
Program Synthesis for Forth
Forth Day 2012

Ras Bodik
Mangpo Phitchaya Phothilimthana
Tikhon Jelvis
Rohin Shah

Computer Science
UC Berkeley

Synthesis with “sketches”

2

spec: int foo (int x) {

return x + x;
}

sketch: int bar (int x) implements foo {

return x << ??;
}

result: int bar (int x) implements foo {

return x << 1;
}

Extend your language with two constructs

2

𝜙 𝑥, 𝑦 : 𝑦 = foo(𝑥)

?? substituted with an
int constant meeting 𝜙

instead of implements, assertions over safety properties can be used

Synthesis as search over candidate programs

Partial program (sketch) defines a candidate space

we search this space for a program that meets the spec 𝜙

Usually can’t search this space by enumeration

- space too large (≫ 1012)

- aggressive search pruning needed

Describe the space symbolically, feed to SAT solver

solution to constraints encoded in a logical formula gives
values of holes, indirectly identifying a correct program

3

Example: Parallel Matrix Transpose

4

Example: 4x4-matrix transpose with SIMD

a functional (executable) specification:

int[16] transpose(int[16] M) {

int[16] T = 0;

for (int i = 0; i < 4; i++)

for (int j = 0; j < 4; j++)

T[4 * i + j] = M[4 * j + i];

return T;

}

This example comes from a Sketch grad-student contest

55

Implementation idea: parallelize with SIMD

Intel SHUFP (shuffle parallel scalars) SIMD instruction:

return = shufps(x1, x2, imm8 :: bitvector8)

6

x1 x2

return

6

imm8[0:1]

High-level insight of the algorithm designer

Matrix 𝑀 transposed in two shuffle phases

Phase 1: shuffle 𝑀 into an intermediate matrix 𝑆 with some
number of shufps instructions

Phase 2: shuffle 𝑆 into an result matrix 𝑇 with some number
of shufps instructions

Synthesis with partial programs helps one to
complete their insight. Or prove it wrong.

7

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {

int[16] S = 0, T = 0;

S[??::4] = shufps(M[??::4], M[??::4], ??);

S[??::4] = shufps(M[??::4], M[??::4], ??);

…

S[??::4] = shufps(M[??::4], M[??::4], ??);

T[??::4] = shufps(S[??::4], S[??::4], ??);

T[??::4] = shufps(S[??::4], S[??::4], ??);

…

T[??::4] = shufps(S[??::4], S[??::4], ??);

return T;

}
8

Phase 1

Phase 2

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {

int[16] S = 0, T = 0;

repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);

repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);

return T;

}

int[16] trans_sse(int[16] M) implements trans { // synthesized code

S[4::4] = shufps(M[6::4], M[2::4], 11001000b);

S[0::4] = shufps(M[11::4], M[6::4], 10010110b);

S[12::4] = shufps(M[0::4], M[2::4], 10001101b);

S[8::4] = shufps(M[8::4], M[12::4], 11010111b);

T[4::4] = shufps(S[11::4], S[1::4], 10111100b);

T[12::4] = shufps(S[3::4], S[8::4], 11000011b);

T[8::4] = shufps(S[4::4], S[9::4], 11100010b);

T[0::4] = shufps(S[12::4], S[0::4], 10110100b);

}
9

From the contestant email:
Over the summer, I spent about 1/2

a day manually figuring it out.

Synthesis time: <5 minutes.

Demo: transpose on Sketch

Try Sketch online at http://bit.ly/sketch-language

10

http://bit.ly/sketch-language

Synthesis for Forth and ArrayForth

11

Applications of synthesis for ArrayForth

Synthesizing optimal code

Input: unoptimized code (the spec)

Search space of all programs

Synthesizing optimal library code

Input: sketch + spec

Search completions of the sketch

Synthesizing communication code for GreenArray

Input: program with virtual channels

Compile using synthesis
12

slower

faster

unoptimized code (spec)

optimal code

synthesizer

1) Synthesizing optimal code

Our Experiment

Register-based processor Stack-based processor

slower

faster

naive

optimized

spec

most optimal

hand

bit trick
synthesizer

Our Experiment

Register-based processor Stack-based processor

slower

faster

naive

optimized

spec

most optimal

hand

bit trick
synthesizer

Comparison

Register-based processor Stack-based processor

slower

faster

naive

optimized

spec

most optimal

translation

hand

bit trick

hand

synthesizer

Preliminary Synthesis Times

Synthesizing a program with

8 unknown instructions

takes 5 second to 5 minutes

Synthesizing a program up to

~25 unknown instructions

within 50 minutes

Preliminary Results

Program Description Approx.
Speedup

Code length
reduction

x – (x & y) Exclude common bits 5.2x 4x

~(x – y) Negate difference 2.3x 2x

x | y Inclusive or 1.8x 1.8x

(x + 7) & -8 Round up to multiple of 8 1.7x 1.8x

(x & m) | (y & ~m) Replace x with y where
bits of m are 1’s

2x 2x

(y & m) | (x & ~m) Replace y with x where
bits of m are 1’s

2.6x 2.6x

x’ = (x & m) | (y & ~m)
y’ = (y & m) | (x & ~m)

Swap x and y where bits
of m are 1’s

2x 2x

Code Length

Program Original
Length

Output Length

x – (x & y) 8 2

~(x – y) 8 4

x | y 27 15

(x + 7) & -8 9 5

(x & m) | (y & ~m) 22 11

(y & m) | (x & ~m) 21 8

x’ = (x & m) | (y & ~m)
y’ = (y & m) | (x & ~m)

43 21

2) Synthesizing optimal library code

Input:

Sketch: program with holes to be filled

Spec: program in any programing language

Output:

Complete program with filled holes

Example: Integer Division by Constant

Naïve Implementation:
Subtract divisor until reminder < divisor.
of iterations = output value Inefficient!

