

An important requirement is that each lower class is a sub‑
nized as an ISO standard), for example, "13 Document organi​

class of all higher classes. It guarantees that any Open Inter‑
zation" references the section 1.3 of the ANS Forth standard.

preter system belongs to one and only one minimal class.
The references to sections of the Open Interpreter word set speci​

Otherwise it would be possible to consider the same system
fication all begin with 01, and sections of this paper that do not

as a particular case of two different, incompatible architec‑
belong to the Open Interpreter specification are not referenced.

tures (each architecture implies the use of its own protocol,

and the system would be able to implement either the first or

The glossary entries are organized according to ANS Forth

the second protocol, but not both). Two portions of code
rules (2.2.4 Glossary notation). The symbol ???? in the glos​

written for the same system but assuming it to belong to dif‑
sary entry number is used for words that do not have a se​

ferent classes (that is, to implement different protocols) would
quential number assigned by the standard. The sequential

be incompatible, which is absurd. Therefore, out of any two
numbers are a Technical Committee's prerogative. From simi​

classes, one class must be a subclass of the other (one of the
lar considerations, the symbol 01 (from Open Interpreter) is

two protocols will have to include the other).
used in place of the section number.

A system is said to be of Open Interpreter Class N if Class N

prdvides the strongest specification the system can implement.
01 The optional Open Interpreter word set

01. 1 Introduction

One more problem is related to stack manipulations:

Since the very first implementation, Forth allowed access

if the size of a return address is greater than one cell and
to the return addresses on the return stack. Nevertheless, it

unknown, too many stack operators are needed to

was not until the end of 1990s that the problem of portabil​

manipulate with stack items of various sizes;
ity of this technique was solved. The five classes of Open In​

1 4, programs that assume one‑cell return addresses size are
terpreter systems allow programmers to choose the most ad‑ J~

not much portable.
equate degree of compromise between portability and con​

venience of programming.

The solution is to use the return stack for data rearrange​

ment. Return addresses come from the return stack and go to
01.2 Additional terms and notation

1

the return stack. In most cases, changes affect only two top
01.2.1 Definition of terms andclasses of Open Interpreter

elements. Therefore, the following set is enough:
systems

>RR, move to the return stack;
01.2. 1.1 The five classes of Open Interpreter systems

RR> , move from the return stack;

Definition. There are 5 classes of open interpreter Forth

RR@ , copy from the return stack;
systems:

RRDROP , remove from the return stack;

>RR< , exchange the data stack top with the return stack top;

Class 1. Return addresses have the same format as data

in data

addresses, the system uses threaded code which resides

3. The result
memory.

With the Open Interpreter specification, return address

manipulations become portable across Open Interpreter sys‑

Class 2. Return addresses are 1 cell wide, but their represen​

tems. The five classes of open interpreter systems allow pro‑
tation on the return stack may be different from that on the

grammers to choose the most adequate degree of compro‑
data stack. Threaded code resides in data memory, and data

mise between portability and convenience of programming.
stored into threaded code may be accessed by data memory

access operators, such as @ . Both aligned and unaligned ad​

Portability of return address manipulations enables one
dresses may be converted to the return stack representation.

to use the following techniques to develop portable Forth

code running on a variety of platforms:

Class 3. Return addresses are 1 cell wide, their representa​

1. user‑defined (application‑specific) methods of code
tion may be different from that of data addresses. Threaded I

execution, including backtracking;
code may reside in a separate memory, and special words may

2. data execution (data‑driven approach);
be required to access that memory. Both aligned and unaligned

3.user‑defined (application‑specific) control structures,
addresses may be converted to the return stack representation.

including those for the techniques mentioned above;

4. access to parameters stored in threaded code via the

Class 4. Return addresses may be more than 1 cell wide

return stack (it is a widely used and therefore important
and special words may be required to access threaded code~

implementation technique).
Both aligned and unaligned addresses may be converted to

I

the return stack representation. The size of a character is an

i

Among application areas, we should mention distributed
integral multiple of the size of a code memory address 1

I

artificial intelligence and cross‑compilers (tools for program​

I

ming for embedded systems).
Class 5, Return addresses may be more than I cell wide,

and special words may be required to access threaded code.

4. Document organization
Conversion to the return stack representation is allowed only

The document contains references to sections of the ANS
for compiled‑token‑aligned return addresses. The size of one

Forth Standard (ANSI X3.215‑1994 American National Standard
code memory address unit may exceed the size of a character.

for Information Systems ‑ Programming Languages ‑ Forth,

American National Standards Institute, Inc., 1994; also recog‑
Each class is a subclass of the next class. (End of the

32

Forth Dimensions XXI.1,2

definition.)
IP: see interpretation pointer,

A system is said to be of Open Interpreter Class N if Class

N is the strongest specification the system can implement.
reference (to a threaded code fragment): a threaded code

(By definition of Open Interpreter Classes, if a system can
element that identifies the location of another threaded code

implement the functionality of Class N, it also can imple‑
element (and of the threaded code fragment starting from

ment the functionality of Class N+1‑so classes with the
that element). The format of threaded code references is imple​

smaller ordinal numbers have the stronger specifications.)
mentation‑defined. This format may be used to represent the

