
1
CHAPTER 10. WORD PARSING

The source code discussed in this chapter is in the file KERNEL86.BLK, screens 62 to 64.

10.1. TEXT PROCESSING

In communicating with a user through a console, the computer must be able to accept a line of
commands and find out what the intention of the user is. The computer then can carry out the
commands and do some useful work. In most conventional operating systems, the task which accepts
commands from console and interprets the contents of the commands is called a command line
interpreter (CLI). The user has to observe a set of rules in entering commands, because the computer
uses this set of rules to determine what has to be done, given these commands. These rules are the syntax
rules, or more generally, the grammar of the command line interpreter. When the command line
interpreter becomes more powerful and has more functionalities built into it, its syntax becomes more
complicated and the syntax rules multiply very quickly.

Forth uses a very simple and straightforward syntax rule in interpreting command lines. The command
line consists of a sequence of words, separated by blanks (spaces). The words represent either
commands pre-compiled in the Forth dictionary or numbers. Thus the Forth command line interpreter
(the ext interpreter) can be extremely simple compared to CLI's in other languages or operating systems.
The interpreter just has to parse out words using blanks as delimiters, search the dictionary to locate the
executable code of the commands, and execute the code. If a word is not a command in the dictionary,
the interpreter will try to convert it into a number and push the number on the stack. If the word is
neither a command nor a number, it is beyond the capability of the computer to do anything about it, and
the interpreter will send an error message to the user protesting his stupidity in a very mild manner.

The tool that provides the interpreter with the ability to parse out words from a command line, or an
input stream of characters, is the Forth definition WORD. Before we get into the details of WORD, a
few other supporting definitions have to be clarified.

10.2. INPUT STREAM AND INPUT BUFFERS

First, what is an input stream? Where does the interpreter get the command lines? The Forth interpreter
can accept commands from two different types of sources: a console terminal or a disk. Two special
areas in the computer memory are dedicated to storing commands coming from these sources: a terminal
input buffer (TIB) for commands entered through the console, and one or more disk buffers for
commands coming from the disk. The terminal input buffer is managed by a number of variables and
definitions:

VARIABLE 'TIB Contains the starting address of the terminal input buffer.

: TIB (--- addr) ` Return the address of the terminal input buffer.
'TIB @ ;

2
VARIABLE #TIB Maximum number of characters that can be held in the

terminal input buffer.
VARIABLE >IN Pointer to the character currently being processed. It is an
 offset from the starting address of the input buffer, which is
 either the terminal input buffer or a disk buffer.

The disk buffers are managed by the virtual memory management in Forth. The details of this virtual
memory system are discussed in a separate chapter. Here we are only concerned with the one disk
buffer which is assigned to the interpreter so that the interpreter will get its commands from this buffer.
The disk block number is stored in a user variable:

VARIABLE BLK Block number of source on disk to be interpreted.

The convention adopted by most Forth systems, including F83, is that if BLK contains a zero, the
terminal input buffer is used for interpretation; otherwise, the disk block specified by BLK is used.

10.3. LOW LEVEL PARSING COMMANDS

DEFER SOURCE Vectored to (SOURCE). Return the starting address and
 length of the buffer used to hold current input stream.

: (SOURCE) (--- addr len) Return the string to be processed by the text interpreter.
 Addr is the beginning address of the input buffer and len is
 the length of the input buffer.

BLK @ Get the block number from BLK.
?DUP IF If the block number is not zero,

BLOCK fetch the block of commands from disk and return with the
 address of the disk buffer.

B/BUF Length of disk buffer is 1024 bytes.
ELSE If the block number is zero,

TIB get the address of the terminal input buffer,
#TIB @ and the length of it.

THEN ;

Here are the hard stuff. Two code definitions that scan the input stream to locate special characters in
the stream. SKIP is used to skip over the leading spaces in front of a word, because words can be
separated by a number of spaces allowing source commands to be free-formatted. SCAN, on the other
hand, will stop at the first match. Separating these two functions into two definitions gives F83 much
more versatility in handling strings than older versions of Forth like figForth.

LABEL DONE A common returning point when the input stream is exhausted.
CX PUSH Push the contents of CX on stack and return. CX register

 has the remaining length of the stream.
NEXT

CODE SKIP (addr len char --- addr1 len1) Given the address and length of a string, and

3
 a character to look for, scan through the string while we
 continue to find the character. Leave the address of the

mismatch and the length of the remaining string.
AX POP Move char to AX register.
CX POP Move len to CX register.
DONE JCXZ If length of string is zero, jump to DONE and return.
DI POP Move addr to DI register.
DX DX MOV DX ES MOV Set ES=DS for string manipulations.
REPZ BYTE SCAS Repeatedly scan the string until we find a character different

from that in AX.
0<> IF CX now has the count of characters in the remaining string.

If CX is not zero, DI is pointing to the first mismatched character.
CX INC Backspace.
DI DEC Pointing to the last matching character.

THEN
DI PUSH Addr1.
CX PUSH Len1.
NEXT Return.
END-CODE

CODE SCAN (addr len char --- addr1 len1) Given the address and length ofa string, run
 through the string until we find the character. Leave the
 address of the match and the length of the remaining string.

AX POP CX POP
DONE JCXZ Same as SKIP.
DI POP
DS DX MOV DX ES MOV
CX BX MOV Set up looping parameters.
REP BYTE SCAS Repeat if character mismatches. Scan the string.
0= IF If the string is exhausted,

CX INC Backspace.
DI DEC

THEN
DI PUSH Restore string registers.
CX PUSH
NEXT END-CODE

/STRING takes the starting address and length of a buffer, and a pointer to the current character (as
returned by >IN), and returns the address of the current character and the remaining length of the input
buffer.

