CONTROLLER PROGRAMS

FORTH was designed originally as a language or tool to
control instruments or devices through a computer. It
enables the user to send commands to devices and receive
information from them interactively with immediate feedback.
Once the hardware is in place and debugged, software development
is usually very straightforward. Bugs can be spotted quickly
and corrections or modifications can be thoroughly tested.

Using computers in laboratory and industrial environments,
the most often encounted problems are that of interfacing,
i. e., how to hook things to the computer and have them talk to
one another. Using FORTH, we have solved half of the problem
at the computer's end, because all the resources in the computer
are under immediate control.

MEMORY MAPPED 1/0 DEVICE

Computers using memory mapped I1/0 architecture are the
easiest to use, because the regular memory addressing words like
@ and ! can be used to control the I/0 devices. Otherwise one
will have to build a few special I/0 instructions to talk to
the peripheral devices. LSI-11 is a computer with memory mapped
I/0 structure. I/0 interface boards built for this computer
use the top page of memory space to address their internal
registers and buffers, and the bottom page for interrupt
vectoring. Generally each device has one control/status register
and one data buffer register. Writing into the control/status
register (CSR) specifies the function to be performed. Reading
CSR obtains the status of the device. 1/0 data is routed
through the data buffer register.

EXAMPLES OF I/0 CONTROL

Since it is very simple to use the LSI-11 to control the I1/0
boards built for it, it is difficult to find good examples to
illustrate the programming aspects of the interfacing. BHere
I selected four examples dealing with the more popular
types of DEC 1I/0 interface boards. A PROM programmer which
was essentially a memory device, an A/D converter used in an
image scanner, a DMA board for high speed data transfer, and
a 3 axis motorized transport mechanism which I call a robot.

In most cases, the reponse of the I/0 device is much slower
than the computation speed of the computer; therefore, programs
can be written entirely in high level FORTH. 1In a few

cases where speed is important, the critical words were coded
in machine code by invoking the assembler in poly-FORTH.

With & Prom Programmer Board MRV-004 from MDB for the LSI-11
computer, burning Prom's is no morée than moving bytes from one
mefiory location to the other. This program assumés that a set
of mastér prom's are located from octal 140000 to 147777, and
a set of erased prom's are located at 150000 to 157777. Prom's
are of the popular 2716°s.

PCLEBAN Check the erased prom's and make sure all bits are set

DELAY A delay loop inserted after each memory write to the
prom’s to be programmed. ;

SRAM Copy 4096 bytes from octal 140000 to RAM at 40000,
whére data can be modified.

?RAM Cofipare the contents in the mastér prom's and those in
RAM. Report any discrepdncy.

PROGRAMMING PROH

>PROM Move 4096 bytes of RAM data to the prom's to be
programmed. Delay 75 ms after each write operation.

?PROM Compare the contents of the newly programmed proms
with those in RAM from 40000 octal. Report
discrepancies. ,

HELF Helping messages to the operator who has no intereésts

in learning the language but hds to uge thée program.

STORE PROM DATA ON DISE

DATA A constant specifying the starting block number where
PROM data are to be gstored for future ugage.
SAVE The user can store the contents of a 2716 into tvwo

disk blocks. Eight such areas are reserved for this
purpose. Since consecutive bytes must be mapped

to different prom's due to the LSI-11 bus structure,
even bytes are extracted from a single prom and
compressed into disk blocks.

174 LIST

(PROM PROGRAMER)} OCTAL
?CLEAN 160000 150000 DO I & DUP -1
I 10 U.R 10 U.R THEN 2 +LOOP
DELAY (75 MS) 3000 0 DO LOOP ;
>RAM 140000 40000 10000 MOVE ;
?RAM 10600 0 DO
I 40000 + @ I 140000 + € = IF O DROP ELSE I 10 U.R
I @ 10 U.R 140000 I + @ 10 U.R CR THEN 2 +LOOP ;

IF DROP ELSE

-~ H

DECIMAL

175 LIST

(PROM PROGRAMER) OCTAL
>PROM 10000 0

DO I 40000 + € 150000 I + ! DELAY 2 +LOOP ;
: ?PROM 10000 0 DO

..

