we have been asked for), and the UDPBUFF is set up as the address to read the data into. We again set up a retry counter to 20, and begin attempts to read the data with iBMOVE>?. If errors are indicated, we decrement our counter and try again (and again, if we exhaust the retries we must indicate an Er​ror! to the system). If the move from the ill was successful, we then CMOVE the data from the UDPBUFF to the final desti​nation address. These words are used by simply writing:

Address iBAddress Number iBMOVE

to write data to the ill

Address iBAddress Number iBMOVE>

to read data from the ill

6. Example Application‑iBak, Wars, 113Arrays...

As an example of an application using the above inter​face, Jarrah Computers have used an ill as a backup memory for data used by a control system. The only difficulty of imple​menting this is that we now need two different references to the same variable (array, etc.)‑its address in RAM and its address (page‑based) in the ill, which we shall call the iBak in this application. To overcome this, a few simple Forth words solve the problem.

To begin with, we make a note of the starting RAM ad​dress of the backed‑up variables (iBAKram), and declare the starting address of the iBak (iBAKstart). Also, when we have reached the end of declaring the backed‑up variables, we can calculate the total size of the area used (iBAKsize). We will be storing 29‑byte (29 is called iBDATA) chunks of RAM into iB pages of 32 bytes (32 is called iBPAGE). This means that, to back up even a single byte, the entire 29‑byte page will be written from memory into the ill. The following table summarises the correlation between RAM addresses and iB adresses.

RAM Adresses

ill Page

BASE Address
Range

iBAKram
.. (to+28)
iBAKstart

iBAKram+ iBDATA
..(to+28)
iBAKstart+iBPAGE

iBAKram+2*iBDATA
..(to+28)
iBAKstart+2*iBPAGE

etc.

Note that the RAM addresses are proceeding in steps of 29 (iBDATA), while the iB addresses are proceeding in steps of 32 (iBPAGE). This complexity is part of what we are trying to hide here! The RAM addresses in the left‑hand column repre​sent base addresses which correspond to pages in the ill​any RAM address between a base address and the base ad​dress+28 will use the base address, and a count of 29, in reads from, and writes to, the iBak.

To implement our interface, we develop some utility words:

A> PG takes a RAM address and returns a base RAM address which corresponds to the start of the associated iB page.

Ac> PG S takes a RAM address and count, and returns the base of the starting page, the base of the ending page, and a count of the number of ill pages consumed by the original count. As the interface to the ill is via arrays (i.e., address count), the job of this word is to work out whether the RAM array crosses any iB page boundaries, and thus requires mul​tiple page accesses.

I

Forth Dimensions XXI.1,2

For example, if a two‑byte variable occupies the last byte of one iB page and the first byte of the next ill page, Ac> PG S will return the base address of the first page, the base address of the second page, and a count of two. If the two‑byte vari​able occupies two successive bytes of one iB page, then, after AC>PGS, the start and end page base addresses will be the same, and the count will be one.

The last functional is iBPAGES, used in both iBakMOVE and iBakMOVE>, whose job is to provide the correct argu​ments for either iBMOVE Or iBMOVE>, as well as leave on the stack the data to calculate the next iteration's arguments. iBPAGES takes an address and count on the stack, and leaves the address+29 (ready for the next page, if there is one), the count‑1 (this number being zero is taken as termination), and then the original address, the iB page (calculated from the address), and the count of 29 (iBDATA), which are used as a set of three by either iBMOVE or iBMOVE>.

With these functionals, we can construct the final words iBakMOVE and iBakMOVE>. For both words, we use Ac>PGS to calculate our looping parameters, and then begin a loop of:

iBPAGES iBMOVE
(or iBPAGES iBMOVE>).

The phrase 0 , Y LDD, 0 = UNT I L, non‑destructively tests the top of stack (which holds the decrementing count), so that the loop continues until the count is zero. Finally, we drop the two remnants from the stack. So we can use these words as follows:

Address Count iBakMOVE

to write data to the iBak

Address Count iBakMOVE>

to read data from the iBak

Note that we don't need to know the associated il3ak ad​dresses or whether the array wraps over between pages‑the iBakMOVE words do all of this work for us! We can move the entire array to and from the iBak with the following phrases:

SUB: RAM>iBAK

;SUB

SUB: iBAK>RAM

;SUB

iBAKRAM iBAKSIZE iBakMOVE

iBAKRAM iBAKSIZE iBakMOVE>

To automatically back up any variables as we write to them, we could easily develop, say:

SUB: C!Bak (n A ‑‑) TUCK C! 1 iBakMOVE ;SUB SUB: !Bak (n A ‑‑) TUCK ! 2 iBakMOVE ;SUB

53

\ StartUp ‑ Compilers

HEX

ASM DEFINITIONS 5000 CONSTANT ROMBASE

ROMBASE ROMSIZE + CONSTANT ROMEND

EMULATE!

