
Hello, Forth!

A Proof of Concept (POC)

Graphical User Interface (GUI)

Implemented in the

Gnome Tool Kit (GTK)

and the

Forth Language (Gforth)

John E. Harbold

January 27, 2018

Introduction

 A GUI gives ease of use of an application by visual means.

 Forth allows a user to implement an application in a timely manner, if
and only if the user is a timely programmer.

 Gforth has a large Forth code source to support many architectures,
operating systems and standalone.

 Gforth also allows using preexisting libraries to speed development.

 Because GUI’s require the use of “callbacks”, Gforth satisfies this
requirement.

 Size of application is generally smaller than other languages.

GUI

 The visual part of a GUI can be implemented using a GUI builder tool.

 This GUI is implemented under Gnome using GUI builder tool, glade-3.

 Glade generates an XML file representing the GUI.

 Glade itself is an GUI allowing a user to see what the application’s GUI will
look like.

 The GUI consists of a window, menu and status bars and button. All these
things are known as GUI objects.

 Glade also allow a user to specify the names of the callback functions that
get executed when the specified GUI object get selected.

Callback Functions

 Most of these objects have callback functions associated

with them.

 Callback functions tie the GUI itself with the action that get

executed.

 A callback performs the application specific action when

the associated GUI object is selected.

Forth Callbacks

 Gforth has a callback feature that translates a Forth executable token to an address
of a corresponding C function.

 This address can be assigned to a constant such that it can be passed as an
argument to another C function.

 This allows writing a callback in Forth and have a GUI execute it as a C function.

 The callback declaration represent a Forth word as a C function prototype.

 An example, a GTK callback, void on_gtk_quit_active(GtkMenuItem *menuitem,
gpointer user_data), It consist of two pointer parameters and will return a void,
essentially nothing.

 In Gforth,, the callback declaration would be c-callback cb_a_a__void a a – void.

 The stack image for a callback is: (xt – cfunc-addr)

Forth C Function &

Dynamic Libraries

 Forth has the capability to interface to C libraries such as

the GTK GUI library and others.

 This capability allows using preexisting code that otherwise

a user would have to write.

 An explanation would be for another presentation.

Hello, Forth! GUI - Building

 Use Glade-3.0 to create a window that contains a menu

bar, a toggle button and a status bar. For the Help>About

menu item, create a separate about dialog.

 For the window, assign a callback, on_window1_destroy,

to the “destroy” signal handler to exit the application.

 For the File>Quit, assign a callback, on_gtk_quit_activate,

to the “activate” signal handler to exit the application.

Hello, Forth! GUI - Building

 For the Help>About, assign a callback,

on_gtk_about_active, to the “activate” signal handler to

display the about dialog.

 For the toggle button, assign a callback,

on_toggleButton1_toggled, to the “toggled” signal handler

to toggle the text strings on the toggle button.

Callback - on_window1_destroy

 The Forth word, on_window1_destroy, is used to exit the
application when the close icon is clicked.

 When called, it has a stack comment of: (gtk-window-addr
user-data-addr –) like its signal handler “destroy”.

 Because this callback just destroys the whole application, the
stack items will be dropped using, 2DROP.

 Next, the main GTK loop will be terminated using,
gtk_main_quit.

 Finally, the Forth application will be terminated using, _exit.

Callback – on_gtk_quit_activate

 The Forth word, on_gtk_quit_activate, does the same as

the on_window1_destroy callback and has the same stack

comment.

 The code is also the same, except, instead of executing

_exit, the Forth word, bye, is executed.

Callback - on_gtk_about_activate

 The Forth word, on_gtk_about_activate, is used to display the about
dialog when the Help>About menu item is clicked.

 When called, it has a stack comment of: (gtk-dialog-addr user-data-
addr –).

 This callback removes the user-data-addr using, NIP.

 Next, it duplicates the dialog address using, DUP.

 Next, it displays the about dialog using, gtk_dialog_run.

 Finally, after the dialog’s close button is clicked, the dialog is hidden
using, gtk_widget_hide.

Callback - on_toggleButton1_toggled

 The Forth word, on_toggleButton1_toggled, is used to display
the either, “Press Me!”, or, “Hello, Forth!”, when the toggle
button is clicked.

 When called, it has a stack comment of: (gtk-toggleButton-
addr user-data-addr –).

 This callback removes the user-data-addr using, NIP.

 Next, it duplicates the dialog address using, DUP.

 Next, it gets the current button label using,
gtk_button_get_label.

Callback - on_toggleButton1_toggled

 Next, it is compared to the “Press Me!” string.

 If it matches, then, load the “Hello, Forth!” string.

 If it does not match, then load the “Press Me!” string.

 Next, call the gtk_button_set_label word to set the string in

the toggle button’s label.

Callback - on_toggleButton1_toggled

 For the status bar, the status bar widget addres and context ID
are pushed on the stack and duplicated using, 2DUP.

 The original status bar context are removed using,
gtk_statusbar_pop.

 The current click count is processed into a string using,
.clickCount.

 Finally, the new click count string is pushed to the status bar,
gtk_statusbar_push.

Start-up Code

 Initially, the GTK system has to be initialized using, GTK_init,
with the command line parameters, argc and argv.

 Next, a GTK builder structure has to be created using,
gtk_builder_new. The resulting pointer is saved in a variable,
builderPtr.

 In order to use the GUI’s XML file, it is used in an GTK call,
gtk_builder_add_from_file. It requires as parameters, a pointer
to a GTK builder structure, a C-string representing the name of
the XML file and a pointer to a pointer for an error return or
NULL.

Start-up Code

 Next, the individual widget pointer have to be extracted

from the builder structure.

 Next, the callbacks have to be assigned to their respective

widgets.

 Next, the status bar’s first message has to be created and

assigned to the status bar.

Start-up Code

 Next, the whole GUI is displayed using, gtk_widget_show.

 Finally, the GTK menu processing is started using,

gtk_main.

Forth and C Strings

 Forth strings are counted string, the first byte is the number of

character in the string.

 C strings are ASCII NUL terminated.

 Forth creates counted strings, but C functions require C strings.

 Gforth can switch between both kinds of strings.

 sstring>cstring (forth-str – c-str)

 cstring>sstring (c-str – forth-str)

Thank you, any questions

