Exploring 1-Wire Devices

Exploring 1-Wire Devices revised 5/25/14

This document describes a method to interface the Dallas Semiconductor high-precision one-wire digital
thermometer (DS18520) device with the EVB001 evaluation board. The hardware and software interface,
discussed in this app note, uses arrayFORTH and polyFORTH, respectively. This illustrates one way to
prototype such an interface from the manufacturer's one-wire protocol documentation.

The text assumes you have familiarized yourself with our hardware and software technology by reading
our other documents on those topics. The current editions of all GreenArrays’ documents, including this
one, may be found on our website at http://www.greenarraychips.com . It is always advisable to ensure

that you are using the latest documents before starting work

The work described herein is that of Franklin Amador.

CONTENTS

1 Introduction

2 The one-wire Interface

2.1 Interface Circuit

2.2 One-wire Protocol Overview
2.3 Sending Data

2.4 Receiving Data

3 arrayFORTH Implementation
3.1 The one-wire Kernel

3.2 Loading

33 Initialization

3.4 SoftSim Integration

35 Testing on the Chip

4 polyFORTH Implementation
4.1 Integrating the one-wire kernel
4.2 Accessing the one-wire kernel from polyFORTH
43 Integration into polyFORTH
43.1 Accessing GA144 node

4.3.2 ROM Search Algorithm

43.3 High Level one-wire polyFORTH Code
43.4 polyFORTH Example 1

5 Conclusions

6 References

1

© O©OWOowWwow OPrwWNDN DN

=
o

i
[NCQ N SN N

12
13
15
16

17
17

By Franklin Amador. 5/25/2014


http://www.greenarraychips.com/

Exploring 1-Wire Devices

1 Introduction

This application note attaches a Dallas one-wire Temperature sensor (DS18520) to the
GreenArrays’ evaluation board (EVB001) using a simple custom level shifting circuit. An off-the-
shelf level shifter solution was decided upon by using Texas Instruments TXS0102 chip which
already contained the necessary pull-up resistors for the one-wire interface. However, due to
the no-lead DQE package ordered, it was impossible to wire leads to the chip without fully
designing a surface mount board. As a result, a simple proof-of-concept circuitry was created
and bread boarded with readily available components from the local electronics stores.

The one-wire kernel only uses 1 of 144 nodes for sending and receiving bytes over the one-wire
network. The code does not include CRC error checking, but could be added at a later time for
real applications. This applications note shows the basic bare-bone mechanisms needed to both
interface and communicate via one-wire bus.

This effort was possible through Brad Rodriguez’s one-wire high level Forth implementation on
CamelForth [6] with GNU GPL v3. What is new and not part of CamelForth’s one-wire
implementation is the arrayFORTH’s one-wire kernel and polyFORTH’s interface to the
arrayFORTH’s one-wire kernel. As a result, the one-wire kernel work in this document is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
For commercial license interest, please contact the author for further details
(fdamador@comcast.net).

2 The one-wire Interface

The one-wire protocol is discussed in every one-wire datasheet [7] and fully detailed in the “Book
of iButton Standards” AN937 application note [8].

2.1 Interface Circuit

The interface circuit between the one-wire bus and GA144 chip is similar to SparkFun’s logic level
Bi-directional converter (BOB-12009). However, the major difference is the pnp transistor used
as oppose to the N-Channel MOSFET proposed by SparkFun. Lastly, the base current needs to
also be limited as it can cause the circuit to overheat and burnout and an additional bypass diode
was added since the transistor package did not include one.

+1ug

R
4.7k
R R
cAtlad 4.7k 2 4.7k L u

Nade SL7:17 /& 2

Do DS18B2a
CGND

3

k¥

Powering the DS18520 with an External Supply

2 By Franklin Amador. 5/25/2014


http://creativecommons.org/licenses/by-nc-sa/4.0/

Exploring 1-Wire Devices

2.2

The results from the digital switching between low level at 1.8Volts to high level at 5.0Volts
worked as expected.

One-wire Protocol Overview

The one-wire protocol runs on master-slave architecture with a minimum of 6 types of signals;
reset pulse, presence pulse, write 0, write 1, read 0, and read 0. All communication is initiated
with a Reset pulse from the master and then waits for a presence pulse from any slaves on the
network. If no presence pulse is detected then no data is transmitted by the high level
polyFORTH code.