01.2.1.2 Definition of terms
destination locations of control‑flow operations.

aligned code pointer: a code memory address at which a
return address: a code pointer which usually either a) is the

compiled token or a reference may be located.
run‑time nesting information generated by the threaded code

interpreter when a high‑level definition is called; b) may be

cell‑aligned code pointer: a code memory address at which
placed onto the return stack to let the code interpreter ex​

a data cell may be located. Required to be the same as aligned
ecute a code fragment; c) (rarely) is a code pointer which is, I

code pointer.
or could be, used as, or instead of a return address (in the

sense of the a) and b) items),

code interpreter: the interpreter that processes threaded code,

as specified in 01.3.4 The executable code and the code
threaded code: a) a sequence of threaded code elements; b)

interpreter.
the representation of a program in the form of sequences of

threaded code elements.

code memory address unit: the size of a code memory ad​

dress unit may be different from that of a data memory ad‑
threaded code element: either a compiled token, a reference 1,

dress unit. See: address unit in 2.1 Definition of terms.
to a threaded code fragment, or in‑line data.

code pointer: the address of a threaded code element (or,
threaded code fragment: a sequence of threaded code elements.

which is the same, the address of the threaded code fragment

starting from that threaded code element).
threaded code interpreter: the same as code interpreter.

compiled token: a threaded code element that denotes ex‑
unaligned code pointer: a code memory address, at which

ecution semantics of some procedure. When a compiled to‑
an in‑line data element may be located. A compiled token

ken is processed by the code interpreter, the corresponding
and a reference may be located only at compiled‑token‑aligned

execution semantics are performed. Different compiled to‑
addresses (aligned code pointers).

kens may have different sizes, but the ones generated by the

word TOKEN, all have the same system‑defined size.
01.2.2 Notation

01.2.2. 1 Interpretation stack notation

current code fragment: The code fragment whose compila‑

The interpretation stack notation is:

tion has been started but not yet ended.

(1: before ‑‑ after)
i

The symbol "1:" is the interpretation stack stack‑id. See i: high‑level definition: a definition created by the word : (co‑ 2.2.2 Stack notation. lon) or by the CREATE ... DOES> construct. The execution se‑

mantics of a high‑level definition are implemented using
Advancing IP to the next compiled token (see 01.3.4 The

threaded code.
executable code and the code interpreter) is attributed to I

the threaded code interpreter and therefore is not included

in‑line data (stored into threaded code): data stored into
into the interpretation stack effect.

threaded code. The procedure whose compilation token pre​

cedes in‑line data is responsible for processing these data. The
01.2.2.2 Stored data notation

procedure must also prevent processing of the in‑line data by
cp[<data>
a code pointer cp, at which <data> are stored

the code interpreter, for example, by advancing IP to the com‑
CP+
the code pointer cp advanced by the size of I

piled token next to the data.

data stored at cp

addr[<data>]
address addr at which <data> are stored

interpretation pointer (IP): the pointer to the next com​

piled token to be processed by the code interpreter. More pre‑
00 Additional usage requirements

cisely, the interpreter fetches the compiled token at IP, then

A system that provides either the Open Interpreter In‑Line

advances IP to the next threaded code element, then executes
Data Access word set or the Open Interpreter Threaded Code

the semantics denoted by the compiled token. See 01.3.4 The
Access word set shall provide the Open Interpreter word set.

executable code and the code interpreter.

01.3.1 Data types

interpretation stack: the stack formed by IP (the top) and the

Append table 01.1 to table 3. 1. Two different formats may

return stack (the rest). The interpretation stack contains (1) code
be used to keep code pointers on the data stack and on the

pointers that reflect the currently unfinished procedure calls,
return stack. The data stack format is suitable for the read (or

and (2) data that procedures place onto the return stack. The
read/write) access to the code memory; the return stack for​

top interpretation stack element (IP) is always a code pointer.
mat is suitable for the code interpreter.

Forth Dimensions XXI.1,2

33

Table0l.1 ‑ DataTypes

Symbol
Data type
Size on stack

acp‑r
aligned code pointer (1)
depends on the system's class (3)

acp‑s
aligned code pointer (2)
depends on the system's class (3)

ucp‑r
unaligned code pointer (1)
depends on the system's class (3)

ucp‑s
unaligned code pointer (2)
depends on the system's class (3)

acp
aligned code pointer (4,S)
depends on the system's class (3)

uCP
unaligned code pointer (4,5)
depends on the system's class (3)

CP
code pointer (6,S)
depends on the system's class (3)

Ct
compiled token
none (size in code is implementation‑defined)

ref
reference
none (size in code is implementation‑defined)

/*A (7)
any data type
0 or more cells

(1) in the return stack representation

(2) in the data stack representation

(3) 1 cell (Classes 1‑3); imp I ementat ion ‑defined (Classes 4,S).

(4) the symbols ucp and acp denote, correspondingly, the types ucp‑s and acp‑s on the data stack diagrams and the data types ucp‑r and

acp‑r on the return stack diagrams.

(5) When this symbol appears in both return stack and data stack diagrams suffixed with the same digit, it denotes the same value in the

I

i
two representations. For example, the notation "(cp ‑‑) (R: ‑‑ cp) Move cp from the data stack to the return stack" means for Classes I‑
I

4 "(ucp‑s ‑‑) (R: ‑‑ ucp‑r) Convert ucp‑s to the return stack representation ucp‑r, remove ucp‑s from the data stack and place ucp‑r onto
I

I

I

the return stack".

I
I

1

(6) the symbol cp denotes the data type ucp for Classes 1‑4 and the data type acp for Class S.

