A novel execution model for
GAl44

Michael Schuldt, Mark Flamer, James Bowman

August 28, 2017

http://www.greenarraychips.com/

Instructions are grouped into polyads, 1-4 micro-ops packed
into an 18-bit word. These 18-bit polyads are the basic unit of
execution. Unused slots are NOPs.

A crucial feature of the GAM4 is that each node can execute
instructions from its neighbor. This is "port execution” - you
just jump to an 10 port, and the node executes whatever it
receives.

That’s how the GA144 boots. ROM in the SPI node (for example)
reads out the SPI contents and sends it to a neighbor. These
instructions can make the neighbor do anything, such as load

RAM or set up registers, or even send some instructions to

its neighbor. This can be extended indefinitely, potentially

making a boot chain that covers the whole chip.

With one modification, this bootstrap procedure is the basis

for the new execution model. The spi node boots by reading a
stream from flash, but instead of loading from flash at address

zero, it reads an address from the running node.

Each code sequence is a *fragment®, accessed by a fragment

number - a scaled byte offset into flash. Fragments are sized

sequences of instruction polyads - these execute on the X

node. Every fragment must end with the instructions to tell |
which fragment is next. One important restriction is that

fragments can only execute from the beginning,

UNTIL

Some examples of code flow with fragments like this.

In fact a program can be broken up into fragments like this.
Every time there is a branch or label, there is a fragment
boundary. In other words, a fragment is a basic block: a

sequence of non-branch instructions.

But consider subroutine calls - in other words, Forth words. To

call a word FOO, a fragment needs to request that FOO

executes next, but also must specify another fragment to be

executed when FOO completes. So there must be a call-return

.\lill'k

he top of the parameter stack (TOS) is the hardware
top-of-stack (T) in X. The rest of the stack is in RAM in X. The
X node’s A register points to the top of the stack, which grows
down. There are about 24 cells for the parameter stack.

I'he return stack is in node R. So to words >R, R@ and R> X
has to make a request to R. Like the parameter stack, the
return stack grows down. The return stack is about 50 cells
deep.

The IP is a little bit subtle. It is really the current location that

F is fetching from flash, It's not tracked directly, except as the

fragment number that flows from R to F.

705

605

505

706

606

506

406

507

708

60¢

actual layout.

The RAM controller is cyan, and its storage nodes are yellow.

192 words total, about 384 bytes.

+ fetches the value from the parameter stack, then adds them,

leaving the result in T

CODE + #returns #inline
@+ . +

DROP fetches from the stack into T. Note that it doesn't need

to balance X's hardware stack::

CODE DROP #returns #inline
Q@+

SWAP again does not need to balance the hardware stack

CODE SWAP #returns #inline
@ over !

As described, there needs to be ‘glue’ fragments between
consecutive calls. So FOO needs three glue fragments after
calls to A, B and (

Of course the tail call optimization can remove one of these.
But actually can do better than this

The first fragment of FOO pushes the fragment numbers of B
and C on the R stack, then jumps to A. When A returns, it
executes B. When B returns it executes C.

Ihis is not new - it's sometimes used by exploit code where it's
called "return oriented programming”

https://en.wikipedia.org/wiki/Return-oriented_programming

So FOO compiles to a single setup fragment. The

return stack needs to be deep enough to hold a chain
of calls like this - so the implementation has a 50 cell
R stack.

And of course we can go even further. If the words are all

inlinable, then FOO doesn't need any calls at all. Compilation in

this case is simple concatenation of the previous words.

The tixed overhead of call/return is avoided.
Uses flash space. The price of flash is about 1 cent for every

100 Kbytes.

One more thing.

Some fragments jumps back to thmself - like a FOR, DO or
UNTIL.

It the fragment is \1!';|lght-|nw code, it's an easy transformation

to compile a native jump back to the start of the code instead
of re-requesting the same fragment.

This optimization makes things about 200X faster.

