1
CHAPTER 19. MEMORY DUMP

Source code discussed here is in the UTILITY.BLK file, screens 28 to 30 and KERNEL86.BLK screen
87.

Source code and text data can be displayed or printed using commands like LIST, SHOW, and TYPE at
the primitive level. Non-ASCII data like object code and numeric data cannot be display conveniently.
The dumping utility provided in F83 allows the user to review the binary data in a conveniently
formatted form. Large area of memory and large numeric data set can be either displayed on terminal or
listed on printer.

19.1. THE DUMB DUMP

A simple and primitive dump command is included in the kernel of F83 system. It helps the user to
debug the system before it is fully checked out.

: DUMP (addr len ---) Dump a range of memory from addr in bytes.
0 DO Set up the loop.
CR Start a new line.
DUP 6 .R SPACE Print the address first.
16 0 DO Dump 16 bytes.
DUP C@ Get one byte.
3.R Print one byte.
1+ Increment address.
LOOP 16 +LOOP Loop for more lines.
DROP ;

19.2. THE SMART DUMP

More sophisticated dumping routines present data in both numeric and ASCII forms because in many
cases the ASCII data are intermixed with binary data. It is convenient to have both types of display
showing side by side. It is also nice if one can scan the memory forward and backward. The more
elaborate dumping utility in F83 has many features not available in other systems. A sample of memory
dump was shown in Fig. 3.1.

0.2 (n---) Display a 2 digit number followed by a space.
0 Make a double number of n.
<####> Convert two digits.
TYPE SPACE Type two digits with a trailing space.
:D.2 (addr len ---) Display a line of 2 digit numbers.
BOUNDS

OVER + SWAP. Convert addr len to the limit-index format.

: EMIT.

: DLN

:?.N

(A

:.HEAD

?DO
1C@ .2
LOOP ;

(char ---)
127 AND
DUP
BL 126 BETWEEN
NOT IF DROP ASCII .
THEN
EMIT

b

(addr —)

CR
DUP 4 U.R 2 SPACES
8 2DUP D.2 SPACE
OVER + 8 D.2 SPACE
16 BOUNDS DO

I C@ EMIT.
LOOP ;

(nl1n2--nl)

2DUP =

IF ." V" DROP
ELSE 2 .R THEN
SPACE ;

(nl1n2--nl)
2DUP =
IF." V" DROP
ELSE 1 .R THEN

b

SWAP

DUP -16 AND
SWAP

15 AND

CR 6 SPACES

8 0 DOI?.N LOOP
SPACE

16 8 DO I1?.N LOOP
SPACE

Equal.

(addr len --- addr1 len1)

2
Skip if len=0.
Print one number.

Emit one character if it is printable. Otherwise display a period.
Mask off MSB.

Save a copy of char.

Is it between 32 and 126, the printable range?

If not printable, replace char with ".".

Send either char or'.'.

Dump 16 bytes of data starting at addr. Display address

first, then 2 sets of 8 bytes, followed by the ASCII equivalent.
New line.

Display the address.

Display 8 bytes.

Second set of 8 bytes.

Scan 16 bytes.

Print ASCII characters.

If n1=n2, display a downwards pointer, otherwise display
the number.

nl=n2?

Display pointer and drop n2.

Otherwise, display n2.

If n1=n2, display a 'v' symbol. Otherwise display one character.

Display only one character.

Display the header field of a dump, making it easy to
index into the data portion of the dump.

Get addr to top of stack.

Mask off the least significant 4 bits in the address.

Second copy of address.

Preserve only the lower 4 bits.

Skip the address field.

Print numeric field markers.

Second set of field markers.

: DUMP

: DU

: DL

16 0 DOI1?.ALOOP
ROT +

B

BASE @ -ROT
HEX
.HEAD
BOUNDS DO
I DLN
KEY? ?LEAVE
16 +LOOP
BASE'!

B

(addr --- addr+64)

DUP 64 DUMP
64 +

b

(line# ---)

C/L*

SCR tBLOCK
+

C/L DUMP

b

3
ASCII field markers.
Leave addr1 and len1 on stack, enabling full line display.

(addr len ---) Dump a range of memory specified on stack. The dump is

always in HEX, but the current base is preserved.
Save base under addr.

Use hexadecimal conversion.

Print the display header.

Scan the memory range.

Display a line.

Quit if any key is pressed.

16 bytes per line.

Restore the original base.

Dump 64 bytes at the specified address and increment the
addr so that next block of memory can be display next.
Dump 64 bytes in a block.

Increment addr.

Dump the specified line in the current screen to verify
non- printable characters.

Starting character count.

Get the current block buffer address.

Address of the specified line.

Dump one line.