(7) Like i *x, j *x, k *x, it may be an undetermined number of stack entries of unspecified type. See table 3. 1.

Table 01.2 ‑ Data Type Relationships

Open

Interpreter
Class 1
Class 2
Class 3
Class 4
Class 5

data type
data type
data type
data type
data type
data type

ucp‑r
=addr
=>X
=>X
unspecified
not exists

acp‑r
=a‑addr
=>ucp‑r
=>ucp‑r
=>ucp‑r
unspecifie

Ucp‑S
=addr
=>addr
=>U
=>i*x
=>i*x

acp‑s
=a‑addr
=>a‑addr
=>ucp‑s
=>UCP‑S
=>ucp‑s

R: Ucp
=ucp‑r
=ucp‑r
=ucp‑r
=ucp‑r
not exists

R: a cp
=acp‑r
=acp‑r
=acp‑r
=acp‑r
=acp‑r

S: U Cp
=ucp‑s
=ucp‑s
=ucp‑s
=Ucp‑s
=Ucp‑s

S: a cp
=acp‑s
=acp‑s
=acp‑s
=acp‑s
=acp‑s

R: CP =ucp‑r =ucp‑r
=ucp‑r

=ucp‑r
=acp‑r

S: cp =Ucp‑s =Ucp‑s
=Ucp‑s

=ucp‑s
=acp‑s

01.3.2 Data type relationships

bits. Each distinct code memory address value identifies ex​

The data type relationships for systems of different classes
actly one such storage element.

are given in table 01.2. The phrase
in the row correspond​

ing to data type i denotes "i is a subtype of j", the phrase "= j"

The set of character‑aligned code memory addresses, ad​

denotes "i is the same data type as j". The notation S: i indicates
dresses at which a character can be accessed, is an implementa​

that the row describes the meaning of the data type symbol i
tion‑defined subset of all code memory addresses. Adding the

on data stack diagrams; analogously, the notation R: i is used to
size of a character to a character‑aligned code memory addiess I

describe the meaning of i on return stack diagrams.

shall produce another character‑aligned code memory address.

See: A.01.3.2 Data type relationships.

The set of compiled‑token‑aligned (aligned) code memory

addresses, addresses at which a compiled token or a reference

01.3.3 Threaded code memory addresses

can be accessed, is an implementation‑defined subset of all

A code memory address identifies a location in the code
code memory addresses. Adding the size of a reference or of a

memory space with a size of one code memory address unit,
compiled token to a compiled‑token‑aligned address shall

which a program may fetch from or store into or transfer
produce another compiled‑token‑aligned address. Code

control to except for the restrictions established in this Stan‑
memory addresses (compiled‑token‑aligned, unaligned) are

dard. The size of a code memory address unit is specified in
also called code pointers (aligned, unaligned).

34

Forth Dimensions XXI.1,2

Table 01.3 ‑ Environmental Query Strings

String
Value data type Constant?
Meaning

OPEN‑INTERP
flag
no
Open Interpreter word set present

OPEN‑INTERP‑EXT

flag
no
Open Interpreter extensions word set present

OI‑DATA
flag
no
Open Interpreter in‑line data access word set present

OI‑DATA‑EXT
flag
no
Open Interpreter in‑line data access extensions word set present

OI‑CODE
flag
no
Open Interpreter threaded code access word set present

OI‑CODE‑EXT
flag
no
Open Interpreter threaded code access extensions word set present

The set of cell‑aligned code memory addresses is an imple‑

The threaded code interpreter repeats the following steps:

mentation‑defined subset of character‑aligned code memory
fetches the compiled token at IP, then advances IP to the next

addresses. The set of cell‑aligned code memory addresses is the
threaded code element, then executes the semantics denoted

same as the set of compiled‑token‑aligned code memory ad‑
by the compiled token. The semantics may imply changing

dresses. Adding the size of a cell to a cell‑aligned code memory
IP. See 01.6.1.0450
01.6.1.0460
01.6.1.1250

address shall produce another cell‑aligned code memory address.
01.6.1.1380 EXIT .

Two representations are used for code pointers: the data

The interpretation stack can contain:

stack format and the return stack one (for Class I systems
9 code pointers that reflect the currently unfinished

they are the same). The return stack representation is the one

procedure calls, and

used by the code interpreter, this format allows to execute
0 data that procedures place onto the return stack.

code. The data stack representation permits address arithmetic

The top interpretation stack element (1P) is always a code

and access to threaded code elements.
pointer.

The code memory address units do not necessarily have

Programs written for Open Interpreter Forth are allowed to

the same size as data space address units. The size of a cell in
change the number and order of interpretation stack

elements.

data space address units may be different from the size of a
Programs written for Open Interpreter Forth are allowed to

cell in code memory address units.
change control flow by changing the interpretation stack.