I 40000 + @ I 150000 + € = NOT IF I 10 U.R I 40000 +

e 10 U.R 150000 I + @ 10 U.R CR THEN 2 +LOOP ;
DECIMAL
HELP CR ." THE PROM PROGRAMMER COMMANDS ARE:"

CR ." >RAM MOVE OLD PROM DATA TO RAM MEMORY."
CR ." ?RAM COMPARE RAM DATA WITH OLD PROM."
CR ." >PROM BURN NEW PROM FROM RAM."
CR ." ?PROM COMPARE RAM DATA WITH NEW PROM."
H :
HELP CR
176 LIST

(PRINT AND STORE PROM DATA, CHT, 2-SEP-83)

60 CONSTANT DATA

OCTAL

SAVE (N ---, SAVE PROM DATA TO N'TH DISK FILE)

DUP 7 > ABORT" NOT ENOUGHT SPACELI!!LI"
CR ." ARE YOU SURE? (Y/N)°" KEY 131 - ABORT" ABORT."
2* DATA + DUP BLOCK 140000 2000 0 DO
OVER OVER C@ SWAP C! 2 + SWAP 1+ SWAP LOOP
2DROP UPDATE FLUSH
1+ BLOCK 144000 2000 0 DO
OVER OVER C@ SwWAP C! 2 + SWAP 1+ SWAP LOOP
2DROP UPDATE FLUSH

’
DECIMAL

PRINT PROM DATA

TAB
TABLE

DELAY
PROM
?CLEAN

1BLOCK
1CHECK
PROGRAM
CHECK

Given a block number, display the byte contents of this
block in tabulated format suitable for printer output.
Display the contents of a prom previously stered in one
of eight disk areas. The dump format is three bytes o
prom address followed by 16 bytes in hex. Each byte

is display in a 3 column field.

The user wanted the data to be displayed in hex while
other operations are done in octal. The HEX ... OCTAL
sequence is inserted for this base switching require-
ment.

ANOTHER PROM PROGRAMMER

This is another prom programmer for the MDB MLSI MRV-004
EPROM module. I used this program to generate my prom based
FORTH computer hosted in the L8I~11 machine. The base address
of the PROM Module is set at octal 100000, and the program to
be committed to proms is store in disk blocks 230 to 237.

75 ms delay loop fer 2716 programming.

Base address of the PROM Module.

Check a range of memory and report any cell not having
all bits set. ' '

Program one block of data into proms.

Compare one block of data between proms and disk.

Move the entire FORTH dictiomary into proms.

Verify that the programmed proms agree with the
original data on disk.

177 LIST

(PRINT AND STORE PROM DATA, CHT, 2-SEP-83)
TAB (BLOCK$# -=--)
BLOCK 1024 ¢ DO I 16 MOD
0= IF CR 10000 0 DO LOOP I 6 U.R THEN
I OVER + C& 3 U.R LOOP DROP ;
: TABLE (N ---)
PAGE ." BLOCK # " DUP .
HEX 2* DATA + DUP TAB
1+ TAB OCTAL ;

178 LIST

(PROM PROGRAMMER, CHT, 2-17-81)
: DELAY 4000 0 DO LOOP ;

OCTAL
100000 CONSTANT PROM
: ?CLEAN (END-ADDR START-ADDR —---)
DO I @ -1 = IF ELSE CR I . I ? THEN 2 +LOOP ;
: 1IBLOCK (PROM-ADDR BLOCK# —-- PROM-ADDR+1024)

2000 0 DO OVER OVER € SWAP ! DELAY 2+ SWAP 2+ SWAP
2 +LOOP DROP ;
1CHECK 2000 0 DO OVER @ OVER €& - IF OVER DUP CR
DELAY DELAY 10 U.R @ 10 U.R DUP @ 10 U.R
THEN 2+ SWAP 2+ SWAP 2 +LOOP DROP ;