MASTER Ty RESET PULSE MASTER R,
480ps minimum = —p|#—————————  480ps minimum  ——
DS18820 Ty
DS18520 4+—— presence pulse —p.
waits 15-60 ps —p - 60-240 ps

Viu -
1-WIRE BUS I / /
GND

LINE TYPE LEGEND

mmmmm Eus master pulling low
DS18520 pulling low
Resistor pullup

Initialization Timing
If a presence pulse is detected, then the master streams bytes of data at 1 bit per read/write

time slots. Depending on the commands sent then 0 bytes, 8 bytes or 9 bytes are read back from
the slave.

By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

Vou
1-WIRE BUS
GHND

START
OF SLOT

MASTER WRITE “0” SLOT

e BOps < Ty “0" < 120us

— — Aps < Toeo <90
— |4— > {ps

START
OF SLOT

MASTER WRITE “1” SLOT

N

Vipu

DS18520 Samples
TYP

4 15us *|4 155 *le— s —-|

MASTER READ “0" SLOT
—

0518520 Samples
MIN TP

4 15ps -I'|d— 155 »|a4— 3us —p

MASTER READ “17 SLOT
*— qps < Toee <0

1-WIRE BUS

GND -

=1ps —»

S\\\\4

N

<

Master samples
+ 15us 45,5

o

ol

>4 ps —»

- P|:|47 Master samples

4 15us

LINE TYPE LEGEND
E— Bus master pulling low

Resistor pullup

D518520 pulling low

23 Sending Data

Read/Write Time Slot Timing Diagram

Every one-wire device has a set of unique command protocols that pertains to that particular
device. In this particular device, the DS18S20 has the following unique protocol commands.

Function Command Set Table

By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

1-Wire BUS ACTIVITY
COMMAND DESCRIPTION PROTOCOL AFTER COMMAND IS NOTES
ISSUED
TEMPERATURE CONVERSION COMMANDS
Convert T Initiates temperature DS18S20 transmits conversion
conversion. 44h status to master (not applicable 1
for parasite-powered
DS18520s).
MEMORY COMMANDS
Read Reads the entire DS18S20 transmits up to 9
Scratchpad scratchpad including the BEh data bytes to master. 2
CRC byte.
Write Writes data into Master transmits 2 data bytes
Scratchpad scratchpad bytes 2 and 3 4Eh to DS18520. 3
(TH ﬂl'ld TL]
Copy Copies Ty and Ty data None
Scratchpad from the scratchpad to 48h 1
EEPROM.
Recall B2 Recalls Ty and T data DS18820 transmits recall
from EEPROM to the B&h status to master.
scratchpad.
Read Power Signals DS18S20 power DS18820 transmits supply
Supply supply mode to the B4h status to master.
master.
Note 1:  For parasite-powered DS18520s, the master must enable a strong pullup on the 1-Wire bus during temperature
conversions and copies from the scratchpad to EEPROM. No other bus activity may take place during this time.
Note 2:  The master can interrupt the transmission of data at any time by issuing a reset.

Note 3:  Both bytes must be written before a reset is issued

At this point, it is emphasized that the term one-wire becomes blurred when an additional strong
pullup is needed when in parasitic wire mode. Without either a strong pull up or separate
external volt supplied to the DS18520 device, we cannot get temperature conversion or Copy
from ScratchPad (Protocol 44h or 48h) functions to work properly.

Sending data is as simple as writing a “0” or “1” slot as shown on the previous page. During a
send command, we write the sequential binary data starting from LSB to MSB in 8 bit intervals.
While the Master node is in sending mode, the one-wire devices listen to the data being sent on
the bus and do nothing with the bus. As a result, the bus shows just the data being sent from the
master. In the example below the Master is sending a hex byte of 33h (00110011b).

; AE0us 1.024ms 1.088ms 1.152ms 1.216ms 1.28ms 1.344ms 1.408ms 1.472ms
Wire Name | | I 1 | 1 1 I I I ] 1 1 | 1 I | I 1 | 1 1 I (I ] 1 1
1-wire output LSE, 1 1 0 0 1 2 Q r MSB, 0 [
l-wire input r I_ r

input sample time

I
send byte x"33" (b"00110011%)

Sending Transmission Packet Timing

5 By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

24 Receiving Data

As the Master node is the one always initiating the transmission and receiving of data, the
master has to first send bytes of ffh (11111111b) to sequence the data bits being sent back to
the master from the slave. This lets the particular one-wire slave device synchronize when it’s
time to send its own data bits.

