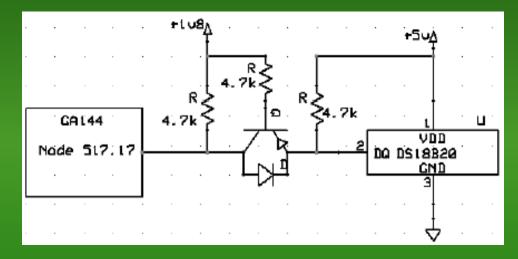
Exploring 1-wire devices on the GA144

by Franklin Amador

Outline

- Introduction
- The 1-wire Interface
- The 1-wire Protocol
- arrayForth[®] Implementation
- polyForth[®] Implementation
 Snorkel & Ganglia Integration
- Results
- Conclusions

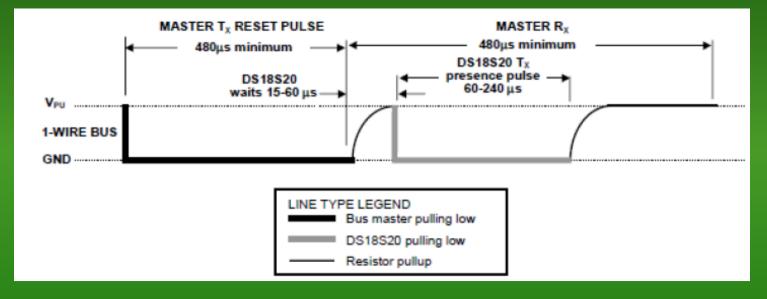

Introduction

Why?

- Port code from camel Forth
- Expand I/O on Node 606 for chip select on SPI
- Because I can
- Low Speed Protocol
 - Standard : 16.3 kbps
 - Overdrive : 10 times Standard
- Results:
 - Inadvertently opened up 1-wire market for Green Arrays.

1-wire Interface Circuit

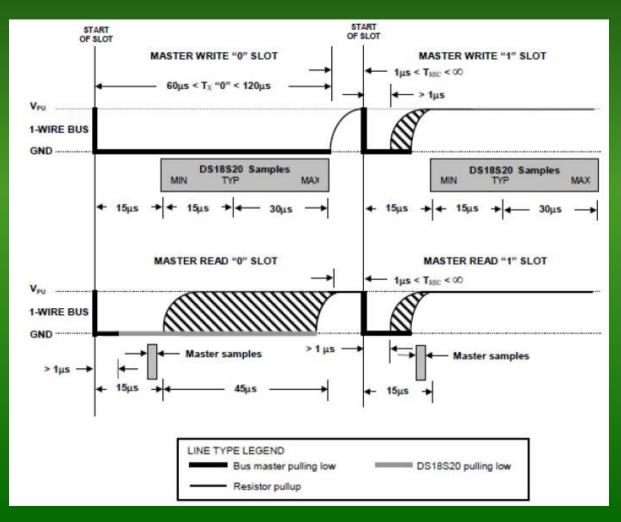
Voltage Converter



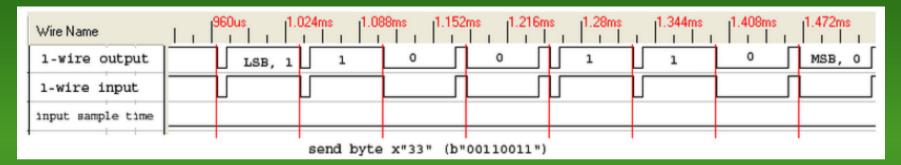
Recommendation:

- Use Evaluation Board Tl's TXB0108 Level Shifter

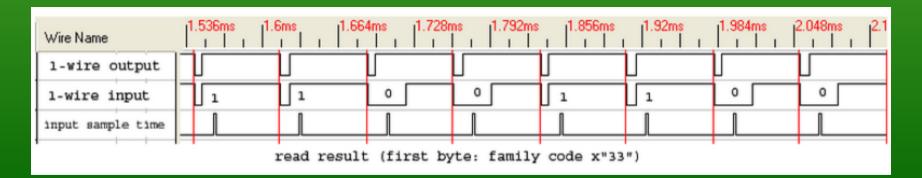
1-wire Protocol


Initialization Timer: Presence & Reset Pulse

Wire Name	0.	us IIII	64us	1280	IS I I	192us	256us	320us	384us	448	sı,	512us	576us	640us	
1-wire output						rea	set								
l-wire input												device	response		
input sample time															
						res	set proce	dure							


1-wire Protocol cont.

Read/Write Time Slot Timing Diagram



Sending & Receiving Timing

• Sending x33 example

• Receiving x33 example

arrayForth[®] Interface

1-wire Kernel

onewire dallas-1wire protocol,

dly timed usec loop delay
wat wait 500 usec
?pin read pin.17 value
hiz set pin.17 to high-impedance
low set pin.17 low
reset -n init device, presence pulse br

slot read/write 1bit to/from 1wire bus br

send sample pin.17, if x100 xor else br

receive right-shift main word, delay
pfreset send presence pulse back
pfslot send slot result back
pftouch touch read/write @/! from node 601

864 list

onewire -- kernel,

517 node 0 org delay 00 for . . unext ; wait 02 100000 delay ; ?pin 04 @b 20000 and ; hiz 06 0 lb : low 08 20000 lb : reset 0a -n low wait hiz 15000 delay ?pin wait 11 if dup or ; 13 then - ; slot 14 n-n low 1200 delay dup 1 and ., 19 if hiz 1b then, send 1b drop 3800 delay ?pin. 1f if over 100 or over . . . 23 then, recy 23 drop 2/ 7000 delay hiz 400 delay : pfreset 29 -n reset 1 ; pfslot 2b n-n @ slot ! ; pftouch 2d n-n @ 7 for slot next ! ; 32

polyForth[®] Interface

polyForth[®] to GA144 Interface

```
0 Other blocks
301
                             И Refs
 0 ( Basic 1-wire operations )
   HEX
 1
 2
    ND N516 2 uu 8 rr 0 ,path
 3
    1D5 CONSTANT RIGHT
    : OWRESET ( - n) N516 2029 1 RIGHT R!@ SWAP DROP 3 / ;
 4
 5
    : OWSLOT ( d - d) N516 202B 1 RIGHT R! 0 RIGHT R! DROP ;
    : OWTOUCH ( d - d) N516 202D 1 RIGHT R! 0 RIGHT R!@ DROP :
 6
 7
    : OWPUT < d-> OWTOUCH DROP ;
    : OWGET ( -n) FF OWTOUCH ;
 8
 9
10 ( Use only if there is a single 1-wire device attached )
11 : SHOWID ( - ) OWRESET IF 033 OWPUT 7 FOR OWGET . NEXT THEN
12
13 ( use only if there are no single 1-wire devices attached )
14 : TEST ( - ) OWRESET . 0 OWSLOT DROP 55 OWPUT
15 7 FOR OWGET . NEXT ;
     : SHOWID \overline{(-)} OWRESET IF 033 OWPUT 7 FOR OWGET . NEXT THEN :
```

polyForth[®] Interface cont.

```
305
                    0 Refs
                              Ø Other blocks
A (Maxim 1-wire high level operations)
1 HEX
2
  : SHOWIDS ( -- ) NEWSEARCH
     BEGIN ROMSEARCH CR ROMID 8 + ROMID DO I CP 3 U.R LOOP
 3
     Ø= UNTIL CR :
 4
 5
   : SENDID ( addr -- ) OWRESET
 6
 7
     IF 55 OWPUT 8 OVER + SWAP DO I @ OWPUT LOOP
     ELSE ." failed" DROP THEN ;
 8
 9
10 : READSCRATCH < a - > SENDID BE OWPUT 8 FOR OWGET . NEXT :
11
12 : OWCONUERT ( a -- ) SENDID 44 OWPUT ;
13
14 : READTEMP ( a -- n ) SENDID BE OWPUT OWGET OWGET 8 LSHIFT OR :
15
```

