CREATE DOES>

SVFIG
JulY 22, 2023
Bill Ragsdale

Today

We will examine the history and use of CREATE
DOES >.

1968 <BUILDS DOES>
1982 CREATE DOES>

2023 CREATE DOES> In Win32Forth

What?

CREATE DOES> creates words that create
words.

Can be used to create CONSTANT, VARIABLE,
ARRAYS. [Or a complete Forth.]

And data-base fields.
And assembler op-codes.

Generally to create words with a common
similarity.

How?

PARENT will create a family of child words that
share a common execution but have individual
parameters.

: PARENT

CREATE , v € the creator portion
DOES> @ DROP ; \ € the run-time portion

021234 PARENT CHILD Y an example defined word

Examples

: CONSTANT CREATE , DOES> @ ;

8218 CONSTANT HEs-BASE

: OP-CODE CREATE , DOES> ©@ , ;
8x5F OP-CODE CLC, 8xBB OP-CODE PUSH,

: FIELD CREATE OUER , + DOES @ ORIGIH +
8 28 FIELD HAME CELL FIELD AGE CELL FIELD WEIGHT

DROFP

History: 1960s

The form created by Charles Moore in the 1960s and
carried through until 1982.

: PAREHT <BUILDS , DOES> o DROP

821234 PARENT CHILD

<PARENT-header> <docol> <BUILDS , DOES> 4 DROP EHDCODE

/

LCHILD-header) {dodoes> <pointer> Bx1234

History: 1960s

<BUILDS B CONSTANT ; “ Create header and
“ one parameter for DOES>

DOES> % Rewrite PFA with calling hi-level code address
% Rewrite CFA pointing to this dodoes code.

R> LATEST PFA *?
;CODE
IP 1+ LDA, PHA, IP LDA, FPHA,
2 # LDY, W)Y LDA, IP 5TA,
INY, W }¥Y LDA, IP 1+ 5TA,
CLC, W LDA, 4 # ADC, PHA,
W1+ LDA, 88 # ADC, PUSH JHP,

dodoes follows

begin Forth nesting
fetch address low byte
then high byte to W
address of code into IP

\
\
\
\
\
Y interpret in PAREHT word

History: 1982 new DOES>

PAREHT CREATE , DOES> d -
821234 PARENT CHILD

<PAREHT-header> <docol> CREATE ,
{DODDES>) here+cell J3R, DODODES 4 DROP EHDCODE

T
{CHILD-header> <cfa> B80x1234
DOES > creates a “‘fake’ code word: here +cell JSR dodoes

When CHILD executes the JSR, DODOES locates of the in-line
code pfa address of CHILD (holding Ox1234) placed on the
stack.

Advantages

CREATE replaces <BUILDS

Uses simulated in-line code for interpretation.
The extra pointer in the child word is not
needed.

Tick () properly returns the parameter address
in CHILD

In Win32Forth

All code must be in the CODE memory allocation.
Split headers.

Therefor the simulated in-line code can’t be used.

The answer is to place support in the CODE
memory, specific to each CREATE DOES >

defining word. Used to locate the run-time portion
for the child word.

A common DODOES is used.

(DODOES>) Is The Key

Creates an unnamed code fragment:

< proto-dodoes >.
In <proto-dodoes> places MOV W, <execution
code in PARENT >
Compile a long relative jump to the existing DOCOL.
DOCOL: Places the CHILD’s parameter address on
the stack and directs execution to address in W, high-
level code in the PARENT.

W32F How

{PARENT-header> CREATE ,
{DODOES>) <proto-does> @ DROP UNNEST

{CHILD-header> <proto-does> 0x1234

{proto-does>
C7 C1 MOU W, <addr after <proto-does> % destination
FC E9 JHP dodoes

dodoes:
53 push TOS % make room on stack
89 /5 FC mov -4 [RP], IP % push IP to return stack
8B F1 mou IP, ecx Y new IP
8D 58 84 1lea TO05, 4 [W] Y push address of parameter field
8B 46 FC mov U, -4 [IP] W ® on to return stack
ED 84 sub RP, # 4 Y confirm space on return stack

FF 28 EXeC C;

Summary

The New DOES> was introduced by Chuck at the memorable
1982 FORML conference. We were immediately astonished.

Another approach uses ;CODE. Maybe we’ll discuss this another
time.

CREATE, DOES> and ;CODE could be used as the core of a meta-
compiler. Now they are just adjuncts.

	Slide 1
	Slide 2: Today
	Slide 3: What?
	Slide 4: How?
	Slide 5: Examples
	Slide 6: History: 1960s
	Slide 7: History: 1960s
	Slide 8: History: 1982 new DOES>
	Slide 9: Advantages
	Slide 10: In Win32Forth
	Slide 11: (DODOES>) Is The Key
	Slide 12: W32F How
	Slide 13: Summary
	Slide 14
	Slide 15
	Slide 16

