
Coin cell Forth with
SockPuppet and MPE

The core problem
Available forth ports

Ports that support your architecture

Demos that make good starting points

Critical features -
Networking, etc

The MCU
That you
actually

have

2011: I look around for an open source forth for Cortex-M

Initial port (2012) was Riscy-pygness forth to the Stellaris
Cortex-M chips. It was primitive and missing lots of stuff.
MPE was available for the Mac.

Clock configuration sucked.

Cortex-M system call layer is pretty clean - How about a
simple system call layer?

2016 - Integrated into MPE Forth. Becoming generic-ised.

Sockpuppet 1/2

Sockpuppet 2/2

Since the original implementation, simpler approaches

Launcher-based implementations for Cortex-Ms.

Shared memory/interconnect - first byte of RAM is
architecturally at 0x2000:0000

More powerful

Since 2012

Minimalist ports - launcher based

No more bit-banding - switch to Cortex-M atomic operations.

Get rid of SVC call wrappers for C functions.

MPU support for forth threads.

Scheduler improvements for MPE forth.

Ports to three different product families

Arm Cortex-M0/3/4/7

32-Bit Architecture

Low-latency Prioritized Interrupt controller - NVIC

Sophisticated Debug

M0: Simplified and Ultra-low power.

M4: DSP and Floating point

M7: Higher performance, better power efficiency.

What the C-M is good at
Interrupt/Exception/Fault handlers

Low-Latency with prioritized handling

The hardware does all the stacking and gives you a ready-
to-go execution environment (if you are written in C!)

Supervisor/User Separation

Multiple system stacks

Memory Protection unit

Forth Challenges

Interrupt handlers

Handlers have to setup a Forth environment

Data stack

User area

Machine initialization - Tedious and easy to get wrong.

Somebody else already did the work

Bootstrapping Forth

Forth is an excellent rapid-prototyping and debugging
environment

Direct access to device memory

Forth is a dangerous rapid-prototyping and debugging
environment

Direct access to device memory

Expect a lot of crashes due to typos

MPE Forth

Compiler-based

Supported on on Linux, Mac, and windows

Good documentation.

Hobbyist compatible licensing.

Foundations:AAPCS 1/2

Well-defined by ARM: IHI0042F_aapcs.pdf

Registers R0-R3 for callee-parameters, R0-1 for return values.
Additional args go on stack - usually not needed.

R12 is a inter-procedure call scratch register - must be
preserved.

Interrupt architecture is compatible with the ABI.

Foundations:AAPCS 2/2

R0
R1

R2
R3

R12
LR

PC
xPSR

CODE CALL1--N (addr arg0 -- n)
mov r0, tos
ldr tos, [psp], # 4
orr tos, tos, # 1 \ set Thumb bit
push { psp, link }
blx tos
pop { psp, link }
mov tos, r0
next,

END-CODE
https://github.com/rbsexton/cm3forthtools/blob/master/aapcs.fth

https://github.com/rbsexton/cm3forthtools/blob/master/aapcs.fth

Forth SVC Calls

Note: Cortex-M3 Pushes R0-R4, R12, LR, PC, xPSR automatically at
SVC entry. MPE Forth can generate this code automatically

\ **
\ SVC 0: Return the version of the API in use.
\ **
CODE API-Version (-- n)

svc #0 (Call Supervisor)
str tos, [psp, # -4] ! (Push TOS)

 mov tos, r0 (return value)
 next,
END-CODE

https://github.com/rbsexton/sockpuppet/blob/master/forth/SysCalls.fth

Porting to the Gecko1/5
Silabs Tiny Gecko - A
Cortex-M3 device.

Start with the UART
Equivalent of
hello_world()

Forth UART Drivers
without hardware init.

Partitioning
https://github.com/rbsexton/gecko/

Minimal Port #1
Launcher Initializes the hardware.

Single-Threaded forth polls the UART status register.
$8 equ LEUART_STATUS
bit4 equ LEUART_STATUS_TXBL

$28 equ LEUART_TXDATA

internal

: (seremit) \ char base --
\ *G Transmit a character on the given UART.
 begin
 dup LEUART_STATUS + @ LEUART_STATUS_TXBL and \ Tx FIFO full test
 until
 LEUART_TXDATA + !
;

Minimal #1a - 2.6maA!