In the particular case below, the master always sends ffh data and the slave device waits for the
initial pull down of the line to send it’s 1s or Os by either release or holding the bus line down
respectively. Again, in the example below the Master is sending a hex byte of ffh (11111111b)
and the slave is sending back a hex byte of 33h (00110011b). In the receiving data cycle, the
master will wait a predetermined time (less than 15us) to sample the bus line for the bit state.

1.536ms 1.6ms 1.664ms 1.728ms 1.792ms 1.956ms 1.92ms 1.984ms 2. 048ms 2.1
I e e T I T T I T B |

‘Wire Name 1 | I 1 | 1 | | T

1-wire output

1-wire input 1 1 0 | [ | 1 1 ] | 0 |
input sample time " H " " " " " |'|

read result (first byte: family code x"33")

Receiving Transmission packet Timing

For a DS18S20 read scratch pad command (hex byte BEh) we’ll receive a total of 9 bytes of data
as outlined below.

SCRATCHPAD (Power-up State)
byte 0 | Temperature LSB (AAh) 1 (85°C)
byte 1 | Temperature MSB (00h) | EEPROM
byte 2 | Tg Register or User Byte 1* 4+—»| Ty Register or User Byte 1
byte 3 | Tp Register or User Byte 2% 4—»| Ty Register or User Byte 2
byte 4 | Reserved (FFh)
byte 5 | Reserved (FFh)
byte 6 | COUNT REMAIN (0Ch)
byte 7 | COUNT PER °C (10h)
byte 8 | CRC*

*Power-up state depends on value(s) stored
in EEFR.OM

Receiving Scratch Pad packets frames

Bytes 0 & 1 are further detailed in the Temperature Register Format list below. The LS Byte bit 0
is the .5 degrees Celsius. The MS Byte is only used for signed information of Positive (5=0) or
Negative (S=1) temperature values.

BIT7 BIT6 BITS BIT 4 BIT3 BIT 2 BIT 1 BITO
wseyTE[ 22 [ 22 [ 2 [ # | & [ 2 | 2 T 27 ]

BIT15  BIT14  BIT13  BIT12 _ BIT11 BIT 10 BIT9 BITS
msBytTE] s [ s [ s [ s | s [ s [ s | s ]

5=3SIGN

6 By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

Temperature Register Format

The actual analog temperature scaling received from LSB (byte 0) and MSB (byte 1) is further defined in
the Temperature/Data Relationship table.

TEMPERATURE DIGITAL OUTPUT | DIGITAL OUTPUT

(°C) (BINARY) (HEX)
+85.0* 0000 0000 1010 1010 00AAR
+25.0 0000 0000 0011 0010 0032h

+0.5 0000 0000 0000 0001 0001h

0 0000 0000 0000 0000 0000h

-0.5 111 1 1 1t FFFFh

-25.0 1111 1111 1100 1110 FFCEh

-55.0 1111 1111 1001 0010 FF92h

*The power-on resel vaiue of the temperature register is +85°C.

Temperature/Data Relationship

It is interesting to note that a Hex-to-Decimal conversion and multiplied with 5 will give the temperature
in Celsius with the decimal point moved to the right (multiplied by 10) or if we divide by 2 or right shift
one bit we also arrive at a non-decimal resolution.

For detailed temperature fractions readings other than a 0.5 resolution the COUNT REMAIN (byte 6) and
COUNT PER C (byte 7) from the scratch pad reading can be used with the fraction equation below.
However, the Temperature reading (byte 0) will need truncated to eliminate the 0.5 resolution prior to
using the value as TEMP_READ.

TEMPERATURE = TEMP_READ - 0.25 + (COUNT_PER_C - COUNT_REMAIN)/COUNT_PER_C

Fraction Temperature equation

The table below outlines the possible values from 5 *, 2/, and Temperature conversion.

