
CREATE DOES>

SVFIG
JuLY 22, 2023
Bill Ragsdale

Today

We will examine the history and use of CREATE

DOES>.

1968 <BUILDS DOES>

1982 CREATE DOES>

2023 CREATE DOES> In Win32Forth

What?

CREATE DOES> creates words that create

words.

Can be used to create CONSTANT, VARIABLE,

ARRAYS. [Or a complete Forth.]

And data-base fields.

And assembler op-codes.

Generally to create words with a common

similarity.

How?

: PARENT
 CREATE , \  the creator portion
 DOES> @ DROP ; \  the run-time portion

0x1234 PARENT CHILD \ an example defined word

PARENT will create a family of child words that

share a common execution but have individual

parameters.

Examples

: CONSTANT CREATE , DOES> @ ;

0x10 CONSTANT HEX-BASE

: OP-CODE CREATE , DOES> @ , ;

0x5F OP-CODE CLC, 0xBB OP-CODE PUSH,

: FIELD CREATE OVER , + DOES @ ORIGIN + ;

0 20 FIELD NAME CELL FIELD AGE CELL FIELD WEIGHT

DROP

History: 1960s
The form created by Charles Moore in the 1960s and

carried through until 1982.

: PARENT <BUILDS , DOES> @ DROP ;

0x1234 PARENT CHILD

<PARENT-header> <docol> <BUILDS , DOES> @ DROP ENDCODE

<CHILD-header) <dodoes> <pointer> 0x1234

History: 1960s

: <BUILDS 0 CONSTANT ; \ Create header and
 \ one parameter for DOES>

: DOES> \ Rewrite PFA with calling hi-level code address
 \ Rewrite CFA pointing to this dodoes code.
 R> LATEST PFA !
 ;CODE \ dodoes follows
 IP 1+ LDA, PHA, IP LDA, PHA, \ begin Forth nesting
 2 # LDY, W)Y LDA, IP STA, \ fetch address low byte
 INY, W)Y LDA, IP 1+ STA, \ then high byte to W
 CLC, W LDA, 4 # ADC, PHA, \ address of code into IP
 W 1+ LDA, 00 # ADC, PUSH JMP, \ interpret in PARENT word

PARENT CREATE , DOES> @ , ;
0x1234 PARENT CHILD

<PARENT-header> <docol> CREATE ,
 (DODOES>) here+cell JSR, DODOES @ DROP ENDCODE

<CHILD-header> <cfa> 0x1234

DOES> creates a ‘fake’ code word: here+cell JSR dodoes

When CHILD executes the JSR, DODOES locates of the in-line

code pfa address of CHILD (holding 0x1234) placed on the

stack.

History: 1982 new DOES>

Advantages

▪ CREATE replaces <BUILDS

▪ Uses simulated in-line code for interpretation.

▪ The extra pointer in the child word is not

needed.

▪ Tick (‘) properly returns the parameter address

in CHILD

In Win32Forth

All code must be in the CODE memory allocation.

Split headers.

Therefor the simulated in-line code can’t be used.

The answer is to place support in the CODE

memory, specific to each CREATE DOES>

defining word. Used to locate the run-time portion

for the child word.

A common DODOES is used.

(DODOES>) Is The Key

▪ Creates an unnamed code fragment:

 <proto-dodoes>.

▪ In <proto-dodoes> places MOV W, <execution

code in PARENT>

▪ Compile a long relative jump to the existing DOCOL.

▪ DOCOL: Places the CHILD’s parameter address on

the stack and directs execution to address in W, high-

level code in the PARENT.

W32F How
PARENT
CREATE ,
DOES> @
, ;
0.x1234
PARENT
CHILD

<PARENT-header> CREATE ,

 (DODOES>) <proto-does> @ DROP UNNEST

<CHILD-header> <proto-does> 0x1234

<proto-does>

 C7 C1 MOV W, <addr after <proto-does> \ destination

 FC E9 JMP dodoes
dodoes:
 53 push TOS \ make room on stack
 89 75 FC mov -4 [RP], IP \ push IP to return stack
 8B F1 mov IP, ecx \ new IP
 8D 58 04 lea TOS, 4 [W] \ push address of parameter field
 8B 46 FC mov W, -4 [IP] \ x on to return stack
 ED 04 sub RP, # 4 \ confirm space on return stack
 FF 20 exec c;

Summary

The New DOES> was introduced by Chuck at the memorable
1982 FORML conference. We were immediately astonished.

Another approach uses ;CODE. Maybe we’ll discuss this another
time.

CREATE, DOES> and ;CODE could be used as the core of a meta-
compiler. Now they are just adjuncts.

	Slide 1
	Slide 2: Today
	Slide 3: What?
	Slide 4: How?
	Slide 5: Examples
	Slide 6: History: 1960s
	Slide 7: History: 1960s
	Slide 8: History: 1982 new DOES>
	Slide 9: Advantages
	Slide 10: In Win32Forth
	Slide 11: (DODOES>) Is The Key
	Slide 12: W32F How
	Slide 13: Summary
	Slide 14
	Slide 15
	Slide 16