DECIMAL

: PROGRAM PROM 238 230 DO I BLOCK CR I . 1BLOCK LOOP DROP
: CHECK PROM 238 230 DO I BLOCK 1CHECK LOOP DROP ;

179 LIsT

-

’

A/D CONVERTER

A/D converter is an important device which allows the compute
to monitor the physical signals from the real world. The LSI-11
computer is supported by off-the-shelf A/D converter plug-in
boards make by DEC and a host of other manufacturers. The one I
used to read analog signals from a mechanical image scanner was
made by Data Translation. As far as the control processes are
concerned, it is compatible with the ADV-11A board made by DEC.

In my experiments, I used 3 input channels. The image data
was on Channel 8. The starting limit switch was monitored by
Channel 12, and the end limit switch was on Channel 11. After
the scanner released the starting switch, 512 image data were
collected, strobed by an external clock. The scanner reverse
its travel at the end switch, moved back hitting the starting
switch and reversed the travel direction again.

A/D INPUT

ADCSR Control Status Register of the A/D converter.
DATA Input data buffer of the A?D converter.

IMAGE Image data register of the image processor.
CBCR Control and Base Coordinate Register of the IP.

SET-CBCR Initialize the IP so that the input data will be
written directly into the image memory.

TA/D Wait until A/D completes a conversion, read data,
right shift it by 4 bits and write into the 8 bit
image memory.

CA/D Similar to TA/D except that the 12 bit input data
is pushed on the data stack. This is used to check
the system functions.

SCANNING THE IMAGE

ARMA/D Set the GO bit in the ADCSR register to initiate an
A/D conversion cycle.

F-~START Select the starting switch as input. Wait for the
closure of this switch and exit when the switch is
released again. This ensures that the scanner has
left the starting position on the forward travel.

F-END Monitor the end switch. Exit when this switch is
closed and again released.
LINES Select the image data input channel and enable the

external clock to trigger the A/D conversion cycle.
After the scanner leaves the starting position, read
512 data points and write them into the IP image
MEmory .

INPUT Acguire 485 lines of image data and £ill a frame of
1P image memory.

180 LIST

(IMAGE SCANNER)

OCTAL

177000 CONSTANT ADCSR 177002 CONSTANT DATA
120000 CONSTANT IMAGE 117600 CONSTANT CBCR

: SET-CBCR 1000 117426 !
100000 CBCR ! 2000 CBCR 2+ | 177400 CBCR 4 + !
64377 CBCR 6 + ! 4020 177000 ! ;

CODE TA/D BEGIN ADCSR TST B 0< END 0 DATA MOV
0 ASL 0 ASL 0 ASL 0 ASL IMAGE 0 MOV NEXT

CODE CA/D BEGIN ADCSR TST B 0< END S -) DATA MOV NEXT
DECIMAL

181 LIST

SCANNING MECHANISM) OCTAL
ARMA/D 1 ADCSR C! ;
F-START 6000 ADCSR ! BEGIN ARMA/D CA/D 7777 AND 2000 > END
BEGIN ARMA/D CA/D 7777 AND 100 < END ;
F-END 5400 ADCSR ! BEGIN ARMA/D CA/D 7777 AND 2000 > END
BEGIN ARMA/D CA/D 7777 AND 100 < END ;

o a0~

: LINES F-START 4020 ADCSR ! 1000 0 DO TA/D LOOP
ADCSR ? CR ;

: INPUT SET-CBCR 746 0 DO LINES LOOP ;

DECIMAL

182 LIST

The DRV~11B bo

{DHMA} inte
directly £

DMA INTERFACE

d

1 is a general purpose direct-memory-—access
> by DEC. It is capable of transferring data
memory to a user device at the rate of

ar
rface mad
rom LSI-1

P (T3

560 KW/sec.

WCR

BAR
CSR

Word count register. 2°'s complement of the word count
is stored here. It is incremented after a transfer.
When it is zero, an interrupt will be generated.

