R:--n)

Carry Restore from data stack
Function:

Pop S from the data stack and store it to the iBt®g The original contents in the T
register are pushed onto the return stack.

Coding Example:

: 2DUP (w1 w2 -- wl w2 wlw2)
over over

:i?OT(WlW2w3--W2w3W1)

pushr pushr tx popr
popr xt ;

RET Return from Subroutine

Code: 1

Usage Short Instruction
Stack Effects (-;Rra--)
Carry No change
Function:

Pop the top of the return stack into the prograomeer, P, and thus resume the
execution sequence interrupted by the last CALtrucsion. Besides terminating a
subroutine, this instruction may be used to exeautag jump to a location outside
of the current memory page. This instruction camplaced in any slot of a word.
Instructions before RET are executed. Instructiolewing RET are ignored.

Coding Example:

In the Subroutine Threading Model, RET is usecttminal all code commands and
colon commands. The word “;” simply compiles a RETerminate a FORTH
word.

CODEO< (n-f)
shl ifnc pushs pushs xor ret
then -1 Idi ret

CODE UM+ (nn-ncarry)
add pushs
ifnc pushs pushs xor ret
then 1 Idi ret

169

RR8 Rotate Right by 8 Bits

Code: 14

Usage Short Instruction
Stack Effects (nl-n2)
Carry No change
Function:

Rotate T to the right by 8 bits. The lowest 8 lits moved to the highest 8 bits.
This instruction is very useful in extracting byfesm a 32-bit integer in the T
register, and to pack bytes into T.

Coding Example:

- wupper (w -- w') \ convert 4 bytes to uppercas e
3 LIT FOR
DUP FF LIT AND 61 LIT 7B LIT WITHIN
IF FFFFFF5F LIT AND THEN

RR8

NEXT
SHL Shift L eft
Code: 17
Usage Short Instruction
Stack Effects (n--2n)
Carry Change to T(31)
Function:

Shift all lower 32 bits in the T register to lefg b bit. The lowest Bit, T(0), is set
to 0.

Coding Example:

Multiply T by 3: DUP SHL NOP NOP ADD
Multiply by 5: DUP SHL SHL DOP ADD
Multiply by 6: SHL DUP SHL NOP ADD

SHL allows the negative bit, T(31), to be testedha&scarry bit T(32):
CODE CELL* SHL SHL RET

CODEO< (n-f)

SHL

-IF -1 LDI RET

THEN

DUP XOR (0 LDI)

RET

170

SHR Shift Right

Code: 18

Usage Short Instruction
Stack Effects (n--n/2)
Carry Reset to O
Function:

Shift the lower 32 bits in the T register rightdaye bit. Bit T(0) is lost. The sign
bit, T(31), is preserved. The carry bit, T(32)¢lisared.

Coding Example:

CODE 4/ SHR SHR RET

STX Sorewith X Register

Code: 15

Usage Short Instruction

Stack Effects (n--)

Carry Restore from data stack
Function:

Store T into the memory location whose 32-bit adsltis in the X register. Pop the
data stack. The address in the X register is roatifned.

This store instruction is different from the “!"dtruction in FORTH, which uses an
address on top of the data stack.

Coding Example:

I(na--)txstx;
: 2! (da--) tx pushr stxp popr stx ;

171

STXP Sorewith X Register, Auto-Incrementing

Code: 13

Usage Short Instruction

Stack Effects (n--;X:a—atl)
Carry Restore from data stack
Function:

Store T into the memory location whose 32-bit adslis in the X register. Pop the
data stack. = The address in the X register is itheremented by 1 to facilitate the
next memory access. It is most useful in storialg®s to an array in memory.
Coding Example:

See the copying program shown in LDXP.

: 2! (d a--) tx pushr stxp popr stx ;

TX PopT toX Register

Code: 29

Usage Short Instruction

Stack Effects (a--)

Carry Restore from data stack
Function:

Store T in the X register. Pop the data stack. e difiginal contents in the T register
are copied into the X register. This instructioitializes the X register so that it can
be used to fetch data from memory or store datanmeémory.

Coding Example:
c+l(na--) txldx add stx ;

21 (da--) tx pushr stxp popr stx ;
2@ (a--d) tx ldxp ldx ;

172

XOR Bitwise Exclusive OR

Code: 20

Usage Short Instruction

Stack Effects (n1n2--n3)

Carry Exclusive OR n1(32) and n2(32)
Function:

Pop S from the data stack and bitwise exclusivet@®&the T register. All 33 bits
in T are affected.