Temperature  HEX  HEX2DEC 2/  TEMPERATURE = TEMP_READ - 0.25 + (COUNT_PER_C - COUNT_REMAIN)/COUNT_PER_C

85.0 AA|  170.00] 850 85.6875 |8 85 - 0.25 +( 6 - 1 )/ 16
25.0 32| 50,00 250 = 25 - 0.25 + 6 - 2 )/ 16
0.5 1 1.00 5 = 0.5- 0.25 + 6 - 5 )/ 16
0.0 0 0.00 0 = 0- 0.25+ 6 - 6 )/ 16
-0.5 FFFF -1.00 -5 = -0.5- 0.25 +( 6 - 3 )/ 16
-25.0 FFCE| -50.00] -250 = -25 - 0.25 +( 6 - 13 )/ 16
-55.0 FFo2| -110.00] -550 = -55 - 0.25 +( 6 - 14 )/ 16

7 By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

3.1

arrayFORTH Implementation

One F18 computer (Node 517) with 49 words (31h) is used to implement the onewire — kernel in F18
code. No clock is needed for this application. The slaves basically wait until the master sends the
necessary high/low commands for both synchronization and logic functions. Luckily for us, it is quite
easy to figure out the right (200) delay with “for . . unext” commands to create an approximation to 1
usec. As a result, to approximate 500 usec we just multiply 500 with 200 to arrive at the necessary time
delay that will be used in the kernel.

The one-wire Kernel

Two important words are used for the kernel; 1) reset and 2) slot. Both words follow the timing
diagram as shown on the one-wire protocol overview section 2.2.

The reset word is in charge of initializing the beginning of data transfer to/from the master/slave. It
basically transmits a master reset and waits to receive a presence pulse from the one-wire network. As
a result, a high signal results in no one-wire device present and a low signal results in a one-wire device
present. This data is inverter as 0 for no device or -1 for one device present and the result is sent back
to polyFORTH.

The slot word is in charge of the Master Write and Master Read for a given 1/0 slot. In the slot word, we
first pull the line low for 6 usec and see if the bit to be sent will be a 1 or 0. If the bitis a 1 then we just
hold the line high otherwise we keep the line low. Then we continue with a 16 usec delay and sample
input pin and or the result with the original 8 bit word to bit position 9. Lastly, we right shift one bit,
wait for 35usec, pull the line high and delay for 2usec. This function completes both the Master Write
and Read 1/0 slot commands. Please note that during Master Write the pin is sampled to finally end up
with the same 8 bit word we originally wanted to send and that we discard this word in polyFORTH.

864 1list

onewire dallas-lwire protocol,
copyright 2014 franklin amador br

onewire -- kernel,
copyright 2014 franklin amador,

dly timed unsec loop delay d.elay for . . unext ;
wat wait 500 usec walt 100000 delay ;
pin read pin.l7 value 7pin ibh 20000 and
hiz set pin.l17 to high-impedance hiz 0 'b
low set pin.17 low low 20000 b ;
resel -n init device, presence pulse br reset n low wait hiz 15000 delay 7pin wait
. . . P if dup or ; then - ;
slot readfwrite 1bit toffrom lwire bus br slot n-n low 1200 delay dup 1 and .,
send sample pin.17, if x100 xor else br Tt it hiz ~ ”-“:-m' .
send drop 3800 delay ?pin,
raeceive right-shift main word, delay e if over 100 or over . . . then,
pfreset send presence pulse back recw drop 2/ 7000 delay hiz 400 delay ;
pfslot send slot result back pfreset n reset |
pftouch touch read/write @/! from node 516 pfslot n-n @ slot |
pftouch n-n @ 7 for slot next |

In the end, node 517 basically waits for commands from node 516 which has Glanglia code to send its
data back to polyFORTH via Snorkel. These network commands are integrated in 1) pfreset, 2) pfslot
and 3) pftouch where pf stands for polyFORTH. As you can see, pfreset just sends data back to node
516 once initiated. Also, both pfslot and pftouch receive data (via Fetch thru a register) to be sent on
the one-wire bus and once done then it transmit data (via Store thru a register) back to node 516.

By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

3.2 Loading

A loading block is used to load the one-wire kernel. Block 200 must contain the instruction

862 Tlist

onewire -- loader,
r

r

r

Loading Block
3.3 Initialization

Block 860 is used for the node initialization. This can be either used for SoftSim, loading the code into
the GA144 chip, or integrating it into PolyFORTH boot stream.

860 list

onewire -- code loader,

Initialization Block

defines the values on the stack at chip initialization. This is helpful to load and not waste
energy and pass the default 15555 stack data while the kernel is running. Notice that the
communication port to node 516 is the right port. As a result, both the register and the

register are loaded to look and wait for commands from polyFORTH at all times. The register
is used to read/write to the node 517.17 pin.