Base address of the memory block to be transferred.
Control-status register to control and menitor the
functions of DMA board.

IDBRR, ODBR Same register address. When written, data is sent

STATUS

INTERRUPT

INPUT

cuTPUT

7DONE

INPUT AND

RAMP
FLAT

?DATA

to the output port. When read, data from the input
port is returned here.

A variable to indicate whether a DMA transfer is
completed or not.

Set the interrupt vector at 124 pointing to BEGIN .
The interrupt routine simply increment STATUS after a
DMA trnasfer is completed. This routine must be
written in codes and can be very elabcorate according
to applications.

Set up the DMA registers for an input block transfer.
512 words will be read into the IDATA disk block
buffer.

Set up registers for output block transfer. 512 words
will be transferred ocut from the ODATA disk block
buffer.

Examine the contents of STATUS and print appropriate
message.

OUuTPUT DATA

Initialize the output ODATA block to a ramp function.
Initialize the output ODATA block to a constant value.
This value is taken from the top of the stack.

Dump the data in the IDATA block buffer. This is used
to examine the results after a DMA input transfer.
Data are displaced in hexadecimal form.

The programming part in using DMA is very simple. The tricky
part is to set up the hardwares so that the right signals

appear at

the right pins at the right time, which is not trivial

nor obvious. Armed with FORTH, I usually can point my finger

to the poor hardware engineer when things don't work as they are
supposed to. It is another matter when I have to do the

myself.

interface

OCTAL

172410
172412
172414
172416
172416

CONSTANT WCR
CONSTANT BAR
CONSTANT CSR
CONSTANT IDBR
CONSTANT ODBR

VARIABLE STATUS
ASSEMBLER
BEGIN STATUS INC

DECIMAL

400 CONSTANT IDATA
401 CONSTANT ODATA

RAMP

2 + 2 +LOOP

(N ===
OVER OVER !

FLAT

?DATA BASE @

(DRV-11B DMA INTERFACE, CHT,

124 INTERRUPT

(DATA INITIATION AND VERIFYING, CHT,
: ODATA BLOCK 1024 0 DO

IDATA BLOCK HEX 1024 DUMP

14-AUG-83)

WORD COUNT REGISTER)
BASE ADDRESS REGISTER)
CONTROL-STATUS REGISTER)
INPUT DATA BUFFER)

OUPUT DATA BUFFER)

P T T S SN

(USER DEVICE STATUS)

200 126 |

(INPUT DATA BLOCK)
(OUTPUT DATA BLOCK)

(DMA TRANSFER, CHT, 14-AUG-83)

OCTAL

: INPUT 0 STATUS | IDATA BLOCK BAR !
-1000 WCR ! 121 CSR ! ;

: OUTPUT 0 STATUS ! ODATA BLOCK BAR !
-1000 WCR ! 141 CSR ! ;

?DONE CR STATUS @ IF ." Done."

ELSE ." Not Yet." THEN ;

DECIMAL

14-AUG~83)
I OVER !
DROP H

ODATA BLOCK 1024 0 DO

2 + 2 +LOOP 2DROP ;

BASE |

- = = - - e
- - - -
- . -
- - . . -
- @
- ,}/{Qfm‘«f@fg{%

ROBOT CONTROL

In our laboratory, there was a very primitive robot, which
consisted of three stepper motor driven stages: a horizontal
stage as the base, a vertical stage mounted on the horizontal
stage, and a rotory stage mounted on the vertical stage. All
the stages can be driven in either forward or backward
directions. The stepper motor controllers accept TTL pulses
to drive the motor in steps.

The LSI-11 computer had a DRV-11 Parallel Interface board
which put out 16 TTL output lines. We used 6 of these lines
to give pulses to the stepper motor controllers. Thus we were
able to move a piece of sample mounted on the rotary stage
with three degrees of freedom. This was quite satisfactory
for our experiments.

THE STEPPER MOTORS

The stepper motors were the Slo-Syn type, 200 steps per
revolution. In the linear stages, the stepper motor was
directly coupled to a 1 mm pitch screw which drives a plate-
form. 1In the rotary stage, the screw drives the plateform
through a fine-toothed cam. The drive ratio is 50 steps for
1 degree.