Way, Way too High!

Consumption Goes DOWN
during 0 100 dump

Minimal #1b- 280uA

/* Re-config the HFRCO to the low band */
 CMU_HFRCOBandSet(cmuHFRCOBand_1MHz);

Adding WFI

Basic power control - Forth executes WFI to stall the CPU
while waiting for an event.

The most basic wake event is a UART character

Requires a shared data between between the supervisor and
forth

Shared Data 1/3
The tricky part is passing the address of the shared structure.

Option One - Use the Sockpuppet API to retrieve it.

Option Two - Pass it over to forth at startup time.

// Let Forth set its own stack pointer.
 LaunchUserAppNoSP((long unsigned int *) 0x2000, (uint32_t *) &theshareddata);

.global LaunchUserAppNoSP

LaunchUserAppNoSP:
 ldr r2, [r0, #4] /* The initial PC */
 mov r0, r1

bx r2

Shared Data 2/3
Forth must catch it and save it for later.

udata \ This has got to be part of udata
create icroot 4 allot \ Values are cleaner, but they're part of IDATA..
cdata

code get_icroot
str tos, [psp, # -4] !

 mov r7, r0
next,

end-code

: StartCortex \ -- ; never exits
 INIT-R0 SP_process sys! 2 control sys! \ switch to SP_process
 REAL-INIT-S0 set-sp \ Allow for cached TOS and guard space
 get_icroot \ Do this before anything else tampers with R0.
 icroot !
 INIT-U0 up! CLD1 @ execute
 again
;

Shared Data 3/3
Forth must catch it and save it for later.

: (serkey?) \ -- t/f
\ *G Return true if the IRQ handler has dropped off a payload.
 icroot @ u0rxdata @ -1 <> \ Rx
;

: (serkey) \ -- char
\ *G Wait for a character to come available on the given UART and
\ ** return the character.
 begin
 (serkey?)
 dup false = if [tasking?] [if] pause [else] [asm wfi asm] [then] then
 until
 di
 icroot @ u0rxdata dup
 c@ swap -1 swap ! \ Fetch the result, then reset it.
 ei
;

WFI Improvements 1/2

WFI Improvements 2/2
This part lets us enter ultra-low power EM2 with Cortex-M
SCR (0xE000ED10), SLEEPDEEP bit (2)

4 e000ed10 !

Pitfalls

Your programmer might not erase/init as you expect - I
program the forth section first, then the launcher.

Consider writing a script to stitch the halves together.

Working on low level IO bringup is tedious - work in the
smallest possible steps.

Now What? Tasks!

Modern embedded systems are event and interrupt driven.

When nothing is runnable, you can enter a low-power state.

Blocking code is simpler - no need to keep state.

Forth is well-suited to tasking.

Saving context takes only 4 registers, much less than RTOS

Task are normal words that call PAUSE

High Efficiency Tasking
PAUSE /

Yield

Examine next
TCB

Runnable? Original
TCB?

Return to
Caller

Stack + Load
Registers

Looped
around?

WFI

t t

t

Return to
Prior Caller

A Scheduler with WFI
CODE pause \ -- ;
 mov r6, up \ Use r6 as the working copy
l: [schedule]next
 ldr r6, [r6, # 0 tcb.link]\ get next task
 ldr r5, [r6, # 0 tcb.status] \ inspect status
 cmp r5, # 0 \ 0 = not running
 b .ne [schedule]run
 cmp r6, up \ No work? WFI
 it .eq
 wfi
 b [schedule]next
l: [schedule]run
 cmp r6, up \ If we’ve come back to ourselves, just return.
 it .eq
 bx lr
 push { r7, r9, r12, link } \ stack registers
 str rsp, [up, # 0 tcb.ssp]\ save SP in TCB
 mov up, r6 \ Load up the new task pointer.
 \ run selected task - sp, up, rp, ip
 ldr rsp, [up, # 0 tcb.ssp]\ restore SSP
 pop { r7, r9, r12, link } \ restore registers

https://github.com/rbsexton/cm3forthtools/blob/master/pause.fth

Disaster!

