
NativeClient Forth

Saturday November 19, 2011



Motivation

● NativeClient allows machine code to run in the browser.
● Forth excels at bootstrapping new environments.
●My past Javascript Forths have been slow.



NativeClient (NaCl)

● Static Verification Sandbox
●Multi-threaded
● Execution in the Web Browser (currently requires web 

store install)
● Resource restrictions similar to Javascript
● Performance similar to machine code ~15%
●Only option for native code (machine code) under 

ChromeOS/ChromiumOS
● Sandbox versions for x86, x86-64, (ARM coming soon)
● Portable NaCl (PNaCl) coming soon



NaCl Sandboxes

● Each 32-byte block of code can be straight line 
disassembled

● All jumps / calls / returns must be to a 32-byte boundary
○ Enforced by requiring masking off bottom bits before 

control flow instructions
● Data writes restricted via page faults / segments
● I/O via system provided 'trampolines'
● Special compiler (gcc/llvm) - validation at load time
● Dynamic code (validated) via trampoline calls



Implementation

● Indirect-threaded kernel in ~750 lines of C code
○ Uses gcc computed gotos for NEXT
○ Avoids having to code x86-32 + x86-64 manually

● Kernel uses ~250 lines Javascript for simple I/O
●Google Accounts used to manage access to cloud storage
● Abandoned previous ColorForth based implementation 

○ communication model to NaCl changed before release
○ it was only x86-32
○ given alignment constraints, its subroutine threading 

was probably slower than indirect threading



Moving Parts



Future Directions

● Implement PPAPI bindings
○ Allows 2d/3d graphics + sound
○ Allows direct HTTP

●Generate platform specific shims (create .EXEs etc for 
download)

● Turn into a per-page extension (allow inline Forth on 
webpages)

● Resurrect dynamic code generation for CODE words or 
subroutine-threading / optimization



Demo / Code Tour

Questions?