The stages could be driven at 500 Hz pulse rate from dead
stop. To gain higher speed, the driver had to be slewed, i.e.,
starting at 500 Hz and gradually increasing the rate. They
could be slewed to 3000 Hz rate if the load was not excessive.
I will describe both the constant speed and slewing routines.

CONSTANT SPEED STEPPER CONTROL

DROUT The address of the output buffer in DRV-1l1l board.

MS A delay of 1 mili-second.

DRIVER Variable holding the bit pattern to be given to
the stepper controllers via DRV-11 board.

PULSE Invert the contents of DRIVER and send them to
the stepper controllers. Wait 1 ms, clear the
signals, and wait another 1 ms. If executed in a
loop, active lines specified by DRIVER will be
toggled at th 500 Hz rate.

PULSES Pulse the output lines n times, given n on stack.

CONSTANT SPEED STEPPER CONTROL

HORZ A double integer variable holding the current
horizontal position in number of steps from origin.

VERT A double integer variable holding the current
vertical position in number of steps from origin.

ROTARY & double integer variable holding the current

rotary position in number of steps from origin.
STORAGE An array to store the current positions.

D—-INIT Initialize all the position counters to zero, thus
define the home position or the origin of the
stages.

DRIVE Civen the number of pulses to be sent out to the

stepper controller and the active line patterns
on the stack, send out these pulses.

RAMPING THE STEPPER CONTROLLERS

s Number of dummy loops is specified on the stack,
permitting the pulse width to be varisd.

FASTP Send out n pulses at a high rate of 2000 Hz.

SLOWP Send ocut n pulses at a low rate of 500 Hz.

RAMP Send out 5 pulses at a rate specified by the number
on the stack.

/RAKP In 210 steps, increase the driving pulse rate from
500 Hz to 2000 Hz. Ramp-up the motor.

SRAMP In 210 steps, decrease the driving pulse rate from
2000 Bz to 500 Hz. Ramp-down the motor.

PULSE Drive the stepper motors with n pulses. If n is less

than 420, drive the steppers at the 500 Hz rate. If
n is greater than 420, ramp the pulse rate to 2000 Hz
and drive at this rate. At the end, ramp down to

500 Hz and stop.

KEEP TRACK OF THE ROBOT MOVEMENTS

30 LOAD 31 LOAD Load the double integer extensions.
PHAX The maximum number of pulses that can be handled by
PULSES.

DPULSES The number of pulses are given by a double integer
on the stack. Send out groups of 32767 pulses to
reduce the stack number to less than 32767. Send
the rest of the pulses.

DDRIVE Pulse the stepper controllers by the pattern at top
of stack d times. d is under n on the stack.

DRIGHT, DLEFT, DUPP, DDOWN, DCW, DCCW
Drive the stages right, left, up, down, Cw, Or CCW
by the steps specified by the double integer on the
stack. Update the stage positions to keep track of
the robot movemant.

s}
(3%

120 LIST

(ROBOT CONTROL, CHT, 4/23/81)
OCTAL 167772 CONSTANT DROUT DECIMAL
Ms 50 0 DO LOOP ;

VARIABLE DRIVER (BIT PATTERN TO DRIVE SPECIFIED STEPPER)

: PULSE DRIVER € -1 XOR DROUT ! MS -1 DROUT ! MS ; (500 HZ)
: PULSES (N ===) 0 DO PULSE LOOP ;

: VDR DRIVER ;

VARIABLE HORZ 2 ALLOT VARIABLE VERT 2 ALLOT

VARIABLE ROTARY 2 ALLOT (POSITION COUNTERS)

VARIABLE STORAGE 12 ALLOT (FOR INTERRUPT)

D-INIT g o 2DUP HORZ 2! 2DUP VERT 2!