The thread that calls PAUSE never sleeps!
We need a way to wake it up

Problem: When can the multi-tasker safely call WFI?
Answer: When there are no running tasks

SockPuppet Integration
Thumb-2 provides very clean SVC interface

This is a binary ABI. Develop on one platform, run on
another (may require memory map adjustments)

Conceptually, it resembles a traditional BIOS.

Integrating SockPuppet
SVC_Handler:

tstlr,#0x4 @ Figure out which stack
iteeq
mrseq r0,msp @ Main stack
mrsne r0,psp @ Process/Thread Stack
push { r4, lr }
mov r4, r0 @ We'll over-write R0, so stash it in r4.
ldr r1, [r0,#24] @ Get the stacked PC
ldrb r1, [r1,#-2] @ Extract the svc call number
ldr r2,=syscall_table
ldr r12, [r2, r1, LSL #2]
ldm r4, { r0-r3 } @ Pull function args from the stack.
blx r12
stm r4, { r0-r1 } @ Support 64-bit return values.
pop { r4, pc }

https://github.com/rbsexton/sockpuppet/blob/master/sapi/svchandler.S

System Call Handlers

/// @parameters
/// @R0 - Stream Number
/// @R1 - The Character in question.
/// @returns in R0 - Result - 0 for success.
/// @ 1 for blocked - Thread must yield/pause
bool __SAPI_02_PutChar(int stream, uint8_t c, unsigned long *tcb){

int ret;
switch (stream) {

default:
return(console_leuart_putchar(c, tcb));

}
return(ret);
}

The system call handler must stop the task - no other safe way

You only need three
SAPI Defines 16 reserved vectors. You only need three to get
to a working system

GetChar - KEY

CharsAvail - KEY?

Putchar - EMIT

CR and TYPE are also defined, but can be emulated with
forth code. High-performance systems can benefit from
implementing TYPE and CR

Driver needs state
typedef struct {

unsigned long *tcb;
bool blocked_tx;
bool blocked_rx;
} sIOBlockingData;

int free = ringbuffer_addchar(&rb_tx,c);
// If maxing out, tell the caller to yield.
if (free == 0) { // Let it fill up.

connection_state[0].tcb = tcb;
connection_state[0].blocked_tx = true;
if (tcb) forth_thread_stop(&connection_state[0]);
return(true);
}

else return(false);
}

TCB status byte

Scheduler uses non-zero value to trigger task execution or
event hander

ISR can set the event bit to trigger task execution

Scheduler calls event handler then the task

50 Forth 7 Cross Compiler

Bit When set When Reset
0 Task is running Task is halted
1 Message pending but not read No messages
2 Event triggered No events
3 Event handler has been run No events (reset by user)
4.. User de�ned User de�ned

Table 9.2: Task status cell

9.9 Example Task

The following example is a simple demonstration of the multitasker. Its role is to display
a hash (#) every so often, leaving the foreground Forth interpreter running. To use the
multitasker you must cross-compile the �le MULTI*.FTH into your target. The sample
control �les have an EQUate Tasking? which, when non-zero, will compile the multitasker.

9.9.1 De�ning the task

The following code de�nes a simple task called TASK1. It displays a # every 1000 schedules.

VARIABLE DELAY \ time delay between #'s
1000 DELAY ! \ initialise time delay

: ACTION1 \ -- ; task to display #'s
[CHAR] $ EMIT \ Display a dollar ($)
BEGIN \ Start continuous loop
[CHAR] # EMIT \ Display a hash (#)
DELAY @ 0 \ Reschedule Delay times
?DO PAUSE LOOP

AGAIN \ Back to the start ...
;

9.9.2 Initialising the multitasker

Before any tasks can be activated, the multitasker must be initialised. This is done with
the following code:

INIT-MULTI

The word INIT-MULTI initialises all the multitasker's data structures and starts multitask-
ing. This word need only be executed once in a multitasking system.

9.9.3 Activating the task

To activate (run) the example task, type:

TASK TASK1

ASSIGN ACTION1 TASK1 INITIATE

This will set ACTION1 as the action of task TASK1. Immediately you will see a dollar and a
hash ($#) displayed. If you press <return> a few times, you see that the Forth interpreter

Bring up - Start small!