Coding Example:

To clear T to zero:
DUP XOR cccccc cccccce
To generate a zero in T register:
DUP DUP XOR cccccc cceccc
To generate -1 in T::
DUP DUP XOR COM

s<(nn--t)

2DUP XOR 0<

IF DROP 0< EXIT THEN
-0<3;

XT Push X Register toT

Code: 25

Usage Short Instruction
Stack Effects (--a)

Carry Restore from X
Function:

Copy the contents of the X register to the T regist The original contents in the T
register are pushed onto the data stack. WitiXihand TX instructions, the X
register can serve as a scratch pad to save aoderése contents of the T register.

Coding Example:

:SWAP (n1ln2-n2nl)
pushr tx popr xt ;

:ROT (wlw2w3--w2w3wl)
pushr pushr tx popr
popr xt ;

173

Appendix B:

eP32 eForth Commands

h

' <name> -- Xa Find <name> and leave its execwdress, xa.
- wl w2 -- | Subtract w2 from wl. wl-w2=w3.
w3
! wa -- Store w at a.
ul —u2 Extract least significant digit from uiddeave quotient, u2.
#> w--au Discard w, and leave address and lepfgtiimber held in string
buffer.
#S u--0 Convert u to a number string below PAiffdy.
$" <string>" -a Compile a string literal delinad by “. At run time, leave its
address on stack.
3| -a Run time command of a string literalalze string address, a, ol
stack.
$," <char> -- Compile a character literal.
$,n a-- Compile a name field in header with stdhg.
$COMPILE a-- Compile a word whose name string s.a
$INTERPRET | a-- Interpret a word whose name stisrag a.
(<string>) - Ignore the comment string delimited).
(CALL) a-- Compile a subroutine call to address a.
(parse) b u c -- b U Parse next string delimited by c in buffer b, léngt Length of
delta parsed string is delta.
* nl n2 -- n3| Multiply. n3=n1*n2.
*/ nl n2 n3 --| Leave quotient of (n1*n2)/n3.
ng
*MOD nl n2 n3 --| Leave remainder, nr, and quotient, nq, of (n1*n2)/n
nr ng
, W -- Add w to parameter field of the most mnettedefined command.
. n-- Display signed number with a trailing fita
S <text>" -- Compile a string literal <text>tAun-time display <text>.
S -- Run time command of . ".
. <text>) - Display a string <text>.
.ID xa -- Display name of a command at xa.
.OK - Display system OK message.
R nu-- Display number n right justified in alfl of length u.
.S - Display the contents of data stack.
/ nl n2 —nq| Division. Leave signed quotient of n1/n2.
/MOD nl n2 —nr| Division. Leave signed remainder, nr, and quotieqt,of n1/n2.
ng
: <hame> - Begin a colon command of <name>.
; -- Terminate a colon command.
? a-- Display contents of memory at a.
?DUP w --w w | | Duplicate w if it is not 0. Else no operation.
w
?KEY --ctrue | | Return a false flag if no character is entered fkayboard. Else
false leave valid character and true.
?UNIQUE a—a If string at a is a valid commandptily “redef” message.
@ a--X Replace address a by its contents.
@EXECUTE a-- Execute word whose execution addeessaddress a.
[-- Switch from compilation to interpretation.
[COMPILE] -- Compile command <name> in input stream. It pibes an
<name> immediate command.
\ <text> - Ignore <text> until end of line.
] -- Switch from interpretation to compilation.
"H al a2 a3 —| Process backspace. Decrement caharscter pointer, a3, if it