3.4 SoftSim Integration

If we want to test our interface with SoftSim then block 866 is used to define the environment.

866 list

onewire -- softsim starter

/wave softbed assign @ 10000 / 1 and ?v p

17v ! ;,

SoftSim Integration

A must be placed in block 216 to include our example in SoftSim. The bus on Pin 17 is
changed every 10000 ticks. Note, after using SoftSim and before using the code on the chip we
must comment out the command.

9 By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

3.5 Testing on the Chip

For testing on the host chip we create a block that loads the code onto the chip and another for
interactive testing.

868 list

one-wire loader,

Loading code onto the chip

First we type . After some time the code is loaded into the chip and started. Now we must use
to reset the chip and display the ROM/RAM.

858 list

onewire -- loader,

Resetting the chip and displaying ROM/RAM.

We should now see the following screen:

B colorforth . . . [
indicator panel 135 load node stack 7/ upd

00000 000DO 00000
00000 000DO 00000 0OOO0OO0OO0 0OO0OO0OO0O0

via, hops, tgt - green selected

1 709
1 608
37 517

mem dump / 7Pram orJj7ramn

2e9b2 2c9/75 05700 186a0D 20000 05b55 00000
05b55 20000 13408 13402 05600 03a98 1340%
13402 19413 24355 33555 05600 004bO 25dfa
00001 19%1b 13406 3bdb2 13400 1340% 19423
21dec2 00100 209be2 3a712 13400 13406 05700
00190 134%0a 0Ob555 03614 03dba 00007 134%1%
1f42f 0b555 134%a9 134%a39 13439 13%a9 134%4a9
13%a9 13%a9 134%a89 134%af 134%a9 134%a9 134%a9

gwer

Interactive Panel IDE

10 By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

4.1

4.2

11

'- 'g.-. Terminal Emulatol C=mr= &

F

1

4
a
1
2
3
4
5
&
?
8
2

b

CREATE “ru DOWN 2, 1 . 2833 . < pthd B W, ¢ #io> B . 4 U,

CREATE ~RU DOUN 2, ol ., “puw - DUP . 2/ 1- U, “pu W,

polyFORTH Implementation

For using the full potential of the one-wire interface, we can integrate it into a virtual machine that
takes care of the higher level aspects. The larger memory of the polyFORTH virtual machine is better
suited for configuring the one-wire and interpreting the response.

Integrating the one-wire kernel
If we want to load our one-wire kernel code together with the polyFORTH virtual machine, then we can

place a 860 load into block 368 (or 478 for older versions), where the additional I/O for the virtual
machine is loaded:

368 list

—— additional ifo,

spi a9 .
async bootable aa .
onewire

Listing 12 Integrating our code into the polyFORTH boot stream
When polyFORTH is started then our code will also be loaded into node 517. That is true whether you
start polyFORTH from the IDE (450 load) or you install the polyFORTH boot stream in the flash (460
load).

Accessing the one-wire kernel from polyFORTH

After starting polyFORTH on the evaluation board, we load the snorkel and ganglia mechanism by doing
a 142 load command.

-

¢ General node access) HEX 2UARIABLE fromRU

¢ a push @p @p>» 2 . 2817 . HERE < n> B W, HERE { a> 8 .
HERE ¢ a* ¥ dup> 2 . BBA?2 . < *p pop at? ;> ACCAD Y.
HERE SUWAFP COMSTANT “rwF SWAP 1+ CONSTANT “ruA
SUAP CONSTANT “ruH

ilg . @ W. fromBW U, HERE FIN . CONSTANT “RUfin
ND ¢ _> CREATE DOES R> 28 “puw 4 + 2% ¢

HD HN3AA 1 wu 7 11 @ dd .path M38A
HD N85 2 wun 2 11 1 wu .path HD H6BB 2 wu 7 11 B uun .path

vt ( df> “pyF 2¢* ~RUW "RUfin +SHNORK =DONE ;

Rt ( d a> “rufl ¥ “pud 2* C at ' dupd BBARZ 2 rBEt ;

B2 ¢ a — d> "pwA ' < at drop (B> BA2ZBA 2 »0E! fromBUY 22 ;
Rt ¢ d a — d> “puyfA * TpuN 2t ( at * @) @BAGA 2 rOt
fromRBU 28 ;

I

arrayFORTH’s block 142

By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

4.3

43.1

12

Integration into polyFORTH

Until now we have used our one-wire interface with arrayFORTH. In order to fully support the one-wire
protocols and its features we must implement a little driver that converts the one-wire commands to
Read/Write bytes. To simplify the task we load block 300 for loading the one-wire driver.