Exercise the low level driver

const char message[] = "Boot!! ";
void SayHello() {

const char *p = message;
while(*p) {

// LEUART_Tx(LEUART0,*p++); // Direct
// console_leuart_putchar(*p++,0); // function
 Putchar(0,*p++); // System call.
}

}

More sleeping!

Pitfalls
Make sure your programmer is loading the right image.

Build/steal a stitcher so you don’t have to build both parts

Remember to erase all of forth’s memory before you launch it.

Forth should probably do this itself.

MPE is full-featured. It can be slimmed down.

Watch memory allocation on small systems. Tasks need
space.

Demo - Stitching

Launcher - 8k/1k

Forth
24k Flash/3k Ram

Clock Init
UART Init

Application Development
Control Interface

Debugging/Bringup

Stitching with a script
LAUNCHSIZE=$((2 * 4096))
FIRSTBINARY=supervisor/exe/supervisor.bin
SECONDBINARY=forth/TINY.img

cd supervisor; make; cd ..

set -- $(ls -l $FIRSTBINARY); LEN=$5
PAD=$(($LAUNCHSIZE - $LEN))
set -- $(ls -l $SECONDBINARY); LEN2=$5
TOT=$(($LEN + $PAD + $LEN2))

echo "$FIRSTBINARY($LEN) + $PAD + $SECONDBINARY($LEN2) = $TOT"
{

cat $FIRSTBINARY;
dd if=/dev/zero bs=1 count=$PAD;
cat $SECONDBINARY;

} > packaged.bin

https://github.com/rbsexton/gecko/blob/master/tiny/basic/build.sh

Stitching with MPE

\ *P The Flash memory starts at $0000:0000.
\ We own the whole thing, but we have to start at a 1k boundary.
\ to leave room for the launcher. Its possible to include
\ it from here.

$0000:0000 $0000:1FFF cdata section Sup \ Supervisor goes here.
 data-file supervisor.bin $2000 swap - allot \ CRITICAL!!!!

$0000:2000 $0000:7FFF cdata section Tiny \ code
$2000:0400 $2000:06FF idata section PROGd \ IDATA - New words live here.
$2000:0700 $2000:0FFF udata section PROGu \ UDATA

https://github.com/rbsexton/gecko/blob/master/tiny/basic/forth/tiny.ctl

Stitching with SREC
Generate a combined firmware.bin
by producing a checksummed NXP binary, padding it out,
and appending the forth image.

srec_cat command file to generate a binary
with a NXP Cortex vector checksum at 0x1C
Usage: srec_cat @filename
input file
launcher/exe/launcher.hex -Intel
-crop 0x0 0x1C # just keep code area for CRC calculation below
-Checksum_Negative_Little_Endian 0x001C 4 4

insert the remainder of the file.
launcher/exe/launcher.hex -Intel -crop 0x20

forth/11UXX.img -binary -offset 0x2000

-Output firmware.bin -binary
https://github.com/rbsexton/nxp-cortex/blob/master/11u35/basic-i2c/packageit.srec

Stitching w/ LD for gdb
MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 65536
 FLASH2 (rx) : ORIGIN = 0x00010000, LENGTH = 3 * 65535
 RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 8192
 }
.forth : { KEEP(*(.forth)) } > FLASH2

forth.o: ../usbforth/LEOPARD.img
arm-none-eabi-objcopy -O elf32-littlearm \

-B arm --rename-section\
.data=.forth -I binary ../usbforth/LEOPARD.img\
forth.o

https://github.com/rbsexton/gecko/blob/master/leopard/usbsupervisor/Makefile
https://github.com/rbsexton/gecko/blob/master/leopard/usbsupervisor/efm32lg-package.ld

Loading the binary
Vendor Tools / Openocd

Load a binary and tell it where

Use intel .hex format - it specifies a memory address

gdb - use the one that got built with gcc.