The size of a reference and the size of a compiled token shall

Programs are allowed to place data which are not threaded

be integral multiples of the size of a code memory address unit.
code fragment addresses onto the return stack, but these pro​

grams shall be written so that such data are never loaded into IR

01.3.4 The executable code and the code interpreter

The executable code used by the Forth code interpreter is
01.3.5 Environmental queries

called threaded code. Threaded code is a sequence of threaded

code elements, each one may be either:

Append table 01.3 to table 3.5.

a compiled token of a procedure (that is, of a definition)

a reference to threaded code (branch destinations are

See: 3.2.6 Environmental queries

represented in this format)

in‑line data
01.4 Additional documentation requirements

01.4.1 System documentation

Only compiled tokens of procedures are processed by the
01.4. 1.7 Implementation‑defined options

threaded code interpreter, the other two types of threaded
0 class of the system;

code elements are processed by procedures. The procedure
0 size and format of code pointers on the data stack and on

compiled immediately before in‑line data and/or reference(s)

the return stack;

shall modify IP to point to a valid compiled token, to pre‑
a whether code space is a part of the data space, whether

vent the code interpreter from accessing them,

code is in a separate memory space;

0 The method of converting from the data stack representa​

The threaded code interpreter (the "inner" interpreter of

tion to the return stack representation (and vice versa);

I

Forth) has:
0 alignment requirements for threaded code elements;

•

a register (IF, the interpretation pointer) that points to
0 whether unaligned addresses may be correctly converted

the next threaded code element to be processed, and

to the return stack representation;

•

a stack (the return stack), to which the interpreter saves
* whether writing to code space is possible at run‑time;

IP when it calls a threaded code fragment, and from
0 environmental restrictions (if any) and additional

which it loads IP exiting the threaded code fragment.

disciplines they impose.

Together, IP and the return stack form the interpretation
01.4.1.2 Ambiguous conditions

stack.

Loading IP with a value which is not a valid compiled

token address in the return stack representation;

Forth Dimensions XXI. 1,2

35

i

0
compiling a word (adding corresponding semantics to
sion word set (specification ver. 2.2, proposed in <this publica​

1

the current definition) when the code memory pointer is
tion>)" shall be appended to the label of any Standard System

not compiled‑token‑aligned;
that provides portions of the wordset‑name extension word set.

0
writing to code space at run‑time;

0
converting an unaligned code pointer to the return stack

The phrase "Providing the wordset‑name extension word set

representation (Class 5 only);
(specification ver. 2.2, proposed in <this publication>)" shall

0
an unaligned code pointer is used where an aligned code
be appended to the label of any Standard System that provides

pointer is required.
all of the wordset‑name and wordset‑narne extension word set.

The phrase "Providing the wordset‑name word set with en​

I

The following specific ambiguous conditions are noted in

the glossary entries of the relevant words:
vironmental restrictions (specification ver. 2.2, proposed in

<this publication>)", or "Providing name(s) from the wordset‑

I "
the value passed to 01.6.3.???? RP! does not correspond
name extension word set with environmental restrictions (speci​

to any valid return stack depth;
fication ver. 2.2, proposed in <this publication>)", or "Pro​

viding the wordset‑name extension word set with environmen​

; 0

01.6.3.???? RP! removes from the return stack some data

i

that control nesting structures, and the program does not
tal restrictions (specification ver. 2.2, proposed in <this publi​

restore these data (see: 01.6.2.???? R‑SAVE‑SYS,
cation>)" shall be appended to the label of any Standard Sys​

01.6.2,???? R‑RESTORE‑SYS);
tem that provides names from the wordset‑name [extension]

an exception frame is removed by 01.6.3.???? RP!;
word set, but imposes additional restrictions on their use.

word not defined via 6.1.1000 CREATE (01.6.1.1250

DOES>);

The phrase "of Open Interpreter Class N (specification ver.

xt passed to 01.6.3.???? >TCODE does not correspond to
2.2, proposed in <this publication>)" shall be appended to

a colon definition;
the label of any Standard System providing the Open Inter​

the destination address is unreachable (01.6.3.???? REF!);
preter word set to indicate its Open Interpreter class.

9
ct has not been stored with TOKEN, or TOKEN! (01.6.3.7777
01.5.2 ANS

TOKEN@, 01.6.3.???? TOKEN+, 01.6.3.???? TOKEN>);

Forth programs

•
the threaded code space pointer is not compiled token‑

The phrase "Requiring Open Interpreter Class N (specifi​

aligned when 01.6.5.???? /, begins execution;
cation ver. 2.2, proposed in <this publication>)" shall be ap​

•
on Class 5 systems, the code memory has not been
pended to the label of Standard Programs that assume the

system to have the Open Interpreter class not higher than N

allocated as a single cell (01.6.5.???? /@);

1 0

I

code memory address is not character‑aligned

1
(01.6.5.???? /C!, 01.6.5.???? /C@);

The phrase "Requiring the wordset‑name word set (specill​

on Class 5 systems, the code memory at ucp has not been
cation ver. 2.2, proposed in <this publication>)" shall be ap​

pended to the label of Standard Programs that require the

1
allocated as a single character (01.6.5.???? /C@).

system to provide the wordset‑name word set.

01.4.1.3 Other system documentation

The phrase "Requiring name(s) from the wordset‑name Ex​

*

the structure of executable code;
tension word set (specification ver. 2.2, proposed in <this

*

how control structures are implemented;
publication>)" shall be appended to the label of Standard

9
environmental restrictions, if any, and programming
Programs that require the system to provide portions of the

disciplines required in this connection.
wordset‑name Extension word set.

01.4.2 Program documentation

The phrase "Requiring the wordset‑name Extensions word

‑
the class of Open Interpreter required by the program;
sets (specification ver. 2.2, proposed in <this publication>)"

whether program writes to code memory at run‑time;
shall be appended to the label of Standard Programs that re​

(optional) environmental restrictions which the system
quire the system to provide all of the wordset‑name and word​

that runs the program is allowed to have.
set‑name Extensions word sets.