ROTARY 2! STORAGE 14 ERASE H
DRIVE (PULSE DRIVER --- PULSE) DRIVER ! DUP PULSES ;
121 LIsT

(ROBOT CONTROL, CHT, 4/28/81, WITH RAMPING)
OCTAL 167772 CONSTANT DROUT DECIMAL
: MS (N ---) 0 DO LOOP ; (VARIABLE PULSE WIDTH)
VARIABLE DRIVER (BIT PATTERN TO DRIVE SPECIFIED STEPPER)
PULSE DRIVER € -1 XOR DROUT ! DUP MS -1 DROUT ! MS ;
FASTP (N---) 0 DO 8 PULSE LOOP ; (2000 HZ)
SLOWP (N---) 0 DO 50 PULSE LOOP ; (400 HZ)
RAMP 5 0 DO DUP PULSE LOOP ;
/RAMP 50 42 0 DO RAMP 1- LOOP DROP
: \RAMP 20 42 0 DO RAMP 1+ LOOP DROP
: PULSES (N-~--) ?DUP IF DUP 420 > IF 420 - /RAMP FASTP \RAMP
ELSE SLOWP THEN THEN ;
VARIABLE HORZ 2 ALLOT VARIABLE VERT 2 ALLOT
VARIABLE ROTARY 2 ALLOT (POSITION COUNTERS)
VARIABLE STORAGE 12 ALLOT (FOR INTERRUPT)

~e wo

122 LIST

(ROBOT MOVEMENTS BY DOUBLE INTEGERS, CHT, 4/23/81)

30 LOAD 31 LOAD (32 BIT)
32767 0 2CONSTANT PMAX

DPULSES (D ——-) BEGIN PMAX 20VER D<
IF PMAX D- 32767 PULSES AGAIN DROP PULSES H

DDRIVE (D N --- D) DRIVER ! 2DUP DPULSES ;

: DRIGHT (D ---) 4 DDRIVE HORZ 2@ D+ HORZ 2! H

: DLEFT (D -—=) 8 DDRIVE HORZ 2@ 2SWAP D- HORZ 21! ;
DUPP (D ——=) 1 DDRIVE VERT 2@ D+ VERT 2! H
DDOWN (D ===) 2 DDRIVE VERT 28 2SWAP D- VERT 2! ;
DCW (D -——) 16 DDRIVE ROTARY 2@ D+ ROTARY 2! H
DCCW (D --—) 32 DDRIVE ROTARY 2@ 2SWAP D- ROTARY 2! ;

INTERRUPT THE ROBOT MOTION

SAVE

RESTORE

Save the current robot position in the STORAGE
array. The first number in STORAGE is set to 1,
indicating that the robot motion is being interrupted.

Move the robot back to the position previously
stored in STORAGE. Clear the first number in
STORAGE to zero. However, if the first number in
STORAGE 1is zero already, abort the process because
the robot motion had not been interrupted.

ROBOT POSITION MANAGEMENT

D-INIT

HOME

?ESCAPE

INTERRUPT
XRESET
XNUMBER
XENTRY
XESCAPE

R

ABORT

Initialize the position counters and STORAGE to
zero. Identify the current robot position as HOME.

Return the robot to its home position.

If the consocle had received a Z key, save the current
position counters in STORAGE and then enter the
interrupt state, in which all the normal robot control
commands can be executed to move the robot. Upon
returning from the interrupt state, restore the robot
to the position when interrupt occured.

HANDLER

Clear the data stack.

Modified NUMBER routine. When an error occurs, only
print a '?' on console to avoid aborting back to the
normal state.

Modified text interpreter. Do not abort when an
error occurs, but keep the operation within this loop.
The entry point of the interrupted state. It uses
XENTRY to interpret commands typed in on the console.
Abort the interrupt state and return to the normal
FORTH system by dropping two addresses on the return
stack. If the first number in STORAGE is not 1, don't
do anything, because the system is not in the
interrupted state.

The standard abort command without output message and
also not requiring a flag on the stack.

