Program Synthesis for Forth

 Forth Day 2012Computer Science UC Berkeley

Ras Bodik
Mangpo Phitchaya Phothilimthana
Tikhon Jelvis
Rohin Shah

Synthesis with "sketches"

Extend your language with two constructs

result: int bar (int x) implements foo \{ return x << 1;
\}
instead of implements, assertions over safety properties can be used

Synthesis as search over candidate programs

Partial program (sketch) defines a candidate space we search this space for a program that meets the spec ϕ

Usually can't search this space by enumeration

- space too large (>> 10^{12})
- aggressive search pruning needed

Describe the space symbolically, feed to SAT solver solution to constraints encoded in a logical formula gives values of holes, indirectly identifying a correct program

Example: Parallel Matrix Transpose

Example: 4×4-matrix transpose with SIMD

a functional (executable) specification:

```
int[16] transpose(int[16] M) \{
    int[16] T = 0;
    for (int i = 0; i < 4; i++)
        for (int \(\mathrm{j}=0\); j < 4; j++)
        \(\mathrm{T}[4\) * \(\mathrm{i}+\mathrm{j}]=\mathrm{M}[4\) * \(\mathrm{j}+\mathrm{i}]\);
    return T ;
\}
```

This example comes from a Sketch grad-student contest

Implementation idea: parallelize with SIMD

Intel SHUFP (shuffle parallel scalars) SIMD instruction:

$$
\text { return }=\text { shufps(x1, x2, imm8 :: bitvector8) }
$$

High-level insight of the algorithm designer

Matrix M transposed in two shuffle phases

Phase 1: shuffle M into an intermediate matrix S with some number of shufps instructions

Phase 2: shuffle S into an result matrix T with some number of shufps instructions

Synthesis with partial programs helps one to complete their insight. Or prove it wrong.

The SIMD matrix transpose, sketched

```
int[16] trans_sse(int[16] M) implements trans {
    int[16] S = 0, T = 0;
    S[??::4] = shufps(M[??::4], M[??::4], ??);
    S[??::4] = shufps(M[??::4], M[??::4], ??);
                            Phase }
..
S[??::4] = shufps(M[??::4], M[??::4], ??); ]
T[??::4] = shufps(S[??::4], S[??::4], ??);
T[??::4] = shufps(S[??::4], S[??::4], ??);
                                    Phase 2
T[??::4] = shufps(S[??::4], S[??::4], ??);
    return T;

\section*{The SIMD matrix transpose, sketched}
```