0/. 5 Compliance and labeling
01.6 Glossary

Through the section 01.5, the symbol wordset‑name denotes
01.6.1 The Open Interpreter words

one of the following word sets: the Open Interpreter word set,
01.6.1,0450
"colon"
01

the Open Interpreter Threaded Code Access word set, the Open

Interpreter In‑Line Data Access word set; the symbol N denotes

the Open Interpreter class number of the system.
Replace the specification 6.1.0450 : with the following one:

(C: "<spaces>name' ‑‑ colon‑sys)

01.5.1 ANS Forth systems

The phrase "Providing the wordset‑name word set (specifl‑

Skip leading space delimiters. Parse name delimited by a

cation ver, 2.2, proposed in <this publication>)" shall be ap‑
space. Create a definition for name, called a "colon defini​

pended to the label of any Standard System that provides all
tion". Enter compilation state and start the current defini​

of the wordset‑name word set.
tion, producing colon‑sys.

i

Fhe phrase "Providing name(s) from the wordset‑name exten‑

The execution semantics of name will be determined by

36

Forth Dimensions XXI.1,2

the words compiled into the body of the definition. The cur​

rent definition shall not be findable in the dictionary until it 01.6.1.1250 DOES> "does"
01

is ended (or until the execution of DOES> in some systems).

The code space pointer is aligned when : finishes execution.
Replace the specification 6.1.1250 DOES> with the following:

name Initiation: 1 : cpl ‑‑ cpl acp2
Interpretation: Interpretation semantics for this word are

undefined.

Push the current value of II` onto the return stack and

load IP with acp2, the address of the threaded code fragment Compilation: (C: colon‑sysl ‑‑ colon‑sys2)

in the name's body, thus transferring control to the body of

the definition.
Append the run‑time semantics below to the current defi​

nition. Whether or not the current definition is rendered

name Execution: (i*x ‑‑ j*x I: k*x cpl ‑‑ 1*x acp3
findable in the dictionary by the compilation Of DOES> 15

implementation defined. Consume colon‑sysl and produce

Perform the initiation semantics of name. The rest of ex‑
colon‑sys2. Append the initiation semantics given below to

ecution semantics, and the stack effects are due to the words the current definition.

compiled into the body of the definition. A compiled token

must be located at the code memory address acp3. The sym‑ Run‑time: I: acpl cp2 ‑‑ acpl

bols i*x andi*x represent arguments to and results from name,

respectively. The symbols k*x and 1*x represent changes on
Replace the execution semantics of the most recent defi​

the return stack.
nition, referred to as name, with the name execution seman​

tics given below. Transfer (return) control to the (calling)

Note. If the optional Locals word set is present, the elements
threaded code fragment specified by acpl. An ambiguous con​

of the return stack are unavailable after declaration of locals.
dition exists if name was not defined with CREATE or a user​

Nevertheless, after declaration of locals the top return stack ele‑ defined word that calls CREATE.

ment shall be an address to which EXIT may transfer control.

name Initiation: a‑addr I : cp3 ‑‑ cp3 acp4

See: 6.1.0450 :, A.0I.6.1.0450 :, RFI 0005 Initiation se​

mantics.
Place name's data field address on the stack. Push the cur​

rent value of IP onto the return stack and load IP with acp4,

01.6.1.0460
"semicolon"
01
the address of the threaded code fragment that follows DOES>

Replace the specification 6.1.0460 ; with the following

which modified name, thus transferring control to the DOES>

one:
part of that definition.

Interpretation: Interpretation semantics for this word are

name Execution: (i*x ‑‑ j*x
I: k*x cp3 ‑‑ 1*x acp5

undefined.

Perform the initiation semantics of name. The rest of ex​

Compilation: (C: colon‑sys ‑‑)
ecution semantics, and the stack effects are due to the words i

compiled after the DOES> which modified name. At the code

Append the run‑time semantics below to the current defi‑
memory address acpS a compiled token must be located. The

nition. End the current definition, allow it to be found in the
symbols i *x and j *x represent arguments to and results from

dictionary and enter interpretation state, consuming colon‑
name, respectively. The symbols k *x and 1 *x represent changes

sys. If the data‑space pointer is not aligned, reserve enough
on the return stack.

data space to align it.

See: A.6.1.1250 DOES>, 01.6.1.0450 :, A.01.6.1.0450

Run‑time:
1 : acpl cp2 ‑‑ acpl
RFI 0003 Defining words etc., RFI 0005 Initiation seman​

tics.

Transfer control to the code fragment specified by acpl.

01.6.1.1370 EXECUTE

CORE

See: 6.1.0460
A.01.6.1.0460
01.6.1.0450
i*x xt ‑‑ j*x) (I: k*x ‑‑ 1*x

01.6.1.1380 EX[T .

Remove xt from the stack and perform the semantics iden​

01.6.1.???? >RR
"to‑double‑r"

tified by it. Other stack effects are due to the word EXECUTEd.

(cp ‑‑) (R: ‑‑ cp)

01
The stack effect of the executed word is assumed to be:

Move cp from the data stack to the return stack, convert‑
i*x ‑‑ 1*x) (I: k*x ‑‑ 1*x)

ing it to the return stack format. On Class 1 systems, >RR is
See: 6.1.1370 EXECUTE, 01.6.1.???? RUSH.

equivalent to >R .