DCE 13:05 03.02.98

2000 CONSTANT ROMSIZE

TARGET
IF 0 ROMSIZE ‑ THERE ‑
ELSE 0
THEN dA !

: RAMBASE TARGET
IF 2000
ELSE ROMBASE 1800 ‑
THEN;

RAMBASE
RAMPTR

ROMBASE 40 + (RegsArea) TDP

StartUp ‑

HEX

B02E CONSTANT SCSR

7E CONSTANT JMPop

RamLocation3, Lines

CVAR OUTJMP VAR STDOUT CVAR STOPS

08 RARRAY #$

1

B02F CONSTANT SCDR

(Formatting NumberStrings)

VAR LOOPTR
LoopPointer ‑ i.e. Counter)

VAR LOOPND
LoopEnd
‑ i.e. Limit)

\ StartUp ‑ Primitives

SUB:
wait
BEGIN,
B CLR, BEGIN,
B DEC, 0= UNTIL,

.A DEC, 0= UNTIL, ;SUB

THERE ROMSIZE 42 ‑ FF FILL

DCE 15:06 06.05.99

(OutPutRedirect)

Errors that cause STOP!)

DCE 13:04 13.05.99

SUB:
OUT
OUTMP JMP, ;HC

#OUT
LDB, OUT

SUB: PSHD
DEY,
DEY, 0
Y STD, ;SUB

SUB: PSHB
A CLR, DEY, DEY,
0
Y STD, ;SUB

CPUSH
LDB, PSHB ;

PUSH
LDD, PSHD ;

SUB:
POPD
0
y
LDD,
INY,
INY, ;SUB

SUB:
OVER
2
Y
LDD,
PSHD
;SUB

SUB:
SWAP
0
y
LDD,
2
Y LDX, 0 Y STX, 2 Y STD, ;SUB

SUB:
NIP
POPI)
0
y STD,
;SUB

SUB: lit
PULX, (X) LDD, INX, INX, PSHX, PSHD ;SUB

: LIT
lit ' ;
(n ‑‑ \ Compile n as Literal)

SUB: 2DROP
INY, INY, INY, INY, ;SUB
n n

SUB: DROP
INY, INY, ;SUB
(n

'S 2DROP DUP CONSTANT POP2 4 + CONSTANT POP

SUB: DUP
0
Y LDD,
PSHD ;SUB

(n ‑‑ n n

SUB: 2DUP
2
y LDD,
PSHD 2
Y LDD, PSHD ;SUB

SUB: 3DUP
4
y LDD,
PSHD 4
Y LDD, PSHD

4
y
LDD,
PSHD
;SUB

SUB: ROT
4 y LDD, N STD, 2 Y LDD, 0 Y LDX,

2 y STX, 4 Y STD, N LDD, 0 Y STD, ;SUB

54

FORML, from page 78.

The book includes all the code re​quired with documentation. (R. E.Haskell,:Design ofEmbedded Sys​tems Using 68HC1 2111 Microcontrol​lers, Prentice‑Hall, Upper Saddle River, NJ, 2000)

Of similar interest is the use of Forth (FICL comes to mind) to wrap C/C++ code, such as drivers. It could provide an interactive user interface at the top, and hardware emulation at the bottom. This would permit testing, debugging, and evaluating the driver code long before the hardware becomes available.

Philip Daunt, whose practice is law, provided a first for FORML, a talk not about Forth but on the Law, He listed some of the problems in which engineers‑turned‑business​men can be ensnared.

Elizabeth Rather spoke to the request that the equivalent of MS Foundation Classes be provided in SwiftForth. The answer: they are exploring the task, but don't hold your breath. Not only is the num​ber and complexity of these classes daunting, but not a few have bugs, as well, A useful subset may be a possibility, with the Forth commu​nity filling in the rest.

Chuck Moore provided a few more details about Color Forth. It has no name fields. Instead, words are hashed and their addresses lo​cated through a table. words, then, will not provide a list of words in the dictionary.

The new single command line works well. As you type, letters en​ter from the right, travel left, and vanish at the left edge.. Words are interpreted as soon as a blank space is entered. You always have a his​tory of 80 characters.

Of the short papers that wrapped up the discussion, I en​joyed most the one by Dr. C.H. Ting. He spoke to the essence of Forth, the "Tao of Forth."