74

123 LIST

(INTERRUPT SAVE & RESTORE, CHT, 4/23/81)

SAVE (SAVE POSITION IN STORAGE) STORAGE
DUP 2+ HORZ 28 ROT 2! DUP 6 + VERT 2@ ROT 2!
DUP 10 + ROTARY 2€ ROT 2! 1 SWAP ! H

: RESTORE STORAGE DUP € IF DUP 2+ 2@ HORZ 26
20VER 20VER D< IF 2SWAP D- DLEFT ELSE D- DRIGHT THEN

DUP 6 + 2@ VERT 28 20VER 20VER D<
IF 2SWAP D- DDOWN ELSE D~ DUPP THEN
DUP 10 + 2€ ROTARY 26 20VER 20VER D<
IF 2SWAP D- DCCW ELSE D- DCW THEN 0 SWAP |

ELSE DROP 1 ABORT" CAN'T RESTORE!" THEN ;

124 LIST
(HOME THE ROBOT, CHT, 4/23/81)
D-INIT c o0 2DUP HORZ 2! 2DUP VERT 2!
ROTARY 2! STORAGE 14 ERASE ;

HOME (RETURN TO STARTING POSITION)
HORZ 28 DUP 0< IF DABS DRIGHT ELSE DLEFT THEN
VERT 2€ DUP 0< IF DABS DUPP ELSE DDOWN THEN
ROTARY 2€ DUP 0< IF DABS DCW ELSE DCCW THEN
0 DUP 2DUP HORZ 2! 2DUP VERT 21 ROTARY 2! ;

OCTAL
?ESCAPE 177562 @ 177 AND 132 =
IF STORAGE @ IF CR ." CAN'T INTERRUPT!" KEY-START

ELSE SAVE XESCAPE THEN THEN ;

-
.

DECIMAL

125 LIST

(ESCAPE AND REENTRY, CHT, 4/23/81)
CODE XRESET S5 s0 U) Mov S -) CLR NEXT

XNUMBER DUP 1+ Ce 45 = DUP >R +

0 BEGIN SWAP DIGIT IF ROT BASE @& * + AGAIN

ce 32 - IFr ." 2" XRESET THEN R> IF MINUS THEN ;
XENTRY BEGIN -' IF XNUMBER ELSE EXECUTE

?STACK IF ." DATA ERROR " XRESET THEN THEN 0 END ;

XESCAPE BEGIN CR ." OK. TYPE 'R' & CR TO RETURN. "
0 BLK | 0 >IN ! S0 @ 80 EXPECT XENTRY 0 END ;

R STORAGE €@ IF RESTORE KEY-START R> R> 2DROP
ELSE CR ." CAN'T DO IT!" THEN ;
ABORT 1 ABORT" ABORTED!" CR ;

SLEW

CONTROL ROBOT THROUGH KEYBOARD

Enter into a loop. 6 special function keys will
cause the robot to move at slow speed. Ascii 24
code will terminate this loop. The special function
keys on a TEC-70 terminal were used to implement
this control command. Other regular key can be used
by changing the code number in this routine.

126 LIST

DUP
DUP
DUP
DUP
DUP
Dup
24

mn

tonou

SLEW THE ROBOT,
SLEW BEGIN KEY
IF 20

IF
IF
IF
IF
IF

-

1

4/23/81)

0 DRIGHT THEN

DLEFT THEN
DUPP THEN
DDOWN THEN
DCW THEN
DCCW THEN

0 In:_ .“,nxm CH I

ALPHA
SPECIAL FUNCTION GENERATOR 8 BYPASS NUMNERIC
GENERATOR
i ©
7
{
HEMORY HEMORY MEMORY NEMORY
PORT PORT PORT PORT
CONTROL CONTROL CONTROL CONTROL
LSI-1t 4-8BU9] IMAGE
MEMORY MENMORY MEMORY MEMORY ARRAY
COMPUTER INTER}-
H 0 CH 1 (H 2 CH I PROCESSOR
FALCE
T . ! -
| | | |
+ e i
A i 1)
IMAGE DATA BUS

1. Image Processor Architecture

