
FEFFF
Forth Engine Factored For FPGA

Don Roberts
jamesdroberts@comcast.net

SVFIG – 7/28/2007

Why? … Why Not?
• Always wanted to implement my own CPU
• Had some applications needing several

orders of magnitude speedup
• Profiled application inner loops, range of

architectures… realized core was
essentially P16

RTN stack R T N DATA stack

P A I

ALU

Current FPGAs

• Have large on-chip memory, roughly 64 K
BYTES!

• Register/stack access time about the
same as block memory
– 8-9 ns for 16 x 16 bits of local memory
– 10 ns for 1K x 16 bit dual-ported block

memory

So Let’s Re-Factor the P16

• On-chip memory only
• Separate data and program memories

– Not really separate – dual ported block memory
– Busses rather than muxes

• KISS
– Not pre-fetching several instructions in one word
– Hardware blocks idle –vs– pipeline and other

complications

Revised Instruction Set

• Execute all opcodes in 2 clock cycles with
“simple” clocking

• Several P16 operations broken into two
opcodes:
– Proceed LD, LDP, LDA, POP with a DUP
– Follow ST, STP, STA, PUSH with a DROP

• PASS
– TOS Tbuss

• OVER conveniently omitted

Problems with LIT
• P16 grabs next (program) memory word for LIT
• In my implementation, critical path is instruction

fetch and decode
• Would have had to latch instruction (and other

complications) slowing all instructions by some
30%

• So, like JMP, JZ, JNZ, literal is embedded in the
instruction word and becomes
– DUP (preserve current TOS)
– LITL (load low-byte of literal into TOS)
– LITH (load high-byte of literal into TOS

26 Opcodes
JMP to 10-bit address
JZ
JNC
Spare
RET
CALL
Spare
Spare

ADD
SUB
COM
XOR
AND
SHR
SHL (multiply)
PASS (no ADDC)

‘LDA
STA’
‘POP
PUSH’
DROP
DUP
(OVER)
NOP

‘LD
‘LDP
ST’
STP’
LITL
LITH
Spare
Spare

The Implementation

• Targeting Spartan XC3S1000
– 48 KByte on-chip memory
– Future multiprocessing

• 16-bit data and program words
• Return and data stacks 16 words each
• No TMUX

– PASS opcode sends Tbuss through ALU
unchanged

Tbuss

Nptr

NstackALU

Treg

Rptr

Rstack

Rmux Main Memory

prog data

AptrPC

Pmux

3state 3state

Nbuss

Putting It Together

• 8 pages VHDL + 1 page schematic
• Key data paths

– Nstack + Nptr = 16 nS
– Rstack + Rptr + Rmux = 20/25 nS
– ALU + Treg = 17/20 nS
– Data memory + Aptr = 23 nS
– Program memory + Pmux + PC = 25 nS
– Program memory + Instruction decode = 25

nS

Design Comments
• Xilinx free tools surprisingly good

– Good synthesis from behavioral description for data path
– limited simulation time (1000 ns), but good enough

• The “big burden” is the controller block
• Ting’s “bootstrapped debug” very helpful

– Test JMP, NOP, LIT 1st – you’ll need ‘em for other tests
– Then test ADD and JZ, then DUP and JNC
– Then CALL and RET
– End tests with a opcode that jumps to itself – which one

(address) well tell you results of conditionals
• Simulation + full-speed hardware “good enough”

– Hardware single-step and VGA “monitor” very useful

Results & Status

• “Works” in simulation
– 40 MHz, <= 20 MIPS
– Ignoring main memory, CPU uses 3% of chip

resources!
• Works in real-world!

– Tested at 25 MHz
– Single-step and VGA character generator

added
• 4% of chip logic
• 8% of chip memory

Single-Step Demo
Loc Hex Instruction

0 FC00 NOP

1 2804 CALL 4

2 0002 JMP 2

3 0003 JMP 3

4 6755 LITL 55

5 2000 RET