306 Ø Other blocks Ø Refs 0 (Maxim 1-wire high level operations) 1 HEX 2 : TEMP>PAD (n --) 5 * DECIMAL DUP ABS Ø <# # 2E HOLD # #S SIGN #> TYPE SPACE : 3 4 : OWID < --addr > 8 OVER + SWAP DO I @ . LOOP ; 5 6 7 HEX CREATE SENSOR1 10 , FB , 24 , B8 , 2 , 8 , 0 , 22 , HEX CREATE SENSOR2 10, CA, B7, B6, 2, 8, 0, 14, 8 9 10 : FINAL1 SENSOR1 OWCONVERT 750 MS SENSOR1 READTEMP TEMP>PAD ; 11 12 : FINAL2 SENSOR2 OWCONVERT 750 MS SENSOR2 READTEMP TEMP>PAD ; 13 14 : EXAMPLE1 SENSOR1 OWCONVERT 750 MS SENSOR1 READSCRATCH ; 15

Results

```
SHOWIDS

10 FB 24 B8 2 8 0 22

ok

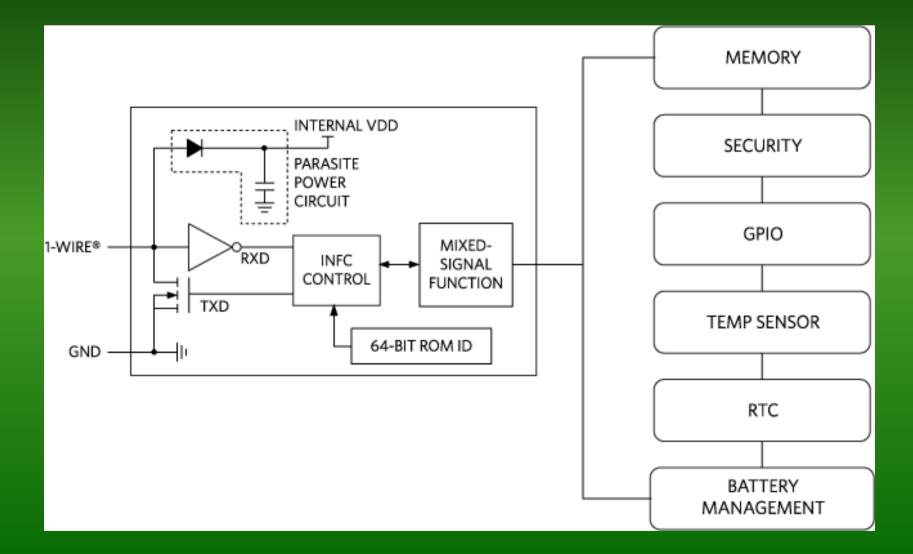
SHOWIDS

10 CA B7 B6 2 8 0 14

10 FB 24 B8 2 8 0 22

ok

FINAL1 21.0 ok


FINAL2 20.5 ok

ok

EXAMPLE1 42 0 75 70 255 255 15 16 64 ok

HEX EXAMPLE1 2A 0 4B 46 FF FF F 10 40 ok
```

Applications

Conclusion

- GA144 Architecture is Simple and Modular
- Porting Code was straight forward and simple
- Recommendations:
 - VHDL/Verilog to arrayForth[®] compiler and treat the F18 computer as a versatile logic unit.
 - Either Port arrayForth[®] into polyForth[®] or viceversa for a simple one design software interface.

Questions?

• Contact:

Franklin Amador fdamador@comcast.net

- Reference:
 - <u>https://github.com/fdamador/GA144-1-Wire-</u>
 <u>Application-Note</u>
 - http://en.wikipedia.org/wiki/1-Wire
 - <u>http://www.maximintegrated.com</u>