(=] &

Basic 1-wire loads
SNORKLE /GANGLIA 142 LOAD
2 ( ONE-WIRE HIGH LEVEL CODE ) 301 306 THRU

0
0
|1
2
3
4
5
6
7
8
9

One-wire loading
Accessing GA144 node

Block 301 defines the words (OWRESET, OWSLOT, OWTOUCH, OWPUT, and OWGET) for actually
accessing the one-wire kernel read and write to 517.17 io pin.

301
0
1 HEX
2 ND N516 2 uu 8 rr 0 ,path
3 1D5 CONSTANT RIGHT

: OWRESET ( - n) N516 2029 1 RIGHT R!@ SWAP DROP 3 / ;

: OWSLOT ( d - d) N516 202B 1 RIGHT R! 0 RIGHT R!@ DROP ;
: OWTOUCH ( d - d) N516 202D 1 RIGHT R! O RIGHT R!@ DROP ;
: OWPUT ( d-) OWTOUCH DROP ;

: OWGET ( -n) FF OWTOUCH ;

Use only if there is a single l-wire device attached )
: SHOWID ( - ) OWRESET IF 033 OWPUT 7 FOR OWGET . NEXT THEN ;

use only if there are no single 1l-wire devices attached )
: TEST ( - ) OWRESET . O OWSLOT DROP 55 OWPUT
7 FOR OWGET . NEXT ;

polyFORTH Block 301

Note that we first define a path to Node 516 which will finally talk to Node 517. The wire path to Node
516 uses Snorkel and Ganglia via the polyFORTH virtual machine. Then we further re-define each one-
wire words in Node 517 for polyFORTH VM interpretation. | leave it to the reader to study Application
Note 009 for other existing examples of using Node 142 for Rl, R@ and R!@ commands.

By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

4.3.2 ROM Search Algorithm

To search for available devices over the one-wire bus, Dallas Semiconductors has provided a search
algorithm outline on their Book for iButton Standards [8] Figure 5-3.

D @D <

ST LAST DsCREPANCY 100 | Nmpgepapesus |
‘ SET RETURN WALUE TO FALSE (D) )-—{ AND CLEAR DONE FLAG ‘

INITIALIZE LAST DISCREPANCY
TOD

¥ L]
CLEAR DONE FLAS | CLEAR DONE FLAG |

N ¥

RETURN
SEND RESET SIGNAL ON 1-WIRE BUS _

| SET ROM BIT INDEXTO 1 |

]

SET DISCREPANCY MARKER TO 0 |

[]

SEND SEARCH COMMAND ON
1-WIRE BUS

[]

J—-‘i READ BIT A FROM 1-WIRE BUS |

[]

| READ BIT B FROM 1-WIRE BUS |

?
¥
Y
SET ROM BIT (ROM BIT INDEX) SET ROM BIT (ROM BIT INDEX)
TOBITA TO ONE
SEND ROM BIT (ROM BIT INDEX) SET DISCREPANCY MARKER
TO THE 1-WIRE BUS TOROM BIT INDEX.

DISCHERANCY > SETDONE FLAG
B
N Al

[ SETRETURNVALUETO
TRUE (1) ;—-( REI'U@

ROM Search Algorithm

Blocks 302, 303 and 304 referenced below are used from 4e4th one-wire implementation by Brad
Rodrigues [6]. What is not included in [6] are the LSHIFT and RSHIFT commands that | implemented in
polyFORTH.

13 By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

Block 302 defines the all the variables bytes for the ROM Search Algorithm. Here we also define missing
Left Shift (LSHIFT) and Right Shift (RSHIFT) from the polyFORTH VM.