Michael Ham had written, "Forth is like the Tao; it is a Way, and is realized when followed. Its fragility is its strength; its simplic​ity is its direction." Ting sought a greater simplification inspired by the Tao Te Ching, chapter 48:

"Do learn daily, increase, Do Tao daily, decrease. Decrease and

Forth Dimensions XXI.1,2

Forth Dimensions XXI.1,2

SUB: ‑ROT
0
Y
LDD,
N STD, 2
Y LDD, 4
Y LDX,

2
y
STX,
0
Y STD,
N LDD, 4
Y STD, ;SUB

SUB: +
2
y
LDD,
0

Y ADDD, 2
Y STD,
POP JMP, ;HC

SUB: 1‑
0
y
LDD,

1
SUBD, 0
Y STD,
;SUB n
n‑1)

SUB: 1+
0
y
LDD,

1
ADDD, 0
Y STD,
;SUB n
n+l)

SUB: C@
0
y
LDX,
(X)
LDB,
A CLR, 0
Y STD, ;SUB

SUB: C!
2
y
LDD,
0

Y LDX,
(X)
STB,
POP2 JMP, ;HC

SUB: !
2
y
LDD,
0

Y LDX,
(X)
STD,
POP2 JMP, ;HC

HEX

SUB: M/MOD (d n ‑‑ R Q \ Divides ' n into d => Rem Quotient

4 Y LDD, 2 Y LDX, 4 Y STX,

ASLD,
2 Y STD, 10 # LDX,

BEGIN,
4 Y LDD,
B ROL, A ROL,

CS
NOT IF,
0 y CPD, CS NOT IF, F1 SWAP IF

THEN, 0 Y SUBD, SEC,

ELSE,
CLC, THEN, 4
Y STD, 3 Y ROL, 2 Y ROL,

DEX,
0=
UNTIL,
POP JMP,
;HC

SUB:
/MOD
0
Y
LDD, N STD, 0 # LDD,

n n ‑‑ R Q

0
Y
STD, N PUSH M/MOD ;SUB

SUB:
TO=
POPD
0 # CPD, ;SUB
(‑~ccO= if Top=0)

SUB:
COUNT
0
Y
LDX, (X) LDB, INX, 0
Y STX,
PSHB ;SUB

SUB:
"‑1"

‑1 # PUSH ;SUB

SUB:
"0"

0 # PUSH ;SUB

SUB:
"2"

2 # PUSH ;SUB

SUB:
"T'

3 # PUSH ;SUB

SUB: CMOVE (A B c ‑‑ \ Move memory from A to B
for c bytes

BEGIN, 0
Y LDX, 0= NOT WHILE, DEX, 0
Y STX,

4
Y
LDX,
(X) LDB, INX, 4
Y STX,

2
Y
LDX,
(X) STB, INX, 2
Y STX,

REPEAT,
DROP
POP2
JMP, ;HC

FORTHKernel ‑ Converters
DCE 11:49 16.06.99

HEX

SUB: do
POPD LOOPTR
STD,
End St

POPD LOOPND
STD, ;SUB

SUB: loop
LOOPTR LDD,
1 # ADDD, LOOPTR STD,

CS)

LOOPND CPD,
;SUB

DO,
do
BEGIN,
;

: LOOP,
loop CS NOT
UNTIL, ;

\ Variables ‑ RAMarrays

DCE 11:49 16.06.99

HEX

CVAR iBCNT
Utility Count byte

CVAR iBCRC CVAR CRChi
CRCBytes, low, high)

CVAR iBRETRY
ReTry Counter)

20 RARRAY UDPBUFF
UniveralDataPacket Buffer

SUB: '=PBUFF"
UDPBUFF # PUSH ;SUB
n) Pushes "UDP"

\ CRC16Low
DCE 14:54 29.07.97

HEX

decrease until ‑ nothing. Do no, do and no no do."

In American idom, "To acquire knowledge, add. To gain Wisdom, subtract."

Thus, the Tao of Forth is

(The meaning of the Tao of Forth escaped me, so I asked Dr. Ting about it. The colon, of course, is the Colon Word. This Word represents the start of all Forth, the point at which new definitions are defined that take the essence of Forth and extend it to reach the universe.

On further refection, it is obvi​ous that the essence‑that is, the Wisdom‑of Forth is derived by subtracting non‑essential Words from Forth until an irreducible set of Words is left. In describing his P8 Forth processor, Dr. Ting had re​duced that number of primitive Words to 25. From these, the Forth core, kernel, programming envi​ronment, and program itself even​tually all flow.)

Four attendees brought hard​ware to demonstrate.

Dr.Ting showed the wire‑wrap setup he used to program his P8 Forth processor.

John Hart demonstrated a step​per‑motor controller using a PGA. By using the current pulses driving the stepper, it could determine the position of the motor without ex​ternal sensors.

Andrds Zs6t& demonstrated the iTV web hardware. An old Sinclair computer provided the keyboard input, a TV the display, and a por​table computer emulated a web site. Text is clear, though limited to TV resolution. The hard part is still to come‑ramping up for pro​duction and devloping a market adequate to make it pay.

John Hall brought some of the colorful clamshell Apple portable computers. They resemble game machines and I see the appeal to the high school and college crowd. They are complete systems with a fast re​sponse, but are surprisingly heavy.

The meeting ended with the distribution of prizes and closing remarks by Richard Wagner.

55