01.6.13??? >RR<
"to‑double‑r‑and‑back" 01
OL6.1.1380 EXIT
01

(cpl ‑‑ cp2) (R: cp2 ‑‑ cpl)

(1: acpl cp2 ‑‑ acpl)

Exchange cpl at the data stack top with cp2 at the return
Replace the specification 6.1.1380 EXIT with the following:

stack top, changing their representation. For Class 1 ‑ Class 3

systems, >RR< is equivalent to RR> swAP >RR.
Transfer control to the code fragment specified by acpl.

Forth Dimensions M. 1,2

37

~01.6.13??? RR>
"double‑r‑from"
01
Classes 1‑3 this word is equivalent to @ .

(‑‑ cp) (R: cp ‑‑)

Move cp from the return stack to the data stack, convert‑
01.6.23??? RADDR!
"r‑addr‑store"
01‑EXT

ing it to the data stack format. On Class 1 systems, RR> is

cp a‑addr

equivalent to R> .

Store the return address cp at a‑addr. For systems of Classes

01.6.1.???? RR@
"double‑r‑f etch"
01
1‑3 this word is equivalent to ! .

(‑‑ cp) (R: cp ‑‑ cp)

01.6.23??? RADDR+
"r‑addr‑plus"
01‑EXT ~

Copy cp from the return stack top to the data stack, con‑

addrl‑‑‑addr2)

1

verting it to the data stack format for code pointers. On Class

Add the size in address units of a code pointer to addrl,

1
1 systems, RR@ is equivalent to R@ .

giving addr2. For systems of Classes 1‑3 this word is equiva‑ ~

lent to CELL+

01.6.13??? RRDROP
"double‑r‑drop"
01

(‑‑) (R: cp ‑‑)

OL6.23??? RADDR‑
"r‑addr‑minus" 01‑EXT

1

Remove cp from the return stack. On Class 1 ‑ Class 3 sys‑
(addrl ‑‑ addr2)

terns, RRDROP is equivalent to R> DROP,
Subtract the size in address units of a code pointer from ~

addrl, giving addr2. For systems of Classes 1‑3 this word is

01.6.12??? RUSH
01
equivalent to the phrase 1 CELLS

(i*x xt ‑‑ j*x) (1: k*x cpl ‑‑ 1*x)

Remove the top interpretation stack element cpl, and then
OL6.2.M? RP@
"r‑p‑fetch"
OI‑EXT

execute xt, that is, remove xt from the stack and perform the ‑‑‑X)

1

semantics identified by it, as with EXECUTE . Other stack ef‑
Return a system‑dependent value identifying the current

fects are due to the word executed. The stack effect of ex‑
depth of the return stack. A Standard program may pass this

ecuted xt is assumed to be:
value to 01.6.22??? RP! or compare for equality to another

1: k*x ‑‑ 1*x such value.

See 01.6.1.1380 EXIT, 6.1.1370 EXECUTE, 01.6.1.1370 OL6.23??? RP!
"r‑p‑store" OPEXT

EXECUTE, A.01.6.13??? RUSH. (xl ‑‑) (R: i*x ‑‑ j*x)

Set the return stack depth to be the one specified by xl. If

01.6.2 The open interpreter extension words
the new stack depth is greater than the old stack depth, the

1

contents of the newly allocated return stack elements are un‑

01.6.22??? R‑RESTORE‑SYS
"r‑restore‑sys"
OPEXT
defined. An ambiguous condition exists if xl does not corre‑

1
(‑‑) (R: n
xl n ‑‑)
spond to any valid return stack depth. An ambiguous condi‑

' X

Restore implementation‑dependent data xn ... xl about tion exists if the return stack contains data that control nest‑

enclosing structures.
ing structures and the program does not restore such data.

An ambiguous condition exists if an exception frame is re​

See: A.01.6.2.???? R~SAVE‑SYS, 01.6.23??? R‑SAVE‑SYS,
moved by RP!.

1
01.6.22??? RP! .

See: OL 6.22??? R‑ SAVE ‑ sys, A. 01.6.22??? R‑ SAVE ‑S YS,

01.6.2.???? R‑SAVE‑SYS

r‑save‑sys"
01‑EXT
01.6.2. ????R‑RESTORE‑SYS, 01.6.2.???? RP@.

R: ‑‑ xn
xl n)
1

Save implementation‑dependent data on the return stack.

01.6.3 The Open Interpreter threaded code access words
i

These data contain information about enclosing structures

which (information) may be lost when a non‑local exit is per‑

01.6.32??? /ALLOT
slash‑allot"
01‑CODE

formed with the help of W. This information about enclos‑

n ‑‑)

ing structures (more precisely, the system copy of this infor‑

Calculate m, the amount of code memory address units

mation) does not change when a threaded code fragment is

enough to store n data memory address units. If m is greater

called or exited, or when values are placed onto or removed

than zero, reserve m code memory address units. If m is less

from the return stack.

than zero, release W address units of code space. If m is zero,

leave the code‑space pointer unchanged. If the code‑space

See: A.01.6.2.???? R‑SAVE‑SYS, 01.6.23??? R‑RESTORE‑
pointer is aligned and n is a multiple of the size of a compiled

~
SYS, 01.6.22??? RP!, 01.6.2.???? RP@.

token or of a reference when /ALLOT begins execution, it will

01.6.22??? COPY~
U

remain aligned when /ALLOT finishes execution.

copy‑to‑double‑r"
01

1

(cp ‑‑ cp) (R: ‑‑ cp)

See 01.6.53??? /ALLOT .

