
Exploring 1-Wire Devices

1 By Franklin Amador. 5/25/2014

Exploring 1-Wire Devices revised 5/25/14

This document describes a method to interface the Dallas Semiconductor high-precision one-wire digital
thermometer (DS18S20) device with the EVB001 evaluation board. The hardware and software interface,
discussed in this app note, uses arrayFORTH and polyFORTH, respectively. This illustrates one way to
prototype such an interface from the manufacturer's one-wire protocol documentation.

 The text assumes you have familiarized yourself with our hardware and software technology by reading
our other documents on those topics. The current editions of all GreenArrays’ documents, including this
one, may be found on our website at http://www.greenarraychips.com . It is always advisable to ensure
that you are using the latest documents before starting work

The work described herein is that of Franklin Amador.

CONTENTS

1 Introduction 2

2 The one-wire Interface 2
2.1 Interface Circuit 2
2.2 One-wire Protocol Overview 3
2.3 Sending Data 4
2.4 Receiving Data 6

3 arrayFORTH Implementation 8
3.1 The one-wire Kernel 8
3.2 Loading 9
3.3 Initialization 9
3.4 SoftSim Integration 9
3.5 Testing on the Chip 10

4 polyFORTH Implementation 11
4.1 Integrating the one-wire kernel 11
4.2 Accessing the one-wire kernel from polyFORTH 11
4.3 Integration into polyFORTH 12
4.3.1 Accessing GA144 node 12
4.3.2 ROM Search Algorithm 13
4.3.3 High Level one-wire polyFORTH Code 15
4.3.4 polyFORTH Example 1 16

5 Conclusions 17

6 References 17

http://www.greenarraychips.com/

Exploring 1-Wire Devices

2 By Franklin Amador. 5/25/2014

1 Introduction

This application note attaches a Dallas one-wire Temperature sensor (DS18S20) to the
GreenArrays’ evaluation board (EVB001) using a simple custom level shifting circuit. An off-the-
shelf level shifter solution was decided upon by using Texas Instruments TXS0102 chip which
already contained the necessary pull-up resistors for the one-wire interface. However, due to
the no-lead DQE package ordered, it was impossible to wire leads to the chip without fully
designing a surface mount board. As a result, a simple proof-of-concept circuitry was created
and bread boarded with readily available components from the local electronics stores.

The one-wire kernel only uses 1 of 144 nodes for sending and receiving bytes over the one-wire
network. The code does not include CRC error checking, but could be added at a later time for
real applications. This applications note shows the basic bare-bone mechanisms needed to both
interface and communicate via one-wire bus.

This effort was possible through Brad Rodriguez’s one-wire high level Forth implementation on
CamelForth [6] with GNU GPL v3. What is new and not part of CamelForth’s one-wire
implementation is the arrayFORTH’s one-wire kernel and polyFORTH’s interface to the
arrayFORTH’s one-wire kernel. As a result, the one-wire kernel work in this document is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
For commercial license interest, please contact the author for further details
(fdamador@comcast.net).

2 The one-wire Interface

The one-wire protocol is discussed in every one-wire datasheet [7] and fully detailed in the “Book
of iButton Standards” AN937 application note [8].

2.1 Interface Circuit

The interface circuit between the one-wire bus and GA144 chip is similar to SparkFun’s logic level
Bi-directional converter (BOB-12009). However, the major difference is the pnp transistor used
as oppose to the N-Channel MOSFET proposed by SparkFun. Lastly, the base current needs to
also be limited as it can cause the circuit to overheat and burnout and an additional bypass diode
was added since the transistor package did not include one.

Powering the DS18S20 with an External Supply

http://creativecommons.org/licenses/by-nc-sa/4.0/

Exploring 1-Wire Devices

3 By Franklin Amador. 5/25/2014

The results from the digital switching between low level at 1.8Volts to high level at 5.0Volts
worked as expected.

2.2 One-wire Protocol Overview

The one-wire protocol runs on master-slave architecture with a minimum of 6 types of signals;
reset pulse, presence pulse, write 0, write 1, read 0, and read 0. All communication is initiated
with a Reset pulse from the master and then waits for a presence pulse from any slaves on the
network. If no presence pulse is detected then no data is transmitted by the high level
polyFORTH code.

Initialization Timing

If a presence pulse is detected, then the master streams bytes of data at 1 bit per read/write
time slots. Depending on the commands sent then 0 bytes, 8 bytes or 9 bytes are read back from
the slave.

Exploring 1-Wire Devices

4 By Franklin Amador. 5/25/2014

Read/Write Time Slot Timing Diagram

2.3 Sending Data

Every one-wire device has a set of unique command protocols that pertains to that particular
device. In this particular device, the DS18S20 has the following unique protocol commands.