int[16] trans_sse(int[16] M) implements trans {
int[16] S = 0, T = 0;
repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);
repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);
return T;
}
int[16] trans_sse(int[16] M) implements trans { // synthesized code
S[4::4] = shufps(M[6::4], M[2::4], 11001000b);
S[0::4] = shufps(M[11::4], M[6::4], 10010110b);
S[12::4] = shufps(M[0::4], M[2::4], 10001101b);
S[8::4] = shufps(M[8::4], M[12::4], 11010111b);
T[4::4] = shufps(S[11::4], S[1::41, 10111100b):
T[12::4] = shufps(S[3 From the contestant email:
T[8::4] = shufps(S[4 Over the summer, I spent about 1/2
T[0::4] = shufps(S[1 a day manually figuring it out.
Synthesis time: <5 minutes.

```

\section*{Demo: transpose on Sketch}

\section*{Try Sketch online at http://bit.ly/sketch-language}

\section*{Synthesis for Forth and ArrayForth}

\section*{Applications of synthesis for ArrayForth}

Synthesizing optimal code
Input: unoptimized code (the spec)
Search space of all programs

Synthesizing optimal library code
Input: sketch + spec
Search completions of the sketch

Synthesizing communication code for GreenArray
Input: program with virtual channels
Compile using synthesis

\section*{1) Synthesizing optimal code}
unoptimized code (spec)


\section*{Our Experiment}


\section*{Our Experiment}


\section*{Comparison}


\section*{Preliminary Synthesis Times}

Synthesizing a program with
8 unknown instructions
takes 5 second to 5 minutes

Synthesizing a program up to
~25 unknown instructions
within 50 minutes

\section*{Preliminary Results}
\begin{tabular}{|c|c|c|c|}
\hline Program & Description & \begin{tabular}{l}
Approx. \\
Speedup
\end{tabular} & Code length reduction \\
\hline \(x-(x \& y)\) & Exclude common bits & 5.2 x & 4 x \\
\hline \(\sim(x-y)\) & Negate difference & 2.3 x & 2x \\
\hline \(x \mid y\) & Inclusive or & 1.8x & 1.8x \\
\hline \((x+7) \&-8\) & Round up to multiple of 8 & 1.7x & 1.8x \\
\hline \((x \& m) \mid(y \& \sim m)\) & Replace \(\mathbf{x}\) with \(\mathbf{y}\) where bits of \(m\) are 1 's & 2x & 2x \\
\hline \((y \& m) \mid(x \& \sim m)\) & Replace \(\mathbf{y}\) with \(\mathbf{x}\) where bits of \(m\) are 1's & 2.6x & 2.6x \\
\hline \[
\begin{aligned}
& x^{\prime}=(x \& m) \mid(y \& \sim m) \\
& y^{\prime}=(y \& m) \mid(x \& \sim m)
\end{aligned}
\] & Swap \(\mathbf{x}\) and \(\mathbf{y}\) where bits of \(m\) are 1 's & 2x & 2x \\
\hline
\end{tabular}

\section*{Code Length}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Program } & \begin{tabular}{l} 
Original \\
Length
\end{tabular} & Output Length \\
\hline\(x-(x \& y)\) & 8 & 2 \\
\hline\(\sim(x-y)\) & 8 & 4 \\
\hline\(x \mid y\) & 27 & 15 \\
\hline\((x+7) \&-8\) & 9 & 5 \\
\hline\((x \& m) \mid(y \& \sim m)\) & 22 & 11 \\
\hline\((y \& m) \mid(x \& \sim m)\) & 21 & 8 \\
\hline \begin{tabular}{l} 
( \(~ \& ~\)
\end{tabular} (x \& m) \(\mid(y \& \sim m)\) & 43 & 21 \\
\(y^{\prime}=(y \& m) \mid(x \& \sim m)\) & & \\
\hline
\end{tabular}

\section*{2) Synthesizing optimal library code}

Input:
Sketch: program with holes to be filled
Spec: program in any programing language

Output:
Complete program with filled holes

\section*{Example: Integer Division by Constant}

Naïve Implementation:
Subtract divisor until reminder < divisor.
\# of iterations = output value Inefficient!
Better Implementation:
\[
\text { quotient }=(M * n) \gg s
\]
\begin{tabular}{ll}
\(n\) & - input \\
\(M\) & - "magic" number \\
\(s\) & - shifting value
\end{tabular}
\(M\) and \(s\) depend on the number of bits and constant divisor.

\section*{Example: Integer Division by 3}

Sketch in ArrayForth:
: div3 ?? a! o 17 for +* unext
push dup or pop
?? for +* unext a;
Spec in C: int div3(int n) \{
return \(\mathrm{n} / 3\);
\}

\section*{Preliminary Results}
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Program } & \multicolumn{1}{c|}{ Solution } & \begin{tabular}{c} 
Synthesis \\
Time \((s)\)
\end{tabular} & \begin{tabular}{c} 
Verification \\
Time \((s)\)
\end{tabular} & \# of Pairs \\
\hline\(x / 3\) & \((43691 * x) \gg 17\) & 2.3 & 7.6 & 4 \\
\hline\(x / 5\) & \(\left(209716^{*} x\right) \gg 20\) & 3 & 8.6 & 6 \\
\hline\(x / 6\) & \(\left(43691^{*} x\right) \gg 18\) & 3.3 & 6.6 & 6 \\
\hline\(x / 7\) & \((149797 * x) \gg 20\) & 2 & 5.5 & 3 \\
\hline \begin{tabular}{l} 
deBruijn: \(\log _{2} x\) \\
\((x\) is power of 2\()\)
\end{tabular} & \begin{tabular}{l} 
deBruijn \(=46\), \\
Table \(=\) \\
\(\{7,0,1,3,6,2,5,4\}\)
\end{tabular} & 3.8 & N/A & 8 \\
\hline
\end{tabular}

Note: these programs work for 18 -bit number except Log2x is for 8 -bit number.

\section*{3) Communication Code for GreenArray}

Synthesize communication code between nodes

Interleave communication code with computational code such that

There is no deadlock.
The runtime of the synthesized program is minimized.

\section*{Future Roadmap}


\section*{Language Design}
- Good for partitioning
- Easy to compile to arrayForth
\(\square\)
\(\square\)

\(\square\)

\section*{Partitioning}
- Minimize number of communication
- Each block fits in each node


Placement \&
Communication
- Minimize
communication cost
- Reason about I/O pins

Comp1 Comp2 Comp3 Send X Comp4 Recv Y Comp5

Scheduling \&
Optimization
- Order that does not break dependency
- No Deadlock
- Find the fastest schedule

\section*{Proiect pipeline}


\section*{Preliminary Results \#1 (backup)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Program} & \multicolumn{2}{|l|}{Approx Runtime (ns)} & \multicolumn{2}{|l|}{Program Length} \\
\hline & Original & Optimized & Original & Optimized \\
\hline \(x-(x \& y)\) & 15.5 & 3 & 8 & 2 \\
\hline \(\sim(x-y)\) & 14 & 6 & 8 & 4 \\
\hline \(x \mid y\) & 9 & 5 & 27 & 15 \\
\hline \((x+7) \&-8\) & 24 & 14 & 9 & 5 \\
\hline \((x \& m) \mid(y \& \sim m)\) & 33 & 16.5 & 22 & 11 \\
\hline ( \(\mathrm{y} \& \mathrm{~m}\) ) | \((\mathrm{x} \& \sim \mathrm{~m})\) & 31.5 & 12 & 21 & 8 \\
\hline \[
\begin{aligned}
& x^{\prime}=(x \& m) \mid(y \& \sim m) \\
& y^{\prime}=(y \& m) \mid(x \& \sim m)
\end{aligned}
\] & 64.5 & 31.5 & 43 & 21 \\
\hline
\end{tabular}

\section*{Preliminary Results \#1 (backup)}
\begin{tabular}{|c|c|c|}
\hline Program & Original Program & Synthesized Program \\
\hline \(x-(x \& y)\) & over and-1.+. + & - and \\
\hline \(\sim(x-y)\) & -1. + . + - & over-. + \\
\hline \(x \mid y\) & over over or a! and a or & over - and . + \\
\hline \((x+7) \&-8\) & 7.+8-1. + and & 7. + 262136 and \\
\hline \((y \& m) \mid(x \& \sim m)\) & a! over over a - and push a and pop over over or push and pop or push & a! over over or a and over or push \\
\hline \((x \& m) \mid(y \& \sim m)\) & a and push a - and pop over over or push and pop or pop & over or a and or dup pop \\
\hline \[
\begin{aligned}
& x^{\prime}=(x \& m) \mid(y \& \sim m) \\
& y^{\prime}=(y \& m) \mid(x \& \sim m)
\end{aligned}
\] & a! over over a - and push a and pop over over or push and pop or push a and push a - and pop over over or push and pop or pop & a! over over or a and over or push over or a and or dup pop \\
\hline
\end{tabular}

\section*{Log Base 2 of Power of 2 (backup)}

Compute \(\lg \mathbf{x}\), where \(\mathbf{x}\) is a power of 2 .
```