174

al a2 a4 is greater than buffer address al.
+ nl n2 -- n3| Add nl and n2.
+! wa-- Add w to number at address a.
< nln2 -- True if n1 less than n2. Sighed comparison.
flag
<# -- Start number conversion process.
= nln2 -- True if n1 equals n2.
flag
>B a b -- a+1 | Unpack word string at a to byte string at b. Retf, b+4 and g
b+4 count | count to unpack next word.
>CHAR c—n Convert character c to a valid charaoiele.
>NAME xa -- na | 0| Convert execution address, xa, of a command twaitse field
address. na. If failed, return O.
>R w -- Push top item to return stack for tengpgistorage.
0< n -- flag Return true if n is negative.
1- n-n-1 Decrement.
1+ n—n+l Increment.
2! da-- Store a double integer to address a.
2@ a—d Fetch a double integer from address a.
2DROP d-- Drop a double integer.
2DUP d-dd Duplicate a double integer.
4/ n—n/4 Divide by 4.
ABORT -- Return to terminal interpreter, no emeessage.
ABORT" - Compile an error message. Execute alairtlin time.
abort" <string>“| flag -- If flag is true, abort and display an ermoessage.
ABS n--u Convert n to its absolute value, u.
accept aul--a | Accept text from keyboard into buffer at a, lengfh Return with
u2 a and actual length of text, u2.
AFT al —a2 Start compiling an AFT-THEN structureai FOR-NEXT loop.
AGAIN a-- Terminate a BEGIN-AGAIN loop by compiljna branch to
address a.
AHEAD -a Compile a branch instruction. Leavedtidress on stack to be
resolved later by THEN.
ALLOT u-- Extend u bytes to parameter fieldtod most recent command.
AND wl w2 -- | Logical bit-wise AND.
w3
B> b a -- b+1 | Pack a byte at b into least significant byte ilnarement b.
a
BEGIN -- Start an indefinite loop like BEGIN-AGAINBEGIN-UNTIL or
BEGIN-WHILE-REPEAT.
BL --32 Get ASCII code of a blank or space.
CHARS cu-- Display character ¢ u times on teahin
CMOVE al a2 u -- | Move u bytes starting from address al to memonilsgpat a2.
CODE <name>| -- Define a new primitive comand.
COLD -- First command executed after CPU powers up.
COM -- Assemble a COM machine instruction.
COMPILE - Compile following command to parametietd of currently
compiled word.
CONSTANT W -- Define a constant. At run-time, w is left thre stack.
<name>
COUNT a -- a+1 c | Get one hyte ¢ from address a and increment a.
CR - Display a new line.
CREATE -- Create a new data array with <name>. No patamnfield space is
<name> reserved.
DECIMAL -- Set number base to decimal.

175

DIAGNOSE -- 12 charg Produce a string of “eForthMISemi” to verify prirni
commands.
DIGIT u--c Convert number u to corresponding ASfode.
DIGIT? ¢ base -- u| Convert ASCII code c to its corresponding numbelf u
flag successful, return u and true. If unsuccessfulrmet and false.
dm+ au-—atu Dump u bytes of memory starting dtess a.
DNEGATE d---d Negate a double integer.
do$ -a Run time routine of $. Leave address efftfilowing string
literal.
DOES -- Start compiling an interpreter for a neassl of defining
commands.
DOVAR -- Run time routine for variables.
DROP W -- Discard top of stack.
DUMP au-- Dump u bytes of memory starting atrads a.
DUP W—W W Duplicate top of stack.
ELSE -- Terminate a <true> clause, and startadsef clause in
IF-ELSE-THEN branch structure.
EMIT C-- Display character ¢ on terminal.
ERROR a-- Display an error message at addresd alsrt.
EVAL - Evaluate (interpret or compile) input stre@accepted into
terminal input buffer.
EXECUTE a-- Execute a command whose executioiness is a.
EXIT - Terminate execution of a colon command.
EXPECT au-- Accept input stream into buffer adreds a, length u.
EXTRACT ul base — | Extract least significant digit in ul, with radiase. Return
u2c guotient u2 and extracted character c.
FILL auc-- Fill an array at address a, lengthvith byte c.
find ava -- xa | Search vocabulary beginning at va for a word whnzsgae is at
nalaoO address a. If success, return execution addresanganame field
address of command found. Else return a and flage f
FOR -- Start a FOR-NEXT loop.
FORGET -- Search dictionary for <name> and delete it alhdubsequent
<name> commands from dictionary.
HERE --a Get address of next available dictiphacation.
HEX - Set number base to hexadecimal.
HOLD C-- Add character c to number conversion &uff
IF -- Start an IF-ELSE-THEN branch structure. At time, branch to
ELSE or THEN if top of stack is O.
IMMEDIATE -- Add immediate bit to name of the comnthcurrently under
compilation. An immediate command is executed byiter.
KEY -C Wait for an ASCII character c from theyboard. KEY does not
echo the character.
kTAP bot eot cur| Add a character, c, received from keyboard to gtinterminal
¢ -- bot eot| input buffer. bot is bottom of buffer, eot is enfcbaffer, and cur
cur is pointer to current character in buffer. Prodemskspace.
LITERAL w -- Compile number w as an in-line ligd. At run-time, w is pushed
onto stack.
M* nln2—-d | Double precision multiply, d=n1*n2.
M/MOD dn--nr Floored division. Return both remainder, nr, andtigunt, nq.
ng
MAX nl n2 -- n3| Return n3, the larger of n1 and n2.
MIN nl n2 -- n3| Return n3, the smaller of n1 and n2.
MOD nl n2 -- nr| Modulus, signed remainder of n1/n2.
NAME? a -- xa na || Search dictionary for a command at address actfessful,
a0 return its execution address, xa, and name fieddesd, na. Else