Better Implementation:

n - input
M - “magic” number
s - shifting value

M and s depend on the number of bits and constant divisor.

quotient = (M * n) >> s

Example: Integer Division by 3

Sketch in ArrayForth:
: div3 ?? a! 0 17 for +* unext
push dup or pop
?? for +* unext a ;

Spec in C:
int div3(int n) {

return n/3;
}

Preliminary Results

Program Solution Synthesis
Time (s)

Verification
Time (s)

of Pairs

x/3 (43691 * x) >> 17 2.3 7.6 4

x/5 (209716 * x) >> 20 3 8.6 6

x/6 (43691 * x) >> 18 3.3 6.6 6

x/7 (149797 * x) >> 20 2 5.5 3

deBruijn: Log2x
(x is power of 2)

deBruijn = 46,
Table =
{7, 0, 1, 3, 6, 2, 5, 4}

3.8 N/A 8

Note: these programs work for 18-bit number except Log2x is for 8-bit number.

3) Communication Code for GreenArray

Synthesize communication code between
nodes

Interleave communication code with
computational code such that

There is no deadlock.
The runtime of the synthesized program is
minimized.

Language?

Future Roadmap

Comp1
Comp2
Comp3
Send X
Comp4
Recv Y
Comp5

Language Design

• Good for partitioning
• Easy to compile to

arrayForth

Partitioning

• Minimize
number of
communication

• Each block fits in
each node

Placement &
Communication
• Minimize

communication
cost

• Reason about
I/O pins

Scheduling &
Optimization
• Order that does

not break
dependency

• No Deadlock
• Find the fastest

schedule

Project Pipeline

Preliminary Results #1 (backup)

Program Approx Runtime (ns) Program Length

Original Optimized Original Optimized

x – (x & y) 15.5 3 8 2

~(x – y) 14 6 8 4

x | y 9 5 27 15

(x + 7) & -8 24 14 9 5

(x & m) | (y & ~m) 33 16.5 22 11

(y & m) | (x & ~m) 31.5 12 21 8

x’ = (x & m) | (y & ~m)
y’ = (y & m) | (x & ~m)

64.5 31.5 43 21

Preliminary Results #1 (backup)
Program Original Program Synthesized Program

x – (x & y) over and - 1 . + . + - and

~(x – y) - 1 . + . + - over - . +

x | y over over or a! and a or over – and . +

(x + 7) & -8 7 . + 8 – 1 . + and 7 . + 262136 and

(y & m) | (x & ~m) a! over over a - and push a and
pop over over or push and pop
or push

a! over over or a and
over or push

(x & m) | (y & ~m) a and push a - and pop over over
or push and pop or pop

over or a and or dup pop

x’ = (x & m) | (y & ~m)
y’ = (y & m) | (x & ~m)

a! over over a - and push a and
pop over over or push and pop
or push a and push a - and pop
over over or push and pop or
pop

a! over over or a and
over or push over or a
and or dup pop

Log Base 2 of Power of 2 (backup)

Sketch:
dup dup or a!
?? !+ ?? !+ ?? !+ ?? !+ ?? !+ ?? !+ ?? !+ ?? !+
?? a! 0 17 for +* unext
a 2/ 2/ 2/ 2/ 2/ 7 and a! @

Inductive Synthesis,
Phrased as Constraint Solving

30

What to do with a program as a formula?

Assume a formula SP(x,y) which holds iff program P(x)
outputs value y

program: f(x) { return x + x }

formula: 𝑆𝑓 𝑥, 𝑦 : 𝑦 = 𝑥 + 𝑥

This formula is created as in program verification with
concrete semantics [CMBC, Java Pathfinder, …]

31

With program as a formula, solver is versatile

Solver as an interpreter: given x, evaluate f(x)

𝑆 𝑥, 𝑦 ∧ 𝑥 = 3 solve for 𝑦 𝒚 ↦ 𝟔

Solver as a program inverter: given f(x), find x

𝑆 𝑥, 𝑦 ∧ 𝑦 = 6 solve for 𝑥 𝒙 ↦ 𝟑

This solver “bidirectionality” enables synthesis

32

Search of candidates as constraint solving

𝑆𝑃(𝑥, ℎ, 𝑦) holds iff sketch 𝑃[ℎ](𝑥) outputs 𝑦.
spec(x) { return x + x }

sketch(x) { return x << ?? } 𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ : 𝑦 = 𝑥 ∗ 2ℎ

The solver computes h, thus synthesizing a program
correct for the given x (here, x=2)

𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ ∧ 𝑥 = 2 ∧ 𝑦 = 4 solve for ℎ 𝒉 ↦ 𝟏

Sometimes h must be constrained on several inputs

𝑆 𝑥1, 𝑦1, ℎ ∧ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧
𝑆 𝑥2, 𝑦2, ℎ ∧ 𝑥2 = 3 ∧ 𝑦2 = 6 solve for ℎ 𝒉 ↦ 𝟏

33

Inductive synthesis

Our constraints encode inductive synthesis:

We ask for a program 𝑃 correct on a few inputs.

We hope (or test, verify) that 𝑃 is correct on rest of inputs.

34

