Forth Understands Leap Year

SVFIG
Jan. 22, 2022
Bill Ragsdale

The Challenge

Determine if a year is a leap year.

Extra credit: Accept the year as a Roman numeral. i.e. MMXXII

The Simplest Form

Petremann Marc's solution
: leap? (year -- Flag)
year 4 G5 mod $5=$
year 150 mod $b=$ inuert
year 4 mod $\mathrm{g}=$ and or ;

My Approach

1. Inside every small problem there resides a big problem to be solved.

My Approach

1. Inside every small problem there resides a big problem to be solved.
2. Structure as a prototype for a general AI solution.

My Approach

1. Inside every small problem there resides a big problem to be solved.
2. Structure as a prototype for a general AI solution.
3. Each word does 'exactly' one task.

My Approach

1. Inside every small problem there resides a big problem to be solved.
2. Structure as a prototype for a general Al solution.
3. Each word does 'exactly' one task. 4. Report in plain language.

The Process

Accept the year number on the stack
Classify to one of all possible outcomes.
Use a CASE statement to select.
Format for a clear report.
: answer dup cr -
LYprocess selection ;

The Classifier Output

If diuisible by 4, output 1 (L§B) If diuisible by 196, output 2 (next bit) If diuisible by 46月, output 4 (next bit) 'or" all the outputs into one, 3 bit result.	

Possible results
6, 1, 3, 7, otherwise an error

The Classifier

If a letter exists, or its weight into the stack value ‘class’.
: classifier
((year class divisor weight --- year class) >r 2 pick swap mod $g=$ year class boolean negate r) * or ;

4 year class 1/6
4 year new-class

Words That Classify

: a-class
create , , does 2 ${ }^{\text {classifier ; }}$

$$
41 \text { a-class 4/classify \year/4 }
$$

1002 a-class 100/classify \quad year/100
4004 a-class 400/classify \quad year/400

Apply All Classifiers

: LYprocess (year --- class)
5 4/classify 196/classify 4gil/classify nip ;

Possible results
0; 1, 3, 7,

Apply The Selection Template

: selection (year class ---)
case
[0f -'" and is not a leap year.'" endof
1 of .' and is a leap year."' endof
3 of .'" and is not a leap year.'" endof
7 of .'" and is a leap year.'" endof
dup - .' Is an error in classification." endcase ;

Demonstration

: answer dup cr .
LYprocess selection ;

1995 answer 1995 is not a leap year. 1996 answer 1996 is a leap year.

1990 answer 1909 is not a leap year.
1990 answer 2006 is a leap year.
ok

Extra Credit

Accept years as Roman numerals.

Final HCH
Final HCHXCU
Final HCHXCUI
Final Hd
final HHXXI

The method.

1947 is MCMXLVII M CM XL V II

Process right to left.
Accept a character and accumulate its weight.
If next character to the left is smaller, subtract its weight.
If next character is the original character accumulate its value, with repetition.
Move to the next higher weighted character. Repeat

Setting Up

create scratch 20 allot $\$ workspace
g ualue offset \backslash offset into scratch
0 value reesult \ decimal value
: initialize-roman scratch ca to offset 0 to ressult ;

Accept Roman/ASCII Date

: get-Roman
bl word
I accept text
scratch ouer cid $1+$ cmove \backslash into scratch initialize-r゙oman ;

Fetch The Current Character

: Gcharacter
\ exit: char true or false false
offset $0=$
if false false exit then
scratch offset + cid true ;

For Each Character Apply Its Weight +/-

: process-x̌ (weight ' ${ }^{\prime}$ ' dir' ---) rot >r
begin 巴character swap 2 pick = and while decrement-offset
over ra * +to result
repeat
r>3drop ;

Weights For Each Letter

: process-I 1 ascii I process-x: ;
: process-U 5 ascii U process-x̆ ;
: process-X 10 ascii X process-xX ;
: process-L 50 ascii L process-x̆ ;
: process-C 100 ascii C process-x\% ;
: process-D 500 ascii D process-x\% ;
: process-M 1006 ascii H process-x: ;

The Nineteen Problem

If a letter appears to the left of a higher valued letter, its value is subtracted.

XIX $=19$, traditionally

The Nineteen Problem

If a letter appears to the left of a higher valued letter, its value is subtracted.

XIX $=19$, traditionally \ldots But
XVIIII, XVXIIII, IXX,
all meet that rule.

The Nineteen Problem

If a letter appears to the left of a higher valued letter, its value is subtracted.

XIX $=19$, traditionally \ldots. But
XVIIII, XVXIIII, IXX,
all meet that rule.
There is no official syntax. A Roman legion went by IIXX $=18$.

Parsing R>L Letter by Letter

H D C L X U I

: RomanProcess initialize-roman
-1 process-I
1 process-U
1 process-X -1 process-I -1 process-U
1 process-X
1 process-L -1 process-I -1 process-U -1 process-X
1 process-L
1 process-C -1 process-I -1 process-U -1 process-X
-1 process-L
1 process-C
And 50 on for D and H

Top Level Code and Test

: final
get-roman cr cr scratch count type RomanProcess .'" is '" result .
result LYprocess selection ;
Final MCH
Final HCHXCU
final HCHXCUI
Final Hf
Final HHXXII

The Example

HCH is 1906 and is not a leap year. HCMXCU is 1995 and is not a leap year. HCMXCUI is 1996 and is a leap year. MH is 2060 and is a leap year. MHXXII is 2022 and is not a leap year. ok

Summary

Leap year detection could have been done in three lines.

But 32 lines gaue a general, modular solution with possible reuse.

The generalize structure of the two programs made linkage instantaneous.