Copy cp from the data stack to the return stack, convert‑

ing the copy to the return stack format. For Classl ‑ Class3
01.6.33??? /HERE
slash‑here"
01‑CODE

systems, COPY~ is equivalent to DUP >RR.

‑‑ ucp)

ucp is the code memory space pointer.

0.1.6.22??? RADDR@
"r‑addr‑fetch"
01‑EXT

a‑addr ‑‑ cp)
01.6.33??? >TCODE
"to‑t‑code"
01‑CODE

Fetch the code pointer cp stored at a‑addr. For systems of

xt ‑‑ acp

38
Forth Dimensions XX1.1,2

I

Return the address acp of the threaded code fragment
01.6.3.???? TOKEN>
"token‑from"
01‑CODE

which is called when the colon definition identified by xt is

(acp[ct j ‑‑ acp+ xt)

executed, An ambiguous condition exists if xt does not corre‑
Decode the compiled token at acp and return the address of

spond to a colon definition.

the next threaded code element acp+, and the execution to​

ken xt of the procedure whose compiled token ct is stored at

01‑6.3.???? REF!
"ref‑store"
OI‑CODE
acp. An ambiguous condition exists if ct has not been stored

acpI acp2 ‑‑)

at acp with TOKEN, or TOKEN!. The word TOKEN> is equiva​

Store a reference to acpl at acp2. After execution of this
lent to the phrase >RR RR@ TOKEN+ RR> TOKEN@.

word, the reference at acp2 points to acpl. The size of the

modified code memory area may be calculated with the phrase
01.6.3.???? TOKENS

01‑CODE

1 REFS . An ambiguous condition exists if the destination

(nl ‑‑ n2)

address is unreachable. The address at which the reference is
n2 is the size in data space address units of n1 compiled to​

located and the address that follows it shall be always reach‑
kens allocated with the word TOKEN,

able.

01.6.4 The Open Interpreter threaded code access exten‑

01.6.3.???? REF+
ref‑plus"
01‑CODE
sion words

acp11 ref.acp2 I ‑‑ acpl+)

I

Advance acpl by the size of a reference.

None.

01‑6.3.???? REF‑
ref‑minus"
OI‑CODE
01.6.5 The Open Interpreter in‑line data access words

acpl ‑‑ acp2

i

Decrease acpl by the size of a reference.
01.6.5.????
"slash‑store" 01‑INLINE

(x acp

01.6.3.???? REF@
"ref‑fetch"
01‑CODE
Store one‑cell data x at acp. On Class 1 systems, this word is

acpl[refacp2 I ‑‑ acp2

equivalent to the word

Return acp2, the address to which the reference at acpl

points.
01.6.5.???? /+
"slash‑plus"
01‑INLINE

(n ucpl ‑‑ ucp2)

01.6.3.???? REFS
01‑CODE
Calculate m, the amount of code memory address units

i
(n1 ‑‑ n2)
enough to store n data memory address units. Add m to ucp I.

n2 is the size in data space address units of n1 references. For systems of Classes 1 and 2 this word is equivalent to + .

01.6.3.???? TOKEN!
"token‑store"

OI‑CODE
01.6.5.???? /1
'(slash‑comma" OI‑INLINE

xt acp

X

Store a compiled token of the procedure identified by xt to

Reserve one cell of threaded code space and store x in the

the threaded code element located at acp. The compiled to‑

cell. If the threaded code space pointer is compiled token​

ken may be retrieved by the word TOKEN@ or executed with

aligned when /, begins execution, it will remain compiled

the code interpreter. The size of the modified code memory

token‑aligned when /I finishes execution. An ambiguous

1

area may be calculated with the phrase I TOKENS

condition exists if the threaded code space pointer is not com‑ ,

piled token‑aligned when /, begins execution,

01.6.3.???? TOKEN,
"token‑comma" 01‑CODE

Xt

01.6.5.???? /@
"slash‑fetch" 01‑INLINE

Add a compiled token of the procedure identified by xt to the

(acpt x I ‑‑ x

current threaded code fragment. The compiled token may be
Fetch the one‑cell literal data x located at acp. On Class I

executed with the code interpreter, or retrieved with the word
systems, this word is equivalent to the word @ . On Class 5

TOKEN@ I or changed with the word TOKEN! . The size of the
systems, an ambiguous condition exists if the code memory

added compiled token may be calculated by the phrase
at ucp has not been allocated as a single cell.

I TOKENS.

If return addresses are one‑cell wide and code memory is data

01.6.3.???? TOKEN@
"token‑fetch"
01‑CODE
memory, and if alignment requirements for compiled tokens

(acp[ct I ‑‑ xt)

and data memory cells are different (that is, aligned code

Decode the compiled token ct at acp and return the execu‑
pointers are not aligned addresses), the system can imple​

tion token xt of the procedure which semantics (compilation
ment only Class 3.

token ct) is stored at acp. An ambiguous condition exists if ct

has not been stored there with TOKEN, or TOKEN!

01.6,5.???? /ALIGN
"slash‑align" OI‑INLINE

01.6.3.???? TOKEN+
"token‑plus"
01‑CODE
If the code‑space pointer is not aligned, reserve enough space

(acpt ct I ‑‑ acp+)

to align it.