M|

0 Refs 0 Other blocks
HEX

VARIABLE LASTDISC

LASTDISC 1+ CONSTANT DONEFLAG

VARIAELE ROMBIT
ROMBIT 1+ CONSTANT DISCMARK

VARIABLE ROMID 6 ALLOT

0]
0
1
2
3
4
5
6
7
8
9

: LSHIFT DUP 0 > IF 1- FOR 2* NEXT ELSE DROP THEN ;
: RSHIFT DUP 0 » IF 1- FOR 2/ NEXT ELSE DROP THEN ;

polyFORTH Block 302

Block 303 defines the ROMBIT fetch and store routines and reset of

303

(0] Maxim 1l-wire ROM Search algorithm continued
1 HEX

IROMBIT ( f -- ) ROMBIT C@ 1- 8 /MOD

ROMID + 1 ROT LSHIFT ROT

OVER C@ OR SWAP C!
ELSE
INVERT OVER C@ AND SWAP C!
THEN ;

[Ca e R ey WV S UV N )

10 : @OMBIT ( -- f ) ROMBIT C@ 1- 8 /MOD
11 ROMID + C@ 1 ROT LSHIFT AND ;

12

13 : NEWSEARCH O LASTDISC ! ;

14

15

polyFORTH Block 303

Block 304 defines the ROM SEARCH algorithm [8] as outlined by the logical diagram Figure 5-3.

T Temint s T ——
04

ROMSEARCH — 0 DONEFLAG C@
1 IF O DONEFLAG C! EXIT
2 THEN OWRESET
IF 1 ROMBIT C! 0 DISCMARK C! FO OWPUT
BEGIN 03 OWSLOT OWSLOT DUP
CO = IF DROP 0 LASTDISC C! EXIT
ELSE DUP 0= IF DROP ROMBIT C@ LASTDISC C@ = IF 1 !ROMBIT
ELSE ROMBIT C@ LASTDISC €@ > IF O !ROMBIT ROMBIT C@
DISCMARK C!
ELSE @ROMBIT O= IF ROMBIT C@ DISCMARK C! THEN THEN THEN
ELSE 40 AND !'ROMBIT THEN THEN
@ROMBIT IF 1 ELSE O THEN OWSLOT DROP ( SEND TO BUS )
ROMBIT C@ 1+ DUP ROMBIT C!
40 > UNTIL DISCMARK C@ DUP LASTDISC C!
0= IF 1 DONEFLAG C! ELSE DROP 1 THEN
15 ELSE O LASTDISC C! THEN O DONEFLAG C! ;

polyFORTH Block 304

14 By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

433

15

High Level one-wire polyFORTH Code

Block 305 finally defines the last of the high level polyFORTH interface to the one-wire protocol. The
SHOWIDS uses the ROMSEARCH algorithm to display any device ID on the network. SENDID focuses on
that particular device for further commands. READSCRATCH, OWCONVERT and READTEMP are specific
to the DS18520 temperature device.

305

Maxim
1 HEX
] .

[

ELSE

W~V w

: READSCRATCH ( a - ) SENDID BE OWPUT 8 FOR OWGET .

1-wire

operations

SHOWIDS ( -- ) NEWSEARCH
BEGIN ROMSEARCH CR ROMID 8 + ROMID DO I
0= UNTIL CR ;

: SENDID ( addr -- ) OWRESET
IF 55 OwPUT 8 OVER + SWAP DO I @ OWPUT LOOP
." failed" DROP THEN ;

: OWCONVERT ( a -- ) SENDID 44 OWPUT ;

C@ 3 U.R LOOP

NEXT ;

: READTEMP ( a -- n ) SENDID BE OWPUT OWGET OWGET 8 LSHIFT OR ;

polyFORTH Block 305

Although NOT coded verbatim from reference [6], the “TEMP>PAD” is now refined for this polyFORTH
implementation.

|

306

0 Maxim 1-wire hig evel operations

1 HEX

Wo~ouv WM

BB
Vo

FINALZ2

SENSOR2

HEX CREATE SENSOR1 10 , FB , 24 , B8 ,

HEX CREATE SENSOR2 10 , CA , B7 , B6 ,

OWCONVERT 750 MS SENSOR2

: TEMP>PAD ( n -- ) 5 * DECIMAL DUP ABS O
<# # 2E HOLD # #S SIGN #> TYPE SPACE

: OWID ( --addr ) 8 OVER + SWAP DO I @ .

2
&
2
ra

LOOP ;

8,0,
8,0,

FINAL1 SENSOR1 OWCONVERT 750 MS SENSOR1 READTEMP

READTEMP

29
Loy

14
TEMP>PAD ;
TEMP>PAD ;

: EXAMPLE1 SENSOR1 OWCONVERT 750 MS SENSOR1 READSCRATCH ;

PolyFORTH Block 306

It's my hope that in a future Application Note that | can implement a Floating Point library for

polyFORTH.