Function Command Set Table

Exploring 1-Wire Devices

5 By Franklin Amador. 5/25/2014

At this point, it is emphasized that the term one-wire becomes blurred when an additional strong
pullup is needed when in parasitic wire mode. Without either a strong pull up or separate
external volt supplied to the DS18S20 device, we cannot get temperature conversion or Copy
from ScratchPad (Protocol 44h or 48h) functions to work properly.

Sending data is as simple as writing a “0” or “1” slot as shown on the previous page. During a
send command, we write the sequential binary data starting from LSB to MSB in 8 bit intervals.
While the Master node is in sending mode, the one-wire devices listen to the data being sent on
the bus and do nothing with the bus. As a result, the bus shows just the data being sent from the
master. In the example below the Master is sending a hex byte of 33h (00110011b).

Sending Transmission Packet Timing

Exploring 1-Wire Devices

6 By Franklin Amador. 5/25/2014

2.4 Receiving Data

As the Master node is the one always initiating the transmission and receiving of data, the
master has to first send bytes of ffh (11111111b) to sequence the data bits being sent back to
the master from the slave. This lets the particular one-wire slave device synchronize when it’s
time to send its own data bits.

In the particular case below, the master always sends ffh data and the slave device waits for the
initial pull down of the line to send it’s 1s or 0s by either release or holding the bus line down
respectively. Again, in the example below the Master is sending a hex byte of ffh (11111111b)
and the slave is sending back a hex byte of 33h (00110011b). In the receiving data cycle, the
master will wait a predetermined time (less than 15us) to sample the bus line for the bit state.

Receiving Transmission packet Timing

For a DS18S20 read scratch pad command (hex byte BEh) we’ll receive a total of 9 bytes of data
as outlined below.

Receiving Scratch Pad packets frames

Bytes 0 & 1 are further detailed in the Temperature Register Format list below. The LS Byte bit 0
is the .5 degrees Celsius. The MS Byte is only used for signed information of Positive (S=0) or
Negative (S=1) temperature values.

Exploring 1-Wire Devices

7 By Franklin Amador. 5/25/2014

Temperature Register Format

The actual analog temperature scaling received from LSB (byte 0) and MSB (byte 1) is further defined in
the Temperature/Data Relationship table.

Temperature/Data Relationship

It is interesting to note that a Hex-to-Decimal conversion and multiplied with 5 will give the temperature
in Celsius with the decimal point moved to the right (multiplied by 10) or if we divide by 2 or right shift
one bit we also arrive at a non-decimal resolution.

For detailed temperature fractions readings other than a 0.5 resolution the COUNT REMAIN (byte 6) and
COUNT PER C (byte 7) from the scratch pad reading can be used with the fraction equation below.
However, the Temperature reading (byte 0) will need truncated to eliminate the 0.5 resolution prior to
using the value as TEMP_READ.

TEMPERATURE = TEMP_READ - 0.25 + (COUNT_PER_C - COUNT_REMAIN)/COUNT_PER_C

Fraction Temperature equation

The table below outlines the possible values from 5 *, 2/, and Temperature conversion.

Temperature HEX HEX2DEC 5 * 2/

85.0 AA 170.00 850 85 85.6875 = 85 - 0.25 +(16 - 1)/ 16

25.0 32 50.00 250 25 25.625 = 25 - 0.25 +(16 - 2)/ 16

0.5 1 1.00 5 0.5 0.9375 = 0.5 - 0.25 +(16 - 5)/ 16

0.0 0 0.00 0 0 0.375 = 0 - 0.25 +(16 - 6)/ 16

-0.5 FFFF -1.00 -5 -0.5 -0.25 = -0.5 - 0.25 +(16 - 8)/ 16

-25.0 FFCE -50.00 -250 -25 -25.0625 = -25 - 0.25 +(16 - 13)/ 16

-55.0 FF92 -110.00 -550 -55 -55.125 = -55 - 0.25 +(16 - 14)/ 16

TEMPERATURE = TEMP_READ - 0.25 + (COUNT_PER_C - COUNT_REMAIN)/COUNT_PER_C

Exploring 1-Wire Devices

8 By Franklin Amador. 5/25/2014

3 arrayFORTH Implementation

One F18 computer (Node 517) with 49 words (31h) is used to implement the onewire – kernel in F18
code. No clock is needed for this application. The slaves basically wait until the master sends the
necessary high/low commands for both synchronization and logic functions. Luckily for us, it is quite

easy to figure out the right (200) delay with “for . . unext” commands to create an approximation to 1

usec. As a result, to approximate 500 usec we just multiply 500 with 200 to arrive at the necessary time
delay that will be used in the kernel.

3.1 The one-wire Kernel

Two important words are used for the kernel; 1) reset and 2) slot. Both words follow the timing

diagram as shown on the one-wire protocol overview section 2.2.