Increment acp by the size of the compiled token ct at acp,

returning the address of the next threaded code element. An
01.6.5.???? /ALIGNED
"slash‑aligned" 01‑INLINE

ambiguous condition exists if ct has not been stored at acp
(ucp ‑‑ acp)
I

with TOKEN, or TOKEN!
acp is the first aligned code pointer greater than or equal to ucp.

Forth Dimensions XXI.1,2
39

01.6.5.???? /ALLOT
"slash‑allot" OI‑INLINE
01. 6.6 The Open Interpreter in‑line data access extension

Calculate m, the amount of code memory address units
words

I

enough to store n data memory address units. If m is greater

than zero, reserve m code memory address units. If m is less
01.6.6.???? //SWAP
"double‑slash ‑swap"
01 EXT

than zero, release Iml address units of code space. If m is

(ucpl ucp2 ‑‑ ucp2 ucpl)

zero, leave the code‑space pointer unchanged. If the code‑
Exchange ucpl and ucp2 . For Class I ‑ Class 3 systems, this

space pointer is aligned and n is a multiple of the size of a cell
word is equivalent to swAP. For Class I ‑ Class 4 systems, this

when /ALLOT begins execution, it will remain aligned when
word is equivalent to >RR >RR< RR>.

/ALLOT finishes execution. If the code‑space pointer is char​

acter aligned and n is a multiple of the size of a character
01.6.6.???? /XSWAP

"slash‑x‑swap"
01 EXT

when /ALLOT begins execution, it will remain character

(UcP X ‑‑ X UcP)

aligned when /A.LLOT finishes execution.
Exchange ucp and x (x is at the stack top). For Class 1 ‑ Class

3 systems, this word is equivalent to SwAP .

See 01.6.3.???? /ALLOT, A.01.6.5.???? /ALLOT.
01.6.6.???? X/SWAP

"x‑slash‑swap"
01 EXT

01.6.5.???? /C!
slash‑c‑store" OI‑INLINE

(X UCP ‑‑ UCP X)

(c UcP ‑‑)

Exchange x and ucp (ucp is at the stack top). For Class I

Store character c at ucp. When character size is smaller than
Class 3 systems, this word is equivalent to SWAP .

cell size, only the number of low‑order bits corresponding to

character size are transferred. On Class 1 systems, this word

is equivalent to the word C! . An ambiguous condition exists

I I

if ucp is not character‑aligned.

1
01.6.5.???? /C@
"slash‑c‑fetch" 01‑INLINE
A. 01 The optional Open Interpreter Wordset
i

ucp[C
C

A.M. I Introduction

Fetch the character literal data located at ucp. An ambiguous

condition exists if ucp is not cha racter‑ aligned. For Class 1
A.01.2 Additional terms and notation

I
systems, this word is equivalent to C@ . On Class 5 systems,

i

I

A.01.2.1 Definition of terms and classes of Open Interpreter

an ambiguous condition exists if the code memory at ucp has

I

systems

not been allocated as a single character.

A.01.2. 1.7 The five classes of Open Interpreter systems

01.6.5.???? /CELL+
"slash‑cell‑plus"
OI‑INLINE

I

Class 5. It is possible that real Class 5 systems will not be

(ucpl ‑‑ ucp2)

I

Advance ucpl by the size of a cell. For Classl and Class 2 able to support the Open Interpreter Data Access and Code

systems, this word is equivalent to CELL+ .
Access word sets without environmental restrictions. If hard

ware does not permit unaligned code pointers to be stored as

01.6.5.???? /C,
"slash‑c‑comma"
01‑INLINE
return addresses, the executable code memory space is most i

char
likely larger than the readable code memory space. For ex‑

Reserve space for one character in the threaded code space ample, code memory may consist of 64K 16‑bit words, but

and store char in the space.

only the first 32K words may be accessed as 64K read‑only

bytes. In this situation, the full implementation of the code

01
memory data access functionality is just not possible.

01.6.5,???? /GET
slash‑get"
01‑INLINE

(addr u ucp ‑‑)

If u is greater than 0, fill the u data space address units at addr

This wordset does not attempt to fully support the Class 5

with the contents of the corresponding amount of consecutive
systems; instead, it suggests an approach that enables the pro​

threaded code space address units at ucp. For systems of Classes
grammer, given a Class 5 system with some kind of environ​

I and 2, this word is equivalent to the phrase ROT ROT MOVE.
mental restrictions, to develop a wordset that will work both

on Class 5 systems with this kind of restrictions and on sys‑

01.6.5.???? /HERE
"slash‑here"
01‑INLINE
tems of lower classes.

See 01.6.3.???? /HERE .

In general, it may be recommended to write new code for

01.6.5.???? /PUT
"slash‑put"
01‑INLINE
at least Class 3; Class 5 is probably not worth care unless there

(addr u ucp ‑‑)

is a perspective of porting code to a Class 5 system.

Calculate m, the amount of code memory address units A.01.2.1.2 Definition of terms enough to store n data memory address units. Fill the m code A.01.2.2 Notation memory address units with the contents of n data memory A. 01.2.2. 1 Interpretation stack notation

address units at addr.
A word having the return stack effect

(R: i*x ‑‑ j*x)
I

is assumed to have the following interpretation stack effect:

(1: i*X CP ‑‑j*x CP)

and vice versa, only words that do not change IP, the top

40
Forth Dimensions XXI.1,2

[image: image1.png]