By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

4.3.4 polyFORTH Example 1

The following sequence of steps are coded block 306 as the define EXAMPLE1 polyFORTH word. As you
can see, the simplicity of Forth is apparent when viewed in the top down hierarchical forth word
command arrangements.

MASTER MODE DATA (LSE FIRST) COMMENTS

T Eeset Master 155ues reset pulss.

BX Prezence DS18520s respond wath presence pulse.

TH 55k Master 1ssues Match ROM command.

TX fd-bat ROM code Master sends DS18520 ROM code.

TX 4h Master 1ssues Convert T command.

TX D) ine held lugh by | Master applies strong pullup to D) for the durstion of the

strong pulhup conversion (t_ ).

TH Eeset Master 155ues reset pulsa.

B Presence DE1ES20: respond wath presence pulse.

TX 53k Master 1ssues Match ROM command.

T fd-bat ROM code Master sends DS18520 ROM code.

TX BEh Master 1ssues Read Seratchpad command.

R 9 data bytes Master reads extive scratchpad meluding CRC. The master
then recaleulates the CRC of the first exght data bytes from the
seratchpad and compares the calculated CRC with the read
CRC (byte 9). If they match, the master contirmes; 1f not, the
read operation is repeated.

Below are some of the working commands for the one-wire protocol. The first command “SHOWIDS”
will query the one-wire bus for available devices. | had a bug in the ROMSEARCH algorithm that took
more than one time to actually get all the devices ID, but this is now corrected. In my particular one-
wire network | only have two DS18520 devices.

SHOWIDS
10 FB 24 B8

B7 B6
24 B8

21.0 ok
20.5 ok

EXAMPLEL 42 0 75 70 255 255 15 16 64 ok
HEX EXAMPLELl 2A 0 4B 46 FF FF F 10 40 ok

Working One-wire commands

Lastly, we show the “FINAL1” & “FINAL2” working words that receives the temperature of both
devices in degrees centigrade, respectively. Lastly, we show the data received back from the
example 1 above. The scratchpad data from Sensor1 displays all the available information as
described section 2.4.

16 By Franklin Amador. 5/25/2014



Exploring 1-Wire Devices

5 Conclusions

We have shown how to interface the Dallas Semiconductor one-wire master protocol in the multi-
computer architecture of the GA144 chip. Combining F18A machine level language using arrayFORTH and
high level polyFORTH virtual machine gives any novice or experienced developer the flexibility to design
both in Hardware and Software. It is further emphasized that the one-wire kernel, although considered a
slow protocol by GreenArrays standard, was implemented using a mere 50 words on 1 out of 144 nodes.

The author of this document is a system integrator for a controls engineering company. This is the author’s
1% attempt at implementing forth in any application. With the help of the documents and staff from
GreenArrays it was possible to write the driver software in a few weeks. Although arrayFORTH and
polyFORTH are very different than environments most programmers are used to, GreenArrays tools were
complementary to its architecture 1) simple and 2) modular.

This application note was finished at nights while carrying the author’s 9 month year old on a baby carrier.
The author wants to thank for the help and patience he received from the GreenArray staff, Charley
Shattuck.

6 References
[1] “ArrayFORTH User’s Manual, for G144A12 and EVB001”, Green Arrays DB004

[2] “polyFORTH Reference manual”, GreenArrays Data Books: DBO05

[3] “G144A12 polyFORTH supplement to DB005”, GreenArrays Data Books: DB06
[4] “F18A Technology Reference”, GreenArrays Data Books: DBO01

[5] “Attaching a PS/2 Keyboard”, GreenArrays App Note: ANOO9

[6] http://www.camelforth.com/download.php?view.27

[7] http://datasheets.maximintegrated.com/en/ds/DS18520.pdf

[8] http://pdfserv.maximintegrated.com/en/an/AN937.pdf

[9] http://en.wikipedia.org/wiki/1-Wire

17 By Franklin Amador. 5/25/2014


http://www.camelforth.com/download.php?view.27
http://datasheets.maximintegrated.com/en/ds/DS18S20.pdf
http://pdfserv.maximintegrated.com/en/an/AN937.pdf
http://en.wikipedia.org/wiki/1-Wire

