Can Forth liberate programming
from the von Neuman style?

Language creation in Forth and Backus style functional programming

Key lessons

* Principles of array/functional programming
* Creating a “language” in Forth
 Demonstration: Chinese Multiplication Table

John Backus Achievements

 Invented FORTRAN

* Invented Backus Normal Form (BNF) for describing syntax

* Helped popularise functional programming
e 1977 Turing Award

e Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs

Conventional programming languages are growing An alternative functional style of programming is

ever more enormous, but not stronger. Inherent defects founded on the use of combining forms for creating
at the most basic level cause them to be both fat and programs. Functional programs deal with structured
weak: their primitive word-at-a-time style of program- data, are often nonrepetitive and nonrecursive, are hier-
ming inherited from their common ancestor—the von archically constructed, do not name their arguments, and
Neumann computer, their close coupling of semantics to do not require the complex machinery of procedure
state transitions, their division of programming into a declarations to become generally applicable. Combining
world of expressions and a world of statements, their forms can use high level programs to build still higher
inability to effectively use powerful combining forms for level ones in a style not possible in conventional lan-
building new programs from existing ones, and their lack guages.

of useful mathematical properties for reasoning about

programs.

5.2 A Functional Program for Inner Product

5.1 A von Neumann Program for Inner Product Def Innerproduct
= (Insert +)o(ApplyToAll X)oTranspose
c=0
for i = 1 step 1 until n do
¢ = ¢ + afi]xbfi] Def IP = (/+)o(aX)°Trans.

Or, in abbreviated form:

Language Creation in Forth

5.2 A Functional Program for Inner Product

Forth is the reverse of Backus’ notation.
Def Innerproduct

= (Insert +)o(ApplyToAll X)oTranspose
Or, in abbreviated form:

Def IP = (/+)o(aX)oTrans.

\ *2 is multiplication for a two element list
\eg.<|23|>2*==6
:IP trans [‘] *2 all ['] + ins ;

Just need to define the words used in the paper

Bump allocation can be used for simple examples

Internals

0 value pmem \ pointer to free memory cell
0 value vlen \ REGISTER vector length

0 value fun \ REGISTER function

O value lv \ REGISTER (temp) last depth
0 value pvec \ REGISTER pointer to vector
create mem MEM_SIZE allot \ create free memory pool

: reset mem MEM_SIZE + to pmem ; \ deallocate all memory

len @ ; \ access vector length (stored in first cell of vector)

: pvec@+ pvec cell+ dup to pvec @ ; \ auto increment and fetch pvec (C.H. Moore style)

: new pmem mem > 0= abort" out of mem" pmem swap cells - dup to pmem ; \ memory allocation

:vecdup >r0do 1 new !loop 1 new r>over!; \ create vector of N on stack
\ Friendly vector syntax: <| xyz |>

:<| Ivdepthtolv ; \ Save reg val on stack, record depth

: |> depth Iv - vec swap to Iv; \ Check change in depth and create vector, restore reg val

Example (live demo)

* Chinese multiplication table from 1to 9

Produce all multipliers and multiplicands
Produce all products

Combine multipliers, multiplicands and products

B W

Filter excess

<|111]>

<|122|><]|224|>

<|133|><|236]|> <|339|>

<|144|><|248|> <|3412|><|4416|>

<|155|><]|2510|><|3515|><| 4520 |><|5525|>
<|166|><|2612|><|3618|><|4624|><|5630|><|6636|>
<|177|><|2714|><|3721|><|4728|><|5735|><|6742|><]|7749 |>
<|188|><|2816|><|3824|><|4832|><|5840|><|6848 |><| 7856 |><|8864 |>
<|199|><]|2918 |><| 3927 |><|4936|><|5945|><| 6954 |><|7963|><|8972|><]|9981 |>

What did | learn?

* Perfect Python interpreter: more than year and unusable
* Forth mini language: 2 days and usable

* Forth is excellent for exploring new languages and ideas. It is good for
prototyping

* Function level programming works well for parallelism