: /STRING (addr len n --- addr1 len1) Index into the string by n characters. Return addr+n
and len-n.

OVER MIN Change n to the smaller of n and len.
ROT OVER + Addr+n.
-ROT - Len-n.
;

4
: PLACE (from-addr len to-addr ---) Move the characters at from-addr to to-addr. The

final string has a preceding length byte of len.
2DUP C! Store the length byte.
1+ To-addr+1, address of the first character.
SWAP MOVE Copy the string.
;

Figure 10.1 Parsing with WORD

: HEX 16 BASE ! ;

>IN

dictionary

word buffer

2 1 6

1 2 3 4

1. Start scanning after HEX in the input buffer.
2. Skip leading blank characters.
3. Scan text string to the next blank character.
4. Copy the parsed string into the word buffer.

free memory

Character pointer

Input buffer

5
10.4. HIGH LEVEL PARSING COMMANDS

The real word parsing actions are embodied in the following two words, which scan the input stream and
parse out words with specified delimiting character.

: PARSE-WORD (char --- addr len) Scan the input stream until char is encountered.
Skip over leading chars. Update >IN pointer. Leave the address
and length of the parsed word.

>R Save char on return stack.
SOURCE TUCK Get the address and length of the input buffer.
>IN @ /STRING Get the current character pointer in >IN and modify addr and

 length accordingly.
R@ SKIP Skip over leading chars in the input stream starting at >IN.
OVER SWAP R> SCAN Scan for the next occurrence of char.
>R Save length of the remaining string.
OVER - ROT Addr and length of the parsed string.
R> Retrieve the length of string.
DUP 0<> + - >IN +! Update >IN to one character after the parsed word.

However, if the parsed string is a null string, do not move >IN.
;

: PARSE (char --- addr len) Do the same as PARSE-WORD without skipping the leading
char.

>R
SOURCE >IN @ /STRING
OVER SWAP R> SCAN SCAN instead of SKIP.
>R Len.
OVER - DUP Addr and length of parsed string.
R> 0<> - >IN +! Update >IN to end of string.
;

: 'WORD (--- addr) Leave on stack the address of the word buffer, which is on
 top of the dictionary.

HERE ; In F83 'WORD is the same as HERE. They might differ as
 indicated in 83-Standard.

Finally, we get to the most important word WORD, which parses the next word in the input buffer and
copies the word to the word buffer for the text interpreter to do searching or number conversion.
WORD will skip over leading delimiters so that words in the input stream can be spaced out to conform
to various formatting conventions.

: WORD (char --- addr) Parse the input stream for char and return a count delimited
string in the word buffer at HERE. Note that there is always
a blank following the word in the word buffer.

PARSE-WORD Get the address and the length of the next word in the input tream.
'WORD PLACE Move the word into the word buffer, with a length byte as

he first character.
'WORD DUP COUNT + The address following the string.

6
BL SWAP C! Append a blank at the end of string.
; .

10.5. STRING COMMANDS DEFINED USING 'PARSE'

A couple of examples are handy here to illustrate the usefulness of these parsing commands:

: ((---) The Forth comment command. The input stream is skipped
 until a) is encountered. The enclosed comments are thus
 ignored by the text interpreter.

ASCII) Use) as the delimiter.
PARSE Move >IN to the character after).
2DROP Nothing will be done with the comments. Discard its

 address and length.
; IMMEDIATE Declare (to be immediate so that it will be executed inside a

 colon definition.

: .((---) Type the following string on the console during
interpretation or compilation.

ASCII) Use) as delimiter.
PARSE Parse out the next string up to but not including the) character.
>TYPE With addr and len on stack, type out the string.
;

: >TYPE (addr len ---) Same as TYPE. The string is copied to the PAD buffer
 before outputting for multi-tasking environment.

TUCK PAD SWAP CMOVE Copy the string to PAD buffer.
PAD SWAP TYPE Type from the PAD buffer which is private to a task.
;

10.6. END OF BUFFER CONDITION

The blank character appended to the end of the parsed word in the word buffer is very important to the
F83 system. It serves many important functions. One of them is for the number conversion routine to
recognize the correct end of a number string. Another function is to help the text interpreter to detect the
end of an input stream so that the text interpreter can prepare itself to process the next input stream or
command line. For those familiar with the figForth system, there the end of an input stream is
artificially terminated by one or more ASCII NUL characters. During console inputting, when a carriage
return is received from the keyboard, the input routine appends a NUL at the end of the input stream.
When using source texts in disk blocks, each disk buffer has two trailing NULs as the tail of the buffer.
These artificial NULs force the interpreter loop to be terminated in a non-obvious and hard to document
fashion. F83 tries to treat the end of line condition explicitly.

When WORD reaches the end of the input stream, the length of the parsed word will be zero. A null
string without characters is then moved into the word buffer. The count byte is zero with a blank
character appended to it. This null string, two bytes (one cell) long, has a hex value of 2000. In the

7
dictionary, there is a word of this name, whose hex value in the name field is A080. Masking off the
MSB in these two bytes (the delimiters of the name field), the real name has a hex value of 2000,
exactly the same as the parsed null word. The function of this null word is to turn on the end-of-buffer
flag. Seeing that this flag is set, the text interpreter knows it has reached the end of the input stream. It
will terminate the loop, and ready itself for the next line of input.