return a with a false flag.

176

NAME> a—xa Convert name field address, a, to ettec address, xa.
NEGATE - Assembler machine instructions to negejpeof stack.
NEXT - Terminate a FOR-NEXT loop. At run timesaement index and
repeat loop until index is 0.
NOT wl -- w2 | Bit-wise one’s complement.
NUMBER? a--n1l|a| Convert a number string at address a to its véflseiccessful,
0 return value n and true; else return a and false.
OK -- Compile source text downloaded from termitaefile buffer,
READBUF.
OR - Assembler OR machine instruction.
OVER - Assembler OVER machine instruction.
OVERT - Make the command last defined visiblertiipreter and
compiler.
PACK$ al u a2 — | Pack a counted string in address al, length utelyffer a2.
a2
PAD -a Get address of a scratch pad area atiotienary of at least 84
bytes.
PARSE c--au Parse out the next string in terhimput buffer, delimited by
character c. Return address a and length of patsad u.
QUERY - Wait for a line of text from keyboard aplhce it in input
terminal buffer. A line is terminated by carriaggurn or up to 80
characters.
QUIT - Return to terminal interpreter, no statlange, no message.
R@ -n Duplicate R register to top.
R> n-- Pop return stack to top.
READ -- Read text file from terminal into file haf, READBUF.
REPEAT - Terminate a BEGIN-WHILE-REPEAT loop.
ROT wl w2 w3 | Rotate third item to top.
-- w2 w3
wl
SAME? al a2 u— | Compare two name strings at al and a2. Returidéritical.
ala2f Return positive value if stringl>string2. Returrgatve value if
(-0+) stringl<string2.
SEE <name> -- Decompile the command <name>.
SEND an-- Upload memory array at address gilen, to host in Intel Hex
format.
SIGN n-- If n is negative, add minus sign to numizmnversion buffer.
SPACE -- Display a space.
SPACES u-- Display u spaces.
str n—au Convert number n to a number striragldtess a, length u.
SWAP - Assembler machine instruction to swap tbgtack.
TAP bot eot cur| Add a character c received from keyboard to stirngrminal
c -- bot eot| input buffer. botis bottom of buffer, eot is enduiffer, and cur ig
cur pointer to current character in buffer.
THEN -- Terminate IF-ELSE-THEN branch structure.
TIB --a Get address of terminal input buffer.
TOKEN -a Get the address of next string parsddbterminal input buffer.
TYPE au-- Display a string of u characterststg at address a.
u. u-- Display unsigned number u with a trajlinlank.
U.R nlu2 -- Display unsigned number ul in a figfldi2 characters.
U< ulu2 —f Unsigned compare. Return true if tl<u
UM* ul u2 —ud | Unsigned double precision multiply. ud=ul*u2
UM/MOD ud u -- ur | Unsigned double precision divide. Leave both reainur, and
uq guotient, ug.
UM+ ul u2 — u3| Double precision add. u3=ul+u2. Return carry also.
carry

177

UNPACK ab--b Unpack a packed string at a totbn& length is up to 255
characters.

UNPACK$ ab--b Unpack a packed string at a t8tling length is up to 31
characters.

UNTIL - Terminate a BEGIN-UNTIL loop structure.

VARIABLE - Define a new variable. At run-time, variableasne> leaves its

<name> address on stack.

WHILE -- Start a true clause in BEGIN-WHILE-REREIoop structure. At
run time, repeat true clause while top of staagkois-zero.

WITHIN uuluh— | Leave true if ul <= u < uh. Else leave false.

flag

WORD c--a Get a string delimited by charactéom the input stream and
leave it as a counted string at address a.

WORDS - Display all words in dictionary.

XOR -- Assembler XOR machine instruction.

178

