OVER 1 < ABOR7' *** Class definers need a how many parameter >= 1 ***"

2DUP SIZE @
how_many class_pfa how ‑ many class_size

* MALLOC
how_many class_pfa first‑object_adr ‑​

DUP
>R

RO T
0 DO
class_pfa object ‑ adr ‑​

2DUP CLASS

set pointer to class ‑ pfa in object

DUP <SELF>

set SELF for use by constructors

OVER <CONSTRUCT>

call all of the constructors

OVER SIZE @ + LOOP 2DROP

R>

\ first_object_adr ‑​

R> <SELF>
restore old <SELF> value

END_CLASS
base_class_pfa final_index ^constructor ^destructor ‑‑

word: class
name

PFA >R

hold class‑pfa on return stack

R@ DESTRUCTOR

R@
CONSTRUCTOR

R@
SIZE
final‑index is the object's size

R>
BASE

\ END_CLASS fills in the values of the class_pfa (created by CLASS)

\ We don't have any way to nest class definitions as done in C. \ You must include a POINTER to your subclass object. In the constructor, \ create an instance of this class and store the object_adr in the pointer.

FORML, continued from page 43. order, giving the values 1‑52, with one Joker being 53 and the other 54. The key was the arrangement of the cards and the jokers, and this had to be determined by preagreement, say a Bridge column in the newspaper. Letters were encrypted by adding the value of the letter (a‑z, 1‑26) to the card value, modulo 26. Then the deck was cut and shifted according to where the jokers were located. The method is effective, simple, and inexpensive, but extremely slow (and confusing). Definitly a job his Forth program can do better.

In a third paper, Wil presented "The Most Powerful Editor That I Have Ever Used." The idea is to place a block of text into a large counted array named "Clipboard," and then to throw tiny Forth tools at it to massage the text. The tools were usually set up to process a line of text at a time, and many code examples were provided. It reminded me of Perl, and Wil conceded that you could think of it that way. ("Forth as the better Perl" ‑ makes sense to me.)

Two papers describe using Programmable Logic Devices (PLD) to generate your own hardware. This is the opposite approach that Esson took to the problem of "disappearing hardware." John Hart, of Testra Corporation, programmed an ispLS112032 PLD to provide the interface between an RS232 port on a PC to an RS485 security network. The device con​tained a baud generator, three digital filters, and a state ma​chine. This was an example of work done with an HLDL he wrote in Forth and programmed in Forth. It generates the logic equations actually used to program the device.

Dr. C.H. Ting demonstrated his new P8 Forth processor. This is an eight‑bit bus version of the P16, which has its roots in the MU21, a Forth chip that Moore and Ting developed. This project became viable with the availability of the XS40 development kit from Xess. The on‑board XC4005 FPGA has the advantage of being reprogrammable. The kit also has 32K SRAM, 1/0, workspace, and a parallel port for connection to a

PC. By reducing the data bus to eight‑bits wide, he could fit a P16 core onto the FPGA and still run a modified eForth. As it is, he used only 165 CLB logic blocks, even after adding a simple serial port, leaving 31 logic blocks for future development.

The P8 has the return and data stacks in hardware, and both are only 16 cells deep, so recursion and other stack ex​cesses are out. It uses a long instruction word, with each 16​bit cell containing up to three five‑bit instructions. Only 25 of the 32 possible instructions are implemented in hardware. Calls and jumps contain an 11‑bit address, so you can only address the 2048 cells (4056 bytes) in the current page. To go beyond the page, you have to push a 16‑bit address on the return stack and do a RET instruction.

The P8 project should be of interest to students and ex​perimenters.

John Carpenter talked about "Calling Forth Methods from Java." Because Java usually takes so much time to load, he thought it best to reverse the process and have Java resident. Java can then call Forth modules in the form of Forth.DLLs. SwiftForth was used because it is Windows friendly, and he was able to demonstrate that the idea is workable.

Glen Haydon shared his thoughts on Forth Philosophy in 1999. He echoed the hope of some that the ANS Forth stan​dard doesn't induce stasis in what has always been a dynamic language. He noted that the Internet doesn't seem to have generated the free flow of meaningful ideas on Forth, ideas that would excite newcomers to the power of Forth to im​prove their creativity and productivity.

Later, two papers were presented that dealt with Forth education, The attempt to reach out continues.

Dr. C.H. Ting described how he has developed a simpli​fied and faster version of eForth that students can learn and use, and not be caught up in unnecessary details. He also outlined his Firmware Engineering Workshop, which is a four‑

Forth Dimensions XXI.1,2

77