const uint64_t deBruijn = 0x022fdd63cc95386d;
const unsigned int convert[64] =
{ 0, 1, 2, 53, 3, 7, 54, 27,
4, 38, 41, 8, 34, 55, 48, 28,
62, 5, 39, 46, 44, 42, 22, 9,
24, 35, 59, 56, 49, 18, 29, 11,
63, 52, 6, 26, 37, 40, 33, 47,
61, 45, 43, 21, 23, 58, 17, 10,
51, 25, 36, 32, 60, 20, 57, 16,
50, 31, 19, 15, 30, 14, 13, 12};
r = convert[(x*deBruijn) >> 58];

```

Sketch:
dup dup or a!
?? !+ ?? !+ ?? !+ ?? !+ ?? !+ ?? !+ ?? !+ ?? !+
?? a! 017 for +* unext
a 2/2/2/2/2/7 and a! @

\title{
Inductive Synthesis, Phrased as Constraint Solving
}

\section*{What to do with a program as a formula?}

Assume a formula \(\mathrm{S}_{\mathrm{P}}(\mathrm{x}, \mathrm{y})\) which holds iff program \(\mathrm{P}(\mathrm{x})\) outputs value y
```

program: f(x) { return x + x }

```
formula: \(\quad S_{f}(x, y): y=x+x\)

This formula is created as in program verification with concrete semantics [CMBC, Java Pathfinder, ...]

\section*{With program as a formula, solver is versatile}

Solver as an interpreter: given \(x\), evaluate \(f(x)\)
\[
S(x, y) \wedge x=3 \quad \text { solve for } y \quad \boldsymbol{y} \mapsto \mathbf{6}
\]

Solver as a program inverter: given \(f(x)\), find \(x\)
\[
S(x, y) \wedge y=6 \quad \text { solve for } x \quad \boldsymbol{x} \mapsto \mathbf{3}
\]

This solver "bidirectionality" enables synthesis

\section*{Search of candidates as constraint solving}
\(S_{P}(x, h, y)\) holds iff sketch \(P[h](x)\) outputs \(y\). spec(x) \{ return \(\mathrm{x}+\mathrm{x}\}\)
sketch \((\mathrm{x})\) \{ return x << ?? \} \(\quad S_{\text {sketch }}(x, y, h): y=x * 2^{h}\)
The solver computes \(h\), thus synthesizing a program correct for the given x (here, \(\mathrm{x}=2\) )
\[
S_{\text {sketch }}(x, y, h) \wedge x=2 \wedge y=4 \quad \text { solve for } h \quad \boldsymbol{h} \mapsto \mathbf{1}
\]

Sometimes \(h\) must be constrained on several inputs
\[
\begin{aligned}
& S\left(x_{1}, y_{1}, h\right) \wedge x_{1}=0 \wedge y_{1}=0 \wedge \\
& S\left(x_{2}, y_{2}, h\right) \wedge x_{2}=3 \wedge y_{2}=6 \quad \text { solve for } h \quad \boldsymbol{h} \mapsto \mathbf{1}
\end{aligned}
\]

\section*{Inductive synthesis}

\section*{Our constraints encode inductive synthesis:}

We ask for a program \(P\) correct on a few inputs.
We hope (or test, verify) that \(P\) is correct on rest of inputs.```