The reset word is in charge of initializing the beginning of data transfer to/from the master/slave. It
basically transmits a master reset and waits to receive a presence pulse from the one-wire network. As
a result, a high signal results in no one-wire device present and a low signal results in a one-wire device
present. This data is inverter as 0 for no device or -1 for one device present and the result is sent back
to polyFORTH.

The slot word is in charge of the Master Write and Master Read for a given 1/0 slot. In the slot word, we
first pull the line low for 6 usec and see if the bit to be sent will be a 1 or 0. If the bit is a 1 then we just
hold the line high otherwise we keep the line low. Then we continue with a 16 usec delay and sample
input pin and or the result with the original 8 bit word to bit position 9. Lastly, we right shift one bit,
wait for 35usec, pull the line high and delay for 2usec. This function completes both the Master Write
and Read 1/0 slot commands. Please note that during Master Write the pin is sampled to finally end up
with the same 8 bit word we originally wanted to send and that we discard this word in polyFORTH.

In the end, node 517 basically waits for commands from node 516 which has Glanglia code to send its

data back to polyFORTH via Snorkel. These network commands are integrated in 1) pfreset, 2) pfslot

and 3) pftouch where pf stands for polyFORTH. As you can see, pfreset just sends data back to node

516 once initiated. Also, both pfslot and pftouch receive data (via Fetch thru a register) to be sent on

the one-wire bus and once done then it transmit data (via Store thru a register) back to node 516.

Exploring 1-Wire Devices

9 By Franklin Amador. 5/25/2014

3.2 Loading

A loading block is used to load the one-wire kernel. Block 200 must contain the instruction 862 Load.

Loading Block

3.3 Initialization

Block 860 is used for the node initialization. This can be either used for SoftSim, loading the code into
the GA144 chip, or integrating it into PolyFORTH boot stream.

Initialization Block

/stack defines the values on the stack at chip initialization. This is helpful to load and not waste

energy and pass the default 15555 stack data while the kernel is running. Notice that the

communication port to node 516 is the right port. As a result, both the /a register and the /p
register are loaded to look and wait for commands from polyFORTH at all times. The /b register

is used to read/write to the node 517.17 pin.

3.4 SoftSim Integration

If we want to test our interface with SoftSim then block 866 is used to define the environment.

SoftSim Integration

A 866 load must be placed in block 216 to include our example in SoftSim. The bus on Pin 17 is

changed every 10000 ticks. Note, after using SoftSim and before using the code on the chip we

must comment out the 866 load command.

Exploring 1-Wire Devices

10 By Franklin Amador. 5/25/2014

3.5 Testing on the Chip

For testing on the host chip we create a block that loads the code onto the chip and another for
interactive testing.

Loading code onto the chip

First we type 868 load. After some time the code is loaded into the chip and started. Now we must use
858 load to reset the chip and display the ROM/RAM.

Resetting the chip and displaying ROM/RAM.

We should now see the following screen:

Interactive Panel IDE

Exploring 1-Wire Devices

11 By Franklin Amador. 5/25/2014

4 polyFORTH Implementation

For using the full potential of the one-wire interface, we can integrate it into a virtual machine that
takes care of the higher level aspects. The larger memory of the polyFORTH virtual machine is better
suited for configuring the one-wire and interpreting the response.

4.1 Integrating the one-wire kernel

If we want to load our one-wire kernel code together with the polyFORTH virtual machine, then we can
place a 860 load into block 368 (or 478 for older versions), where the additional I/O for the virtual
machine is loaded:

Listing 12 Integrating our code into the polyFORTH boot stream

When polyFORTH is started then our code will also be loaded into node 517. That is true whether you
start polyFORTH from the IDE (450 load) or you install the polyFORTH boot stream in the flash (460
load).

4.2 Accessing the one-wire kernel from polyFORTH

After starting polyFORTH on the evaluation board, we load the snorkel and ganglia mechanism by doing
a 142 load command.

arrayFORTH’s block 142

Exploring 1-Wire Devices

12 By Franklin Amador. 5/25/2014

4.3 Integration into polyFORTH

Until now we have used our one-wire interface with arrayFORTH. In order to fully support the one-wire
protocols and its features we must implement a little driver that converts the one-wire commands to
Read/Write bytes. To simplify the task we load block 300 for loading the one-wire driver.

One-wire loading

4.3.1 Accessing GA144 node

Block 301 defines the words (OWRESET, OWSLOT, OWTOUCH, OWPUT, and OWGET) for actually
accessing the one-wire kernel read and write to 517.17 io pin.

polyFORTH Block 301

Note that we first define a path to Node 516 which will finally talk to Node 517. The wire path to Node
516 uses Snorkel and Ganglia via the polyFORTH virtual machine. Then we further re-define each one-
wire words in Node 517 for polyFORTH VM interpretation. I leave it to the reader to study Application
Note 009 for other existing examples of using Node 142 for R!, R@ and R!@ commands.

