Search Engine

For SVFIG

Dr. C. H. Ting Offete Enterprises

December 16, 2006

Summary

- Early Search Engine Design
- Challenges of Search Engines
- Complete Search Engine Design
- Components of Search Engine
- Implementation
- Conclusion

Early Search Engine Design

DC7 Search Engine

- Seven 70-bit pipelined comparators for parallel data searching, prototyped by Orbit Semiconductor.
- Logic Equation

Compare <= '1' when

((shifter xor data) and mask) = 0 else '1';

DC7 Search Engine

DC7 Search Engine

Challenges of a Modern Search Engine

- Many keywords—AND relation
- Keywords may contain don't-care characters—Maskable characters
- Keywords may have spatial relationships—Variable interludes
- Keywords may have alternatives—OR relation

Challenges of a Gene Search Engine

Complete Search Engine Design

- Input Multiplexers
- Data Comparators
- Persistence Counters
- Matching Controller
- eP32 Microprocessor

Components of Search Engine

Input Multiplexers

- 32x32 Crossbar Input Multiplexers
- Any input bit stream can be directed to any Data Comparator
- Parallel input streams are used to load
 Data and Mask Registers
- A single serial input stream is used to distribute input data to all comparators

Data Comparators

- 32 200-bit Shifters with matching Data Registers and Mask Registers
- Controlling Signals
 - Master Clock
 - SHIFT
 - LOAD_DATA
 - LOAD_MASK
- COMPARE output

Persistence Counters

- 32 Persistence Counters to stretch the COMPARE signals from each comparator
- Persistence allows matching of several data segments with variable interludes among them

Matching Controller

- Flexible OR-AND structure allowing persistent compare signals to be OR'ed and AND'ed together
- OR'ed compare signals are AND'ed to produce final HIT signal
- Locations of 16 Final HIT signals are logged for software analysis

Matching Controller

- Match_Command Register issues
 SHIFT, LOAD_DATA and LOAD_MASK commands to Data Comparator
- Match_Parallel Register routes data to Input Mux in parallel
- Match_Serial Register routes data to Input Mux in a series of 32 clocks

eP32 Microprocessor

- Initialize Input Mux, Persistence Counters, and Match registers
- Write Match_Parallel Register to set up Data and Mask Registers in Data Comparator
- Write Match_Serial Register to run comparison
- Read Match_Counters to examine the searching hits

Implementation of Search Engine

- Implemented on Altera Stratix II FPGA chip
- Synthesized using Quartus II tools
- Tested on NIOS II Evaluation Board
- Resource Utilization:
 - 27728 ALUT (57%)
 - 24363 total registers
 - 786432 memory bits (31%)
 - 34:41 synthesis time

🖬 🎒 🔏 🖻 🛍 🗠 🗠 💦 ep32_chip 🔄 💥 🖉 🦁 🥮 🖿 🕨 😓 🔮 💆 👱 0 🖨 Compilation Report - Fl... | V Timing Closure Flo... abc search.vhd abc persist.vhd abc match.vhd abc ep32.vhd abc ep32_chip.vhd abc crossbar.vhd 2 Ð Compilation Report 🥙 Timing Closure Floorplan 3 Device: EP2S60F672C5ES 10 梢 abo match. vhd ¥ ⊁ SIGNAL m SIGNAL m 4 SIGNAL m SIGNAL m P SIGNAL m 1 84 SIGNAL m SIGNAL m 4 SIGNAL m **0**0 SIGNAL m SIGNAL m SIGNAL m ₽ SIGNAL m SIGNAL m x=b SIGNAL m SIGNAL m 2 SIGNAL m 94 ΩI < 23 entity < 24 port ٦ 24 <

Ì

<

File Edit View Project Assignments Processing Tools Window Help

>

Where is the Software?

Concluding Remarks

- When you have your own CPU, everything is easy.
- This search engine is a good example of Hardware-Software Codesign. You can trade off hardware for software and time.

Thank you very much!