Not so good with binary files. You can use objcopy to
make them into .elfs

Generate a .o file for use with gdb & the Black Magic probe.
arm-none-eabi-objcopy -O elf32-littlearm \

-B arm --rename-section .data=.text\
-I binary packaged.bin packaged.elf

Demo - Threads

Resources
https://github.com/rbsexton/cm3lib

Assembly files for launching forth

lockless ringbuffers

https://github.com/rbsexton/cm3forthtools

Atomic operatons for Forth

AAPCS wrappers

Improved scheduler

https://github.com/rbsexton/cm3lib
https://github.com/rbsexton/cm3forthtools

Questions?

http://www.kudra.com/forth

http://www.kudra.com/rs/forth.html

Advanced Techniques

Lock-Avoidance
Cortex-M3 and up - LDREX/STREX

code BICEX! \ addr mask --
 ldr r0, [psp], # 4 \ Address
L$1:
 ldrex r1, [r0]
 bic r1, r1, tos
 strex r2, r1, [r0]
 cmp r2, # 0
 b .ne L$1
 ldr tos, [psp], # 4
 next,
end-code

https://github.com/rbsexton/cm3forthtools/blob/master/CortexM3Atomic.fth

https://github.com/rbsexton/cm3forthtools/blob/master/CortexM0Atomic.fth

Cortex-M0 - Irq Disable

Run-time linking 1/2
static volatile uint32_t tick_cnt;

// There must be a matching forth structure for this.
typedef struct {
 volatile uint32_t *ticks;

} tSharedData;
tSharedData theshareddata
 // This section is pinned to the
 // beginning of SRAM. linker must KEEP() it.
 __attribute__ ((section(".shareddata"))) =
 { &tick_cnt };

The beginning of SRAM is a reliably-known location thats similar
across Cortex-M devices.

Run-time linking 2/2

Simple, but must be hand-maintained. Scripting/Automation
is required for this to scale

\ Access to the interconnect things - It’s got to match the C side.
$10000000 equ ICROOT
struct /INTER \ -- size
 int inter.ticks
end-struct
: ticks icroot inter.ticks @ ;
———————————————————————————————————————-
dasm ticks
TICKS
(0000:6894 0248 .H) ldr r0, [PC, # $08] (@$68A0=$10000000)
(0000:6896 0568 .h) ldr r5, [r0, # $00]
(0000:6898 361F 6.) sub .s r6, r6, # $04
(0000:689A 3760 7`) str r7, [r6, # $00]
(0000:689C 2F46 /F) mov r7, r5
(0000:689E 7047 pG) bx LR
12 bytes, 6 instructions.

Run-time linking 3/2
typedef struct {

// This union is a bit crazy, but its the simplest way of
// getting the compiler to shut up.
union {

void (*fp) (void);
int* ip;
unsigned int ui;
} p; ///< Pointer to the object of interest (4)

int16_t size; ///< Size in bytes (6)
int16_t count; ///< How many (8)
int8_t kind; ///< Is this a variable or a constant? (9)
uint8_t strlen; ///< Length of the string (10)
const char name[DYNLINKNAMEMLEN]; ///< Null-Terminated C string.
} runtimelink_t;

const runtimelink_t dynamiclinks[] __attribute__((aligned(sizeof(runtimelink_t)))) = {
 { { .ui = sizeof(runtimelink_t) }, 0, 0, 'C', FORTHNAME("RECORDLEN") },
 { { .ulp = &g_ulSystemTimeMS }, sizeof(uint32_t), 1, 'V', FORTHNAME("SYSTIMEMS") },
 { { .fp = (void (*) (void)) &getMSFunction}, sizeof(uint32_t), 1, 'C', FORTHNAME("TEST-FN") },
 { { .ui = 0 } ,0,0,0,FORTHNAME("") }
 };

https://github.com/rbsexton/sockpuppet/blob/master/sapi/sapi-dylink.h
https://github.com/rbsexton/sockpuppet/blob/master/sapi/sapi-dylink.c
https://github.com/rbsexton/sockpuppet/blob/master/forth/dylink.fth

https://github.com/rbsexton/sockpuppet/blob/master/sapi/sapi-dylink.c
https://github.com/rbsexton/sockpuppet/blob/master/sapi/sapi-dylink.c

Getting to User/Thread

Why? MPU can only usefully trap user faults

NVIC Uses the link register to trigger the change

Build a fake stack so it looks like a system startup

reset the stack pointer

install the program counter into the fake stack

initalize the status register

R0
R1

R2
R3

R12
LR

PC
xPSR

https://github.com/rbsexton/sockpuppet/blob/master/sapi/pendsv-launcher.c