Exploring 1-Wire Devices

13 By Franklin Amador. 5/25/2014

4.3.2 ROM Search Algorithm

To search for available devices over the one-wire bus, Dallas Semiconductors has provided a search
algorithm outline on their Book for iButton Standards [8] Figure 5-3.

ROM Search Algorithm

Blocks 302, 303 and 304 referenced below are used from 4e4th one-wire implementation by Brad
Rodrigues [6]. What is not included in [6] are the LSHIFT and RSHIFT commands that I implemented in
polyFORTH.

Exploring 1-Wire Devices

14 By Franklin Amador. 5/25/2014

Block 302 defines the all the variables bytes for the ROM Search Algorithm. Here we also define missing
Left Shift (LSHIFT) and Right Shift (RSHIFT) from the polyFORTH VM.

polyFORTH Block 302

Block 303 defines the ROMBIT fetch and store routines and reset of

polyFORTH Block 303

Block 304 defines the ROM SEARCH algorithm [8] as outlined by the logical diagram Figure 5-3.

polyFORTH Block 304

Exploring 1-Wire Devices

15 By Franklin Amador. 5/25/2014

4.3.3 High Level one-wire polyFORTH Code

Block 305 finally defines the last of the high level polyFORTH interface to the one-wire protocol. The
SHOWIDS uses the ROMSEARCH algorithm to display any device ID on the network. SENDID focuses on
that particular device for further commands. READSCRATCH, OWCONVERT and READTEMP are specific
to the DS18S20 temperature device.

polyFORTH Block 305

Although NOT coded verbatim from reference [6], the “TEMP>PAD” is now refined for this polyFORTH
implementation.

PolyFORTH Block 306

It’s my hope that in a future Application Note that I can implement a Floating Point library for
polyFORTH.

Exploring 1-Wire Devices

16 By Franklin Amador. 5/25/2014

4.3.4 polyFORTH Example 1

The following sequence of steps are coded block 306 as the define EXAMPLE1 polyFORTH word. As you
can see, the simplicity of Forth is apparent when viewed in the top down hierarchical forth word
command arrangements.

Below are some of the working commands for the one-wire protocol. The first command “SHOWIDS”
will query the one-wire bus for available devices. I had a bug in the ROMSEARCH algorithm that took
more than one time to actually get all the devices ID, but this is now corrected. In my particular one-
wire network I only have two DS18S20 devices.

Working One-wire commands

Lastly, we show the “FINAL1” & “FINAL2” working words that receives the temperature of both
devices in degrees centigrade, respectively. Lastly, we show the data received back from the
example 1 above. The scratchpad data from Sensor1 displays all the available information as
described section 2.4.

Exploring 1-Wire Devices

17 By Franklin Amador. 5/25/2014

5 Conclusions

We have shown how to interface the Dallas Semiconductor one-wire master protocol in the multi-
computer architecture of the GA144 chip. Combining F18A machine level language using arrayFORTH and
high level polyFORTH virtual machine gives any novice or experienced developer the flexibility to design
both in Hardware and Software. It is further emphasized that the one-wire kernel, although considered a
slow protocol by GreenArrays standard, was implemented using a mere 50 words on 1 out of 144 nodes.

The author of this document is a system integrator for a controls engineering company. This is the author’s
1

st
 attempt at implementing forth in any application. With the help of the documents and staff from

GreenArrays it was possible to write the driver software in a few weeks. Although arrayFORTH and
polyFORTH are very different than environments most programmers are used to, GreenArrays tools were
complementary to its architecture 1) simple and 2) modular.

This application note was finished at nights while carrying the author’s 9 month year old on a baby carrier.
The author wants to thank for the help and patience he received from the GreenArray staff, Charley
Shattuck.

6 References
[1] “ArrayFORTH User’s Manual, for G144A12 and EVB001”, Green Arrays DB004

[2] “polyFORTH Reference manual”, GreenArrays Data Books: DB005

[3] “G144A12 polyFORTH supplement to DB005”, GreenArrays Data Books: DB06

[4] “F18A Technology Reference”, GreenArrays Data Books: DB001

[5] “Attaching a PS/2 Keyboard”, GreenArrays App Note: AN009

[6] http://www.camelforth.com/download.php?view.27

[7] http://datasheets.maximintegrated.com/en/ds/DS18S20.pdf

[8] http://pdfserv.maximintegrated.com/en/an/AN937.pdf

[9] http://en.wikipedia.org/wiki/1-Wire

http://www.camelforth.com/download.php?view.27
http://datasheets.maximintegrated.com/en/ds/DS18S20.pdf
http://pdfserv.maximintegrated.com/en/an/AN937.pdf
http://en.wikipedia.org/wiki/1-Wire